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Abstract: We propose an efficient method that determines the sign of a multivariate
polynomial expression with integer coefficients. This is a central operation on which the
robustness of many geometric algorithms depends. Our method relies on modular compu-
tations, for which comparisons are usually thought to require multiprecision. QOur novel
technique of recursive relaxation of the moduli enables us to carry out sign determination
and comparisons by using only floating point computations in single precision. This leads us
to propose a hybrid symbolic-numeric approach to exact arithmetic. The method is highly
parallelizable and is the fastest of all known multiprecision methods from a complexity point
of view. As an application, we show how to compute a few geometric predicates that reduce
to matrix determinants and we discuss implementation efficiency, which can be enhanced by
arithmetic filters. We substantiate these claims by experimental results and comparisons to
other existing approaches. Our method can be used to generate robust and efficient imple-
mentations of geometric algorithms (convex hulls, Delaunay triangulations, arrangements)
and numerical computer algebra (algebraic representation of curves and points, symbolic
perturbation, Sturm sequences and multivariate resultants).
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Calcul exact de prédicats géométriques par une
arithmétique modulaire en simple précision

Résumé : Nous proposons une technique efficace pour retrouver le signe d’une expres-
sion polynomiale & coefficients entiers. Cette opération est essentielle pour la robustesse des
algorithmes géométriques. Notre méthode repose sur 'arithmétique modulaire, une arithmé-
tique efficace mais pour laquelle il est généralement admis que les comparaisons requiérent
une précision multiple. Notre algorithme d’élimination récursive des modulis nous permet
de déterminer le signe et d’effectuer des comparaisons dans ce modéle en simple précision.
Cette méthode est hautement parallélisable. Nous montrons par exemple comment calculer
certains prédicats géométriques qui se réduisent & calculer le signe d’un déterminant. Nous
discutons les détails d’implantation, et en particulier I'utilisation de filtres arithmétiques.
Nos méthodes peuvent étre utilisées pour implanter de nombreux algorithmes géométriques
(enveloppe convexe, triangulations de Delaunay, arrangements), ainsi que d’algébre numé-
rique (représentation de nombres, courbes et surfaces algébriques, perturbation symbolique,
théorie de Sturm et résultants multivariés).

Mots-clé : Géométrie algorithmique, arithmétique exacte, robustesse, calcul modulaire,
simple précision
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1 Introduction

In computational geometry and computer graphics, floating point (f.p.) arithmetic is ex-
tremely popular because of its speed. Most of geometric predicates can be expressed as
computing the sign of an algebraic expression, which can be achieved by using f.p. arithme-
tic with a fixed finite precision. Unfortunately, the roundoff errors may easily lead to the
wrong sign, causing the algorithm to fail on the input. This problem is often referred to as
the robustness problem [25]. One solution to the robustness problem is to explicitly handle
numerical inaccuracies, so as to design an algorithm that does not fail even if the numerical
part of the computation is done approximately [27, 39], or to analyze the error due to the
f.p. imprecision [19]. Such designs are extremely involved and have only been done for a few
algorithms. The general solution, it has been widely argued, is to compute the predicates
exactly [9, 16, 18, 20, 44]. (See also section 6.2.) This is also the position taken by this
paper. This goal can be achieved in many ways: computing the algebraic expressions with
infinite precision [42], with a finite but much higher precision that can be shown to suf-
fice [21], or by using an algorithm that performs a specific test exactly. In the last category,
much work has focused on computing the sign of the determinant of a matrix with integer
entries [3, 6, 12|, which applies to many geometric tests (such as orientation tests, in-circle
tests, comparing segment intersections) as well as to algebraic primitives (such as resultants
and algebraic representations of curves and surfaces). Recently, some techniques have been
devised for handling arbitrary polynomial expressions and f.p. representation [38] but their
complexity grows rather fast with that of the computation.

In computer algebra and symbolic computation, on the other hand, exact arithmetic is
almost always assumed. When approximate calculation is not an option, a popular approach
is to use big-integer and big-float multiprecision packages. This implies that operands are
computed and stored with arbitrary precision, including intermediate quantities whose ma-
gnitude may be significantly larger than that of the output values. To remedy this problem,
a substantial amount of work in the area has focused on modular arithmetic, which allows
most of the computation to be carried over fixed precision integers. However, the modular
representation of a rational number is typically not sufficient, and most problems require
the reconstruction of the exact number, which means that some arbitrary precision is still
required. Real algebraic numbers are represented as the unique root of a given polynomial in
a given interval. Such a representation can be computed by applying Sturm theory. Besides
the computation of Sturm sequences, finding the isolating interval requires many computa-
tions of signs of polynomial expressions with integer coefficients. One major drawback of
these methods is the slowdown due to the handling of full precision.

In this paper, we propose a method that determines the sign of a multivariate polynomial
expression with integer coefficients, using no operations other than modular arithmetic and
f.p. computations with a fixed finite (single) precision, thus removing the need for arbitrary
precision computations. These operations can be performed very fast on usual computers
(see section 2). The Chinese remainder theorem enables us to perform rational algebraic
computations modulo several primes, that is, with a lower precision, and then to combine
them together in order to recover the desired output value. The latter stage of combining the
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4 H. Brénnimann, 1. Z. Emiris, V. Y. Pan, S. Pion

values modulo smaller primes, however, was always considered a bottleneck of this approach,
because higher precision computations were required at this stage. Our paper proposes a
new technique, which we call recursive relazation of the moduli and which enables us to
resolve the latter problem (section 3). Thanks to this technique, we correctly recover the
sign of an integer from its value reduced modulo several smaller primes, and we only use
some simple lower precision computations at the recovery stage. The worst-case complexities
of these algorithms are no worse than quadratic in the number of finite fields, which is the
same as for the standard multiprecision packages. The best worst-case complexities can in
theory be lowered to quasi-linear in the asymptotic notation, albeit with a huge overhead.
In practice, our algorithms are expected to behave linearly except in some cases whose
probabilities are extremely small, and they entail little or no overhead. We therefore believe
them to be of extremely practical value. In section 6, we then show how to compute a few
geometric predicates that reduce to computing signs of matrix determinants. Preliminary
experimental results and running times are discussed in section 7. In general, our methods
are comparable in speed to other exact methods, and even faster for particular inputs.

Related work. Performing exact arithmetic is usually expensive. Thus, it is customary
to resort to arithmetic filters [21]: those filters safely evaluate a predicate in most cases, in
order to avoid performing a more expensive exact implementation. The difficult cases arise
when the expression whose sign we wish to compute is very small. For typical filters, the
smaller this quantity, the slower the filter [12, 3, 38]: this is referred to as adaptivity. Modular
arithmetic displays an opposite kind of adaptivity: with a smaller quantity, fewer moduli
have to be computed, hence the test is faster. Typically, when filters fail, they also provide
an upper bound on the absolute value of the expression whose sign we wish to compute
(see many details and estimates in [35, 15]). This bound can then be used to determine
how many moduli should be taken. Modular arithmetic is therefore complementary to the
filtering approach. We also observe this in section 7.

Residue Number Systems (RNS) express and manipulate integers of arbitrary precision
by their residues with respect to a given set of numbers, the moduli. They are popular
because they provide a cheap and highly parallelizable version of multiprecision arithmetic.
It is impossible here to give a fair and full account on RNS, but Knuth [30] and Aho,
Hopcroft, and Ullman [1] provide a good introduction to the topic. From a complexity
point of view, RNS allows to add and multiply numbers in linear time. Their weak point
is that sign computation and comparisons are not easily performed and seem to require full
reconstruction in multiple precision, which defeats its purpose. This is precisely the issue
that our paper handles.

The closest predecessors of our work are apparently [17] and [28]. The algorithm of
Hung and Parhami [28] corresponds to single application of the second stage of our recur-
sive relaxation of the moduli. Such a single application suffices in the context of the goal
of [28], that is, application to divisions in RNS, but in terms of the sign determination of
an integer, this only works for an absolutely larger input. The paper [17] gives probabilistic
estimates for early termination of Newton’s interpolation process, which we apply in our
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FExact geometric predicates with single precision arithmetic 5

probabilistic analysis of our algorithm 4. Its main subject is an implementation of an algo-
rithm computing multidimensional convex hulls. The paper [17] does not use our techniques
of recursive relaxation of the moduli, and it does not contain the basic equations (1)—(3) of
our section 3.1.

2 Exact sign computation using modular arithmetic

Floating point (f.p.) computations. Our model of a computer is that of a f.p. processor
that performs operations at unit cost by using b-bit precision (e.g., in the IEEE 754 double
precision standard, we have b = 53). It is a realistic model as it covers the case of most
workstations used in research and industry [23, 30, 38]. We will use mainly one basic property
of f.p. arithmetic on such a computer: for all four arithmetic operations, the computed result
is always the f.p. representation that best approximates the exact result. This means that
the relative error incurred by an operation returning x is at most 277!, and that the
absolute error! is at most 2Ueslzl~t=1l = In particular, operations performed on pairs of
integers smaller than 2° are performed exactly as long as the result is also smaller than 2°.

To be able to discuss the properties of f.p. arithmetic, it is convenient to introduce the
following notation [38]: given any real number z, it is representable® over b bits if z = 0 or
if 22~ l°82]+b ig an integer; ¥ denotes the representable f.p. number closest to # (with any
tie-breaking rule if x is right in-between two representable numbers), and ulp(z) denotes the
unit in the last place, that is, 2U1°8121=t] if 5 £ 0, and 0 otherwise. With this notation, the
absolute error in computing an operation that returns x is %ulp(x).

Modular computations. Let mq,...,my be k pairwise relatively prime integers and let
m = [], m;. For any number z (not necessarily an integer), we let 2; =  mod m; be the
only number in the range [— o, ”}) such that z; — z is a multiple of m;. (This operation
is always among the standard operations because it is needed for reducing the arguments of
periodic functions.)

This operation can be extended modulo an f.p. number as follows: an f.p. number z is
truncated to a non-null f.p. number y and the result is defined as  — [z/y|y. Therefore,
2 mod m; is the result of truncating = to m;, and the (signed) fractional part frac(z) of z
is the result of truncating = to 1. Note that the result of truncating = to a power of two is
always representable if  is representable.

To be able to perform arithmetic modulo m; on integers by using f.p. arithmetic with
b-bit precision, we will assume that m; < 2°/2+!. Performing modular multiplications of
two integers from the interval [— 5, "QL) can be done by multiplying these numbers and
returning their product modulo m;. (The product is smaller than 2° in magnitude and hence
is computed exactly.) Performing additions can be done very much in the same way, but since

LAll logarithms in this paper are base 2.

2We systematically ignore underflows and overflows, by assuming that the range of exponent is large
enough. A few modern packages now provide f.p. arithmetic with the exponent stored in a separate integers,
which extends the IEEE 754 double precision standard by quite a lot.
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the result is in the range [—m;, m;), taking the sum modulo m; can be achieved by adding or
subtracting m; if necessary. Modular divisions can be computed using the extended Euclid’s
algorithm; we will need them in this paper only in section 6. Therefore, arithmetic modulo
m; can l/)e performed on integers by using f.p. arithmetic with b-bit precision, provided that
m; < 21) 2+1_

Exact sign computation. In this paper, we consider the following computational pro-
blem.

Problem 1 Let k, b, m1,...,my denote positive integers, my, ..., my being pairwise re-
latively prime, such that m; < 2Y/2%1 and let m = Hle m;. Let x be an integer whose
magnitude is smaller than |(m/2)(1 — 3k27°"1)|. Given z; = x mod m;, compute the sign
of x by using only modular and floating-point arithmetic both performed with b-bit precision.

We will solve this problem, even though = can be huge and, therefore, not even representable
by using b bits. In the worst case, our solutions require O(k?) operations and therefore do
not improve asymptotically over the standard multiprecision approach. They are simple,
however, and require little or no overhead. In practice, they only perform O(k) operations.
Thus they are very well suited for implementation.

3 Lagrange’s method

According to the Chinese remainder theorem, x is uniquely determined by its residues z;,
that is, Problem 1 is well defined and admits a unique solution. Moreover, this solution can
be derived algorithmically from a formula due to Lagrange. A comprehensive account of
this approach can be found in [30, 31].

3.1 The basic method

This section describes the basic algorithm relying on Lagrange’s approach. If x is an integer

in the range [—%, %), x; stands for the residue z mod m;, v; = m/m; = H#i m;, and

w; = vi_l mod m;, then

k
x = (Z ((z;w;) mod m;) vi) mod m. (1)

=1

Trying to determine the sign of such an integer, we compute the latter sum approximately in
fixed b-bit precision. Computing a linear combination of large integers v; with its subsequent
reduction modulo m can be difficult, so we prefer to compute the number

x k (ziw;) mod m;
= L frac | T OO
S = rac( i ) ,

=1

INRIA
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where frac(z) is the fractional part of a number z that belongs to [—1,1).

If S were computed exactly, then we would have S = z/m, due to Lagrange’s inter-
polation formula. In fact, S is computed with a fixed b-bit precision. Nevertheless, if we
compute it by incrementally adding the ¢th term and taking fractional part, the error follows
the induction

g =i +2707 4270

where the term 2%~ accounts for the error on computing the ith term of S, and the term
27" accounts for the error on computing the incremental sum. Moreover, e; = 27°~1. Hence
S approximates x/m with an absolute error £, = (3k — 2)27°~1. Therefore, if |S| is greater
than ey, the sign of x is the same as the sign of S, and we are done. Otherwise, |z| < 2¢;m.
Since my, < 2°/2%1 we can say conservatively that for all practical values of k and b, this is
smaller than %(1 — £r—1), and hence we may recover z already from x; = x mod m; for
1 =1,...,k — 1, that is, it suffices to repeat the computation using only k& — 1, rather than
k moduli. Recursively, we will reduce the solution to the case of a single modulus m; where
x = z1. We will call this technique recursive relazation of the moduli, and we will also apply
it in section 3.2.
We will present our resulting algorithm by using additional notation:

m® = I m

1<i<)
o = [ me
156
L#i
. -1
w? = (1}1(»7)) mod m;,
i) |
SU) = frac (Z—xzwz modm1>7
m;
i=1

so that m = m*¥) | v; = vgk), w; = wl(-k) and § = S(*). All the computations in this algorithm
are performed by using f.p. arithmetic with b-bit precision.

Note that wl(»J) = w§]+1)mj+1 mod m;, hence the i-th term in S can be computed
from the i-th term in SU+1). Thus only the w*)’s are needed in the algorithm. Since k is
specified in the input, though, a quadratic table still seems to be necessary. This can be
avoided without substantial slowdown (see the remark below).

Algorithm 1 : Compute the sign of x knowing z; = x mod m; forall 1 <i <k

1k), gj, forall1 <i<k
Input: integers k and x; € [— o Tg), foralll1 <i<k

Precomputed data: m;, w!

Output: sign of x, the unique solution of r; = x mod m; in [— m;k) , m;k))

Precondition: |z| < #(1 —&k)

RR n~°3213
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1. Letj<—k+1,zi:xiw§k) mod m; for all1 <i<k
2. Repeat j «— J—1

J el

S — frac (; mi)
if |S(j)| <ejand j >0 then z; — zym; mod m; for all1 <i<j
until |SW| > e; or j =0

8. If j =0 return “z =0”

4. If SU) > 0 return “c > 0”

5. If SU) < 0 return “z < 07

The following lemma bounds the number of operations performed by the algorithm in
the worst case.

Lemma 3.1 Algorithm 1 computes the sign of x knowing its residues x; by using at most
@ modular multiplications, @ f-p. divisions, @ f-p. additions, and k + 2 f.p.
COMPATISONS.

Proof. The m;’s and the wf-J Vs are computed once and for all and placed into a table, so
they are assumed to be available to the algorithm at unit cost. In step 2, a total of j modular
multiplications, j f.p. divisions, j f.p. additions (including taking the fractional part) and
one comparison are performed. O

In almost all practical instances of the problem, |z| is on the same order of magnitude as
m(¥). If |z| is not too small compared to m(¥), then only step k is performed, involving only
at most k f.p. operations of each kind. This is to be contrasted with full reconstruction,
which requires ©(k?) operations. Thus algorithm 1 is of great practical value.

By using parallel implementation of the summation of k£ numbers on [k/ log k| arithmetic
processors in 2[log k] time (cf. e.g. [5, ch.4]), we may perform algorithm 1 on [k/logk]
arithmetic processors in O(klogk) time, assuming each b-bit f.p. operation takes constant
time. Furthermore, if [kz /log k] processors are available, we may compute all the $¢) and
compare |S)| with ¢;, for all j = 1,...,k concurrently. This would require O(log k) time
on [k*/logk| processors. Finally, if [tk/logk] processors are available for some parameter
1 <t < k, we may perform algorithm 1 in O((klogk)/t) time by batching [¢] consecutive
values of j in parallel. In practice, the algorithm needs to examine only a few values of j,
so O(log k) time suffices even with [k/log k] processors.

Remark 2. If actually x = 0, the algorithm can be greatly sped up by testing if z; =0
in step 2, in which case we may directly pass to 7 — 1. Furthermore, stage 3 is not needed
unless x = x; = 0 for all j, which can be tested beforehand. Of course, if the only answer
needed is “z = 0” or “x # 07, then it suffices to test if all the z;’s are zero and this can be
done during the computation of the z;’s.

INRIA



FExact geometric predicates with single precision arithmetic 9

Remark 3. The costly part of the computation is likely to be the determination of the
x;’s. For these reasons, we should try to minimize the number & of moduli m; involved in
the algorithm. This can be done by getting better upper estimates on the magnitude of the
output or by using the probabilistic technique of section 4.

Remark 4. The preprocessing table can be made of linear size at the expense of additional

operations. Indeed, assume that all the values of k given to the algorithm are less than some

value K. Noting that w(k) = w(K) H]K:,H_l m; mod m;, we may let M = H]K:H_l m; mod

m; and store only the tables wf ) and M, for 1 < 4§ < K. Then the wgk)’s can be computed
with & modular multplications in a step 0 of the algorithm above.

3.2 A generalization of Lagrange’s method

We will show that Lagrange’s method is in fact a particular case of the following method.

Let
i (z;w;) mod m;
E(O) — S(k) = f 7 Wi % )
rac E E—

i=1
This quantity is computed in the first step of algorithm 1. If the computed value of %) is
smaller than ¢, it implies that £(©) < 2¢,. Thus, || is smaller than 2mej,. We can then
multiply z;w; by
= |H)
28k ’

to obtain (z;w;ax) mod m; for all i = 1,..., k. This can easily be done by precomputing c,
modulo each m;. We then compute

k
SO — frac (Z T;w; o) mod m1> ,

=1 mi

and more generally,

$0) = frac <i (z;w;a’) mod mi> ’
i=1 mi
where we assume oy mod m; precomputed for all ¢+ = 1,...,k. It is easy to see that the
number of iterations in this process is [logm/logax] < k, because |z| is no less than 1 and
no more than m(*® < 26(t/2+1) " and is multiplied by a4 at each iteration. This number is
smaller than [k/2] + 1 for all practical purposes. In the implementation, we may assume
x # 0, because this can be tested easily beforehand (see remark above). In this case, we
exit necessarily within this number of iterations, hence we do not even need to test for the
maximal number of iterations. Therefore, algorithm 2 still performs ©(k?) operations in the
worst case, but in practice (on most instances) only k operations of each kind.
This leads to the following algorithm:

RR n~°3213



10 H. Brénnimann, 1. Z. Emiris, V. Y. Pan, S. Pion

Algorithm 2 : Generalized Lagrange’s method.
Compute the sign of x knowing x; = x mod m; for all 1 <<k

Precomputed data: m;, w;, e, ax mod m;, forallt=1,... k
Input: integers k and x; € [— 5, ”;) foralli=1,... )k
Output: sign of x, the unique solution of r; = x mod m; in [—#, m;k))

Preconditions: |z| < #(1 —eg) and x #0

1. Let j «— —1, z;, = a:iwz(»j) mod m; for all 1 <i<k
2. Repeat j «— j+1,
k

() Z

— frac (; m
if |E(j)| < gy then z; — z;ap mod m; for all 1 < i <k,
until S| > g

s If E(J:) > 0 return “x > 07

4. If 89 < 0 return “c < 0”

Remark 5. Algorithm 1 corresponds to a choice of m; instead of oy in step j. This
simplifies the computation by eliminating one modulus at each iteration, but it performs
more iterations. Multiplying by ay, we perform fewer iterations but each iteration is done
with & moduli. This is why we call algorithm 2 a generalization.

Remark 6. To yield the parallel time bounds such as O(log k) using [k?/log k| processors
for algorithm 2, we need to precompute ai’ mod m; for all 4,7 =1,... k.

3.3 A probabilistic variant

In the previous algorithm, there can be at most huorst = [log(2mFe, —1)/logay| ite-
rations. The actual number A,ctuq; Of iterations is the minimum h that satisfies |a:akh| >
2m(®e,. In the previous algorithm, we find this number by repeatedly incrementing h. In
theory we could perform a binary search on h by testing whether |zay”| > 2m(®)e;. Since
the value of z is unkown, however, we can only test if |za;” mod m®)| > 2m(Fe; by using
step 2 of the algorithm. If this is detected to hold for some value of h, then necessarily
|zax”| > 2mFey, and we may try a smaller value of h. Otherwise, zal is close to a multiple
of m®), but this is only a probabilistic indication that |zax”| < 2m*)ey; we may try never-
theless a greater value of h. We therefore begin with h = 0, and then double the value of h
until the condition |zax" mod m*)| > 2m¥)¢, is true. Then we perform a binary search for
hactual in the range [0, h]. Since this range is not guaranteed to contain the value hqctyai, but
does it with high probability, we call this technique binary search in a probabilistic range.
Since 2¢y, is much smaller than 1, the probability that, for some fixed h, k, oy, a random

x in the range [— m;k) , #) satisfies |zay,” mod m(F)| > 2m*) e but not |zay”| > 2mFey

INRIA



FExact geometric predicates with single precision arithmetic 11

is extremely small. In fact, if oy, is prime with m(¥), it equals the probability that a random
y satisfies |y mod m®)| > 2m(Fe;. but not |y| > 2m*e,. This probability is clearly less
than e, and is therefore extremely small. The resulting sign, however, is only correct with
very high probability. This approach is similar in spirit to that of section 4.2. The speedup
is obtained by the fact that only O(log k) iterations are processed. The resulting algorithm
performs only O(klog k) operations. It may be executed on [k/log k] processors in parallel
time O(log? k).

4 Newton’s method

An incremental version of Chinese remainder reconstruction, named after Newton, is descri-
bed in this section. Its main advantage is that the intermediate computations do not require
an a priori bound on the magnitude of z, more exactly on the number of moduli needed. This
bound is only needed for the deterministic algorithm to stop; in the probabilistic version,
no such bound is needed. It also only requires a linear precomputed table.

4.1 The basic method

Let () = 2 mod m(), for j = 1,...,k, so that () = 2, and 2 = 2(®. Let y; = 1, and
forall j =2,...,k,

t; = wﬁj) = (mU=1)" mod m;;,
Y = (wj —x(jfl)) tj modm; € [—%, %) .
Then (see, e.g., [30, 31]), for all j =2,...,k,
20) = (x(j—l) + yjm(j—l)) mod m?). )

Clearly, this leads to an incremental computation of the solution z = z(*) to problem 1;
we see below how this can be exploited for an early termination of the interpolation. A
further advantage is that all computation can be kept modulo m;, and no floating-point
computation is required, in contrast to sections 3.1 and 3.2 where S or £(9) are computed.
It is obvious, that when y; # 0, then the sign of 21 is the same as the sign of y; since
|z=D] < mU=1/2. If y; = 0, the sign of 2(9) is the same as that of U~V for j > 2,
whereas the sign of (1) = z; = y; is known. If y; = 0 for all j, then this is precisely the
case when x = 0.

Unrolling equation (2) in the definition of y; shows that the quantities y; verify the
following Horner-like identity for all j = 2,..., k:

= (x5 —z1 —ma(y2 +ma(-- - (y;—2 + mj 2y; 1)) t; mod m;
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All the computations are done modulo m;. Therefore, they can be computed by using
modular arithmetic with bit-precision given by the maximum bit-size of the mf Here it
suffices to assume that the absolute value of z is bounded by m(*) /2.

Algorithm 3 : Compute the sign of z, knowing z mod m;, by Newton’s incremental me-
thod

Precomputed data: m;, t;, forall1 <j <k
Input: integers k and z; € [—2¢,24) for alli=1,...,k

m () m(k))

Output: sign of x, where x is the unique solution of r; = x mod m; in [— 5= 75

Precondition: none.

1. Let y1 < x1, 7 < 1. Depending on whether y1 is negative, zero or positive, set s to
—1,0 or 1, respectively.
2. Repeat 7 «— 5+ 1,

yj — (x5 — o1 —ma(y2 + ma(--- (yj_2 + mj_2y;1)---))) t; mod my,

until j = k. For every j, set s to 1 or —1, if y; is positive or negative, respectively.
3. Depending on whether s is —1, 0, or 1, return “z < 07, “z = 07, or “z > 07
respectively.

Remark 7. As in remark 1, we can test beforehand if all z; = 0, which is precisely the
case when x = 0.

Lemma 4.1 Algorithm 8 computes the sign of x knowing its residues x; using at most

@ f.p. modular multiplications, k(k; Y modular additions, and k f.p. comparisons.

Proof. Foreveryj =2,...,k, there are j—1 modular additions and multiplications. There
is one comparison for each j = 1,...,k. O

Algorithm 3 requires k iterative steps, so its parallel time cannot be decreased below
Q(klogk). Nevertheless the algorithm can be implemented in O(klogk) time on [k/logk]
processors, assuming each b-bit f.p. operation takes constant time.

To compare with algorithm 1, realistically assume that a modular addition is equivalent
to 3/2 f.p. additions and one comparison, on the average. Then, algorithm 1 requires @
f.p. divisions (which are essentially multiplications with precomputed reciprocals) more than

k(k; L extra f.p. additions and @ additional

algorithm 3, whereas the latter requires
comparisons.

The principal feature of this approach, based on Newton’s formula for recovering z, is
its incremental nature. This may lead to faster termination, before examining all £ moduli.
Informally, this should happen whenever the magnitude of x is significantly smaller than
m*) /2, in which case we would save the computation required to obtain z; for all larger j.
This saves a significant amount of computation if termination occurs earlier than the static
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bound indicated by k. A quantification of this property in the case of convex hulls can be
found in [17].

Another merit of this approach is that the size of the precomputed table is only linear
in k (as opposed to quadratic for algorithms 1 and 2). For very large values of k, this can
be the method of choice.

4.2 A probabilistic variant

We propose below a probabilistic variant of algorithm 3 which, moreover, removes the need
of an a priori knowledge of k. Step 2 is modified to include a test of y; against zero. Clearly,
y; = 0 precisely when (/) = U=, Then we may deduce that 2(9) = z(¥) = 2, with a very
high probability, and terminate the iteration.

Algorithm 4 : Yield earlier termination of algorithm 3 for absolutely smaller input. Al-
gorithm 3 is modified exactly as shown.

_m;

Input: integers x; € [ 5 %) fori=1,... as required in the course of the algorithm;
no need for k
Output: sign of x with very high probability

2. Terminate the loop also if y; =0

By lemma 3.1 of [17], this algorithm fails with probability bounded by (k — 2)/mmin,
where
Mmin = min{mq, mao, ..., my}.

For k < 12, mumin > 225, the error probability is less than 107%. A more careful analysis
can reduce this probability to O((k — 2)/mt; ) by exploiting the correlation of failure at
different consecutive stages. For experimental support of this claim, we refer to [17]. The
only modification to the algorithm is to replace step 2 by step 2’ below:

2’. Terminate the loop also if y; =0,...,y;—¢ =0

5 Filtered residue number systems (F-RNS)

Given a number z such that |z| < m®*) /2, we call z ~ (z1,...,x) a k-modular representa-
tion of x. Using the techniques of the previous sections, we can reduce the number & in the
representation of x to its minimum: we call this process normalization. In the next section,
we explain the technique of modular inference, which extends a k-modular representation
into a k’-modular representation, k' > k. For filtering as well as for getting a sharp upper
bound on the number of moduli needed to represent a number, we can maintain for each
number an approximate f.p. representation. This is done in section 5.2. Finally, in section
5.3, we show how to perform all arithmetic operations in hybrid symbolic-numeric RNS
which entails a small number of single precision f.p. operations. The small overhead and the
simplicity of our schemes make it very well suited for implementation.
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5.1 Modular inference

Given z;, with |z;| < m;/2 for all j =1,...,k, we know that there exists a unique x such
that |z| < m(*) /2 and that ; = x mod m; for all j = 1,...,k. In some computations where
z is involved, we may need furthermore z; = z mod m; fori =k +1,..., k.

Problem 2 Let k, k', b, my,...,mg denote positive integers, my,..., my being pairwise
relatively prime, such that k < k' and m; < 20/t Let & be an integer whose magnitude
is smaller than |(m/2)(1 —27%)|. Given z; = x modm; for i = 1,...,k, compute z; =
zmodm; fori=k+1,... k.

We will solve this following problem, which we call modular inference, by avoiding the full
reconstruction of x and using only single precision and modular operations.

Newton’s method. Our first technique is based on equation (2), which implies that
T = ( o (ykm(kfl) + yk_1) Mp—2) + -+ y2) my + Y1-

The values of the y;’s are computed as a byproduct of algorithm 3. Using this expression,
we may compute x mod m; very easily, for any i = k+1,..., k', by computing each term in
the sum above modulo m,; and then computing the sum z modulo m;. We therefore obtain
the following algorithm.

Algorithm 5 : Compute  mod m; knowing x mod m;, forall 1 <j <k <i <k

Precomputed data: m;, m; mod m;, for all1 < j<k<i<k'

Input: integers k, k' and z; € [-52,Z2) forall j=1,...,k

Output: z mod m; for all i = k+1,...,k', where x is the unique solution of z; =
. . mE) )

zmodm; (1<j<k)in [— 5 s )

Precondition: None.

1. Compute y; for all j =1,...,k as in algorithm 3.
2. Foralli=k+1,...,k', do

Ty — (( - (yk’ITL(kfl) + yk_l) Mg—2) + -+ yg) my + y1) mod m;.
The following lemma is immediate.

Lemma 5.1 Algorithm & computes a k'-modular representation of x from a k-modular re-
presentation with k(k' — k) modular multiplications and (k — 1)(k' — k) modular additions,
plus all the operations given in lemma 4.1.

As a comparison, using multiple precision arithmetic would involve O((k’ + k)k) single preci-
sion operations: first ©(k?) to recover the exact value of z and then ©(k) operations for each
t=k+1,...,k" to perform the Euclidean division by m;. In theory, it can be accelerated by
using the asymptotically fastest multiplication algorithm in O((k'+k)log? (k' +k) loglog(k' +
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FExact geometric predicates with single precision arithmetic 15

k)) time [1], albeit with an enormous overhead. More practically, the O((k’ + k)k) time mul-
tiprecision approach is asymptotically equivalent to our above algorithm.

If the y;’s are not known, however, step 1 of this algorithm requires to perform a quadratic
number of operations even if only a single extra modulo is needed (k' = k + 1). This is
improved by the following algorithm.

Lagrange’s method. Equation (1) implies that, for some integer X,

k
T = zi;w;) mod m; 1)<—ka(’“).
> ((wjwy) )

=1

The key observation is that X} may be computed by step 2 of algorithm 1, because X} is
the integral part of the first sum whose fractional part is S(*). Moreover, X}, is very small
(less than k) and for all practical purposes is much smaller than all the m;’s, i < k’. Hence,
X, mod m; = X;. Assume we have precomputed v; ; =v; mod m; for 1 < j <k <i<k'.

Algorithm 6 : Compute x mod m; knowing x mod m;,forall 1 < j <k <i <k

Precomputed data: m;, v;;, m*) mod m;, for all 1 < j <k <i <k

Input: integers k, k' and z; € [-52,52) forall j=1,...,k

Output: z mod m, for all i = k+1,...,k', where x is the unique solution of x; =
zmodm; (1<j<k)in [—m;k), m;k))

Precondition: |z| < #(1 —&x)

1. Compute z; — (z;w;) mod m; for all j =1,...,k.
2. Compute X by performing step 2 of algorithm 1 for j = k.
3. Foralli=k+1,...,K, do

k
T = E 2055 — Xpm®) | mod m.

j=1
We now count the number of arithmetic operations.

Lemma 5.2 Algorithm 6 computes a k'-modular representation of © from a k-modular re-
presentation with at most k(k' —k+1) — 1 modular additions, (k' —k+2)(k+1) — 2 modular
multiplications, and k f.p. divisions.

Proof. Step 1 involves k modular multiplications, while step 2 performs & modular multi-
plications and divisions and k — 1 f.p. additions. As for step 3, it performs k' — k iterations,
each of which computes k + 1 modular multiplications and k¥ modular additions. O

This method based on Lagrange’s formula is asymptotically faster than all known me-
thods when k' — k = o(k). For instance, recovering a single additional modulo x4 requires
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time O(klog® kloglogk) and a huge overhead with the fastest known multiplication algo-
rithms [1], while more practical methods would run in time O(k?). In this case, our method
requires only 3k — 1 modular operations, k f.p. divisions, and very little overhead.

5.2 Computing the closest f.p. representation

We use the notation of section 2. Algorithms 1 and 3 compute in fact a good f.p. approxima-
tion of the number x represented by its moduli z;. Unfortunately, this is not enough as we
sometimes need to compute the closest f.p. approximation Z of x, that is, with absolute error
less than lulp(z) (see section 2). This is called exact rounding. and extends to arbitrary
precision the exact rounding provided for elementary operations by the IEEE 754 double
precision standard. Exact rounding has many merits. It is also useful in computational
geometry for renormalization (see [33] and references therein), such as rounding to a grid
the vertices of a planar map obtained by various means (line intersections, circumcenters,
etc.). For filtered RNS, when 7 and y differ, comparing x and y can safely be decided by
comparing z and 4 without calling for algorithms 1 or 3. We therefore want to solve the
following problem.

Problem 3 Let k, b, m1,...,my denote positive integers, my, ..., my being pairwise rela-
tively prime, such that m; < 20/t Let x be an integer whose magnitude is smaller than
L(m/2)(1 —ei)]. Compute a f.p. number T such that |T — x| < Sulp(z) by using only f.p.
operations with b-bit precision.

As with modular inference, Newton’s method is applicable but requires an inherently
quadratic number of operations (we must compute all the y;’s). But Lagrange’s method
seems to yield exact rounding with O(k) operations in practice, unless * — ¥ is extremely
close to ulp(z). Indeed, the computed value R*) of S*)m(*) approximates = with an
absolute error E*) = 2 — R*) bounded by (ex +27°"!)m ¥ (see section 3.1). The key idea
is that we can compute an exact (k — 1)-representation of this error since E*) mod m; =
(x; — R™) mod m;. We can again compute an approximation R¥=1) of E®)| by applying
Lagrange’s method on k& — 1 moduli and computing S*~Dm(*~1) with an absolute error
E*=1) bounded by (ex_1 + 272 )m~1. Recursively, for a decreasing j = k —1,...,1,
we can compute a (j — 1)-representation of EY) by EU) mod m; = (RUTY — RU)) mod m;
for each i = 1,...,5. An approximation RU~1) of E(Y) is obtained by Lagrange’s method
on j — 1 moduli with absolute error EC~1) bounded in magnitude by (;_1 +27°~1)m{=1).
For any y =k —1,...,0, we have

z=R® 4 ...+ RU) 4 U,

Since the non-zero R(9)’s are decreasing by a factor 5 < 1 /2, a good way to compute their
sum is to perform the additions in the order R®) 4 (R*~=1 4 (... 4 (RU+TD £ R(Y))...)). With
b-bit f.p. precision, the result Z; approximates Ef: y R with an absolute error bounded by
ulp(Z;). Moreover, truncating the leading bits of R() to ulp(Z;) yields a sum z; truncated
to ulp(Z,) such that Z; + z; approximates Y r_ i R() with an absolute error bounded by
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ulp(z;). (Note that truncating R(" to ulp(Z;) can be achieved by computing (R +Z;) — Z;
with b-bit f.p. precision.) Then Z; + z; approximates x with an absolute error bounded by

ulp(z;) + |EYD| < ulp(z;) + (g5 + 27" ym9.

If Z; + z; truncated to ulp(Z; + z;) is distant from ulp(Z; + z;) by at least ulp(z;) +
(e; +27°"1)yml9) | then Z; + z; can be rounded to the closest f.p. representable number and
yields the desired Z.

A minor difficulty arises because it is hard to compute RY) mod m;: in the worst case,
this may take |_% log R(k)J f.p. divisions. However, this is one single instruction in the IEEE
754 standard and we will account for it as a single instruction. (Note that although R(®) is
a multiple of m(k) by S*), §(*) is not an integer, and there is roundoff error in computing
the product S®)m*), so we cannot take advantage of this to compute RY) mod m;.)

This leads to the following algorithm.

Algorithm 7 : Compute zZ knowing z; = x mod m;

Precomputed data: m;, n;U), wl(-j), nj, forall1 <i<j<k
Input: integers k and x; € [— L m'), forall1 <i<k

2032
Output: sign of x, the unique solution of r; = x mod m; in [— m;k) , m;k))

. (%)
Precondition: |z|+n < B5—

k k
I Letj e b R o fruc (Z M) m®),
i=1 mi
2. Repeat j «— j —1,
z; — (z; — RUTY) mod m; for alli=1,...,5
. J .T,"U)z(-j)
RY) « frac ; o
Zj R®) 4 (R*:=1 4 (... 4 (RU+2) 4 RUTD)Y..))
zj — R®) 4 (R*=1) 4 (.. 4 (RU+2) 4 RUTY))...)) truncated to ulp(Z;)
&' — (Z; + z;) truncated to Julp(Z; + z;)
until j =0 or |3:' — Yulp(Z; + zj)| > ulp(z;) + (g5 + 270 ymW)
3. return Z; + z;

mod my; m(])

As for algorithm 1, algorithm 7 requires ©(k?) operations in the worst case. In practice,
however, algorithm 7 terminates at j = k — 2, and uses only O(k) operations.

Remark 8. The ideas of section 3.2 also apply to this case, but multiplying by «y intro-
duces additional errors, so instead we multiply by a value 3, = 28 @],
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Remark 9. We can also obtain the closest f.p. approximation of a quotient z = z/y
where z and y are given by their k-modular representations. Indeed, when computing z’ by
performing Z/y with b-bit precision, only the last (at most) three bits are incorrect. The
correct bits can be determined by at most three binary searches: if 2’ is expressed exactly as
u/v (for instance, we could take v = 1/ulp(z) if 2’ is not an integer), then we can compute
modular representations of u and v and compare 2z’ with z by computing the sign of vz — uy
with the help of algorithm 1 or algorithm 3.

5.3 Filtered RNS

Assume we are given a k-modular representation of a number z and a k’-modular represen-
tation of y. Without loss of generality, we assume that k' < k.

To obtain the closest b-bit f.p. representation of z, we apply algorithm 7, and so the closest
f.p. approximation is obtainable with O(k?) single-precision f.p. operations. In theory, we
could maintain the closest f.p. representation of a number under all the arithmetic operations
in RNS. In practice, it suffices that the approximation be with relative error 1/2 to get the
sign, and so we need only “refresh” the approximation when the result of an operation is
much smaller than the summands.

The cost of normalization is O(k?) if we use algorithm 3, but is only O(ks) if we use
algorithm 1, where s is the slack of the representation, the number of iterations in step 2 of
algorithm 1; if we maintain the closest f.p. approximation of a number, it takes usually no
operation and at most s = 1 iteration of algorithm 1 to get the normalized representation.

To represent the sum z + y, we first compute a k’-modular representation of z using
algorithm 6. A representation of the sum x + y can readily be obtained by adding in each
finite field. Overflow can be efficiently determined by using the f.p. approximations, and in
this case one inference with &’ modular multiplications and additions provide the additional
modulo needed to represent the result. Overall, the addition is done by using at most 777
modular additions, ??? modular multiplications, one f.p. addition on the approximations,
and one f.p. comparison. In particular, if ¥ = k, the addition requires at most 4k — 1
modular operations and k f.p. divisions.

A representation of the product zy is obtained readily by constructing (k + k')-modular
representation of both z and y, multiplying in each finite field, and normalizing the result
if a normal representation is needed. (Note that this last step may be needed even if the
representations of z and y are normal; the correct number of moduli needed to represent
2y may be obtained directly from f.p. approximation of zy.) This involves at most 2kk’ +
k + k' — 2 f.p. modular additions, 2(kk’ + k + k' — 1) modular multiplications, and & f.p.
divisions.

Division of z by a single precision number m such that |[m| < 2%/2t1 can be done using
the inference of section 5.1 in O(k) time (for both quotient and remainder of the division by
m). Division of y by = can be performed by using methods similar to ours as described by
Hung and Parhami [28].

Lastly, comparison can be handled by comparing the f.p. approximations, and if neces-
sary by using the recursive relaxation of the moduli. In this case, let us first assume that
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z and y are given in normal form. Tt is easy to solve the comparison if k # k'. Otherwise,
O(k?) single precision operations may be needed to determine the result of the comparison.
Note that in practice, we expect that the comparison will resolve with O(k) operations.
Note also that the numbers k£ and &’ of moduli in the normal representation is given directly
by the f.p. approximation, so there is no need to actually perform the normalization.

We summarize this discussion in the following theorem.

Theorem 5.3 Let x (resp. y) be given by a normalized k-modular (resp. k'-modular) repre-
sentation, k' > k. In filtered RNS, additions can be performed by using O(k(k' — k) +k+k')
modular operations, multiplications by using O(kk' + k+ k') operations, divisions by a small
integer by using O(k) operations, and comparisons by O(1) operations is k # k', and O(k?)
operations if k = k’.

In an arithmetic big number package, additions and comparisons require O(k+k') operations,
while multiplications require O((k + k') log(k + k')loglog(k + k')) operations with huge
overhead, and are more commonly implemented with O((k + &')?) operations. Filtered RNS
perform all these operations with little overhead in time O(k + k'), except when modular
inference is needed. But modular inference can be amortized over all the computations
since it needs only be performed once for each number. So RNS used with our techniques
provide no slower, and sometimes faster multiplications, at the cost of slightly slower (and
in practice, comparable) additions and comparisons. They are practical and can easily be
implemented with low overhead. Moreover, they are easily parallelizable.

6 Applications

Our solutions to problem 1 have many applications. Below we focus on three major areas,
namely computation with real algebraic numbers, exact geometric algorithms, and the ubi-
quitous question of determinant sign. Additional applications include numeric algorithms
for reducing the solution of general systems of analytic equations to sign evaluation [40],
deciding the theory of the reals [10, 4], geometric theorem proving [37], and manipulating
sums of radicals [2].

6.1 Real algebraic numbers

Being able to compute efficiently with algebraic numbers is important but also necessary in
a variety of computer algebra applications, as well as when calculating over the reals. In
particular, it is a fundamental operation when computing with algebraic numbers, which
is a robust way to treat real numbers, and in general when numeric computation does not
offer the required guarantees.

The critical operation is deciding the sign of a multivariate polynomial expression with
rational coefficients on a set of points. We will show how our solution can be applied to the
manipulation of real algebraic numbers. We refer to [13, 34] for a comprehensive review of
the algebraic concepts involved.
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A popular paradigm for manipulating algebraic numbers is the use of Sturm sequences.
Given two polynomials P and @ in Z[X], deg(P) > deg(Q), we consider a sequence ¥ =
(Po, P1,...,P,) of polynomials such that Py, = P, P, = @, deg(P;) < deg(P;—1) for all
1=1,...,m. We will assume that P and @) are square-free and do not vanish at a or b. Let
Varp g(a) be the number of sign changes of the sequence X(a) = (Py(a), Pi(a),- .., Pn(a)),
and define Varp gla,b] = Varp,g(a) — Varp,g(b). Sturm sequences have the property that

Varp,gla, bl = > _ sign(P'(v)Q(v)),

where v ranges over all roots of P in [a,b]. Of special interest is the case where @ is the
derivative P’ of P. In this case, we write Varp[a, b] for Varp p:[a,b], and this number equals
the number of roots of P in [a, b].

It turns out that the coefficients of the P;’s grow very fast, even for simple P and Q.
This phenomenon is well known in computer algebra, and seems to require the computations
over very large integers. One popular alternative is modular arithmetic. The bottleneck of
this approach (at least in theory) is the computation of Varp gla,b], which involves many
sign reconstructions. The recursive relaxation of the moduli is ideally suited because the
exact value of P;(a) is never needed, but only its sign. Therefore, once the sequence X is
computed in the several finite fields, we may evaluate X(a) in each finite field and apply
algorithm 1 to compute the corresponding sign sequence and finally Varp(a).

We examine the complexity of our algorithm for computing the sign sequence corres-
ponding to X(a) at some rational number a. Let n denote the maximum degree of P and
@, L denote the maximum size of the coefficients of the input polynomials P, @, and [ the
sum of the sizes of the numerator and denominator of a. The degrees are decreasing so the
length of the sequence is m < n. As shown in [13], the time to compute the sequence X is
O(n*(L 4 logn)?), and the coefficient of the P;’s are bounded by 227(L+1°¢™) Hence P;(a)
is bounded by

|P;(a)| = n2?n(EHlosm)gln,

and therefore O(n(L + [ + logn)) moduli are sufficient. By using algorithm 1, we correctly
retrieve the sign of P;(a) in time O(n?(L +1+logn)?), for each i = 0,...,m. If the sequence
is known in each finite field, the computation of the sign sequence corresponding to X(a)
can therefore be done in time O(n*(L + [ + logn)?) in the worst case. We summarize this
in the following theorem:

Theorem 6.1 Knowing the Sturm sequence ¥ modulo each m;, i = 1,...,k, where k =
O(n(L +1+1logn)), one can compute Varp(a) in time O(n®(L + 1+ logn)?).

The performance given in the above theorem is in the worst case, however, and in practice,
algorithm 1 will run in time O(k) = O(n(L+1+logn)). This lowers the expected complexity
of the computation of Varp(a) to O(n?(L + [ + logn)) in practice.

As an application of those ideas, we show how to manipulate algebraic numbers. An
algebraic number « can be represented symbolically by a square-free polynomial P € Z[X]
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and an interval I = [a, b], such that « is the only root of P in [a, b] (with multiplicity at least
but not necessarily 1). Such an interval can be found by evaluating Varp at O(n(L + logn))
points [13]. Moreover, in this context, separation bounds imply that [ = O(n(L + logn)).
The total time of the root isolation procedure is therefore O(n8(L + logn)?). The expected
cost is therefore dominated by the sign computations. Practically, however, this cost is
expected to be O(n*(L + logn)?), which is the same as the cost of the computation of the
Sturm sequence.

To compare two algebraic numbers a = (P, I) and § = (Q, J), we may first assume that
they both lie in I N J = [a, b], otherwise the comparison can be performed on the intervals.
(This assumption can be checked by evaluating Varp at the endpoints of J and Varg at the
endpoints of I.) Then (see [13]), « > 3 if and only if

Varp,gla, b] - (P(a) — P(b)) - (Q(a) — Q(b)) > 0.

The expensive part of this computation is therefore the computation of Varp g[a,b], which
can be done in time O(n*(L + logn)?) for the computation of the Sturm sequence and
O(n®(L+1+logn)?) for the sign determinations. Practically, the cost of the sign computation
is negligible compared to the cost of the computation of the Sturm sequence.

Extension to intersections of algebraic curves can be done in much the same fashion,
using multivariate Sturm theory; see [34] and the references therein. It has been applied in
the context of solid modeling by [29] who use modular arithmetic with a bignum library for
the sign reconstruction.

6.2 Exact geometric predicates

Exact geometric predicates are the most general way to provide robust implementations
of geometric algorithms [16, 20, 44, 18]. For instance, orientation and in-circle tests or
the comparison of segment intersections, can all be formulated as deciding the sign of a
determinant. Before studying the latter question in its own right, we survey several problems
in computational geometry which can make use of our algorithms to achieve robustness and
efficiency.

Modular arithmetic becomes increasingly interesting when the geometric tests (e.g. de-
terminants) are of higher dimension and complexity. They are central in, notably, convex
hull computations: this is a fundamental problem of computational geometry and of optimi-
zation for larger dimensions. Computing Voronoi diagrams of points reduces to convex hulls
in any dimension, but is mostly done in dimensions 2 and 3. Nevertheless, the sweepline
algorithm in 2 dimensions involves tests of degree 20 and modular arithmetic can be of sub-
stantial help, in conjunction with arithmetic filters [21]. For Voronoi diagrams of segments,
the tests become of even higher degree and complexity [9], and f.p. computation is likely to
introduce errors, so exact arithmetic is often a must.

Even for small dimensions, the nature of the data may force the f.p. computation to
introduce inconsistencies, for instance, in planarity testing in geometric tolerancing [43].
Here, one must determine if a set of points sampling a plane surface can be enclosed in a
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slab whose width is part of the planarity requirements. The computation usually goes by
computing the width of the convex hull, and the data is usually very flat, hence prone to
numerical inaccuracies.

In geometric and solid modeling, traditional approaches have employed finite precision
floating point arithmetic, based on bounds on the roundoff errors. Although certain basic
questions in this domain are now considered closed, there remain some fundamental open
problems, including boundary computation [26]. Tolerance techniques and symbolic reaso-
ning have been used, but have been mostly restricted to polyhedral objects; their extension
to curved or arbitrary degree sculptured solids would be complicated and expensive. More
recently, exact arithmetic has been proposed as a valid alternative for generating boundary
representations of sculptured solids, since it guarantees robustness and precision even for de-
generate inputs at a reasonable or negligible performance penalty [29]. One key component
is the correct manipulation of algebraic numbers (see the previous section).

6.3 Sign of the determinant of a matrix

As mentioned, computing the sign of a matrix determinant is a basic operation in computa-
tional geometry, applied to many geometric tests (such as orientation tests, in-circle tests,
comparing segment intersections) [12, 3]. Sometimes, the entries to the determinant are
themselves algebraic expressions. For instance, the in-circle test can be reduced to com-
puting a 2 x 2 determinant, whose entries have degree 2 and thus require 2b + O(1)-bit
precision to be computed exactly [3]. Computing these entries by using modular arithmetic
enables in-circle tests with b-bit precision while still computing exactly the sign of a 2 x 2
determinant.

To compute an n x n determinant modulo my, we may use Gaussian elimination with a
single final division. At step ¢ < n of the algorithm, the matrix is

0 Q5

0 Qg
and we assume that the pivot a;; is invertible modulo m;. Then we change line L; to
a;iLj—a;j;L;forall j =i+41,... ,n. At step n of the algorithm, we multiply the coefficient
On,n by the modular inverse of the product H?:_f azi_i. This gives us the value of the
determinant modulo my. Note that the same method but with non-modular integers and
a final division would have involved exponentially large integers and several slow divisions
at each step. Nevertheless, it is only the range of the final result that matters for modular
computations. This shows a big advantage of modular arithmetic over other multiprecision
approaches.

The pivots should be invertible modulo my. If my is prime, the pivot simply has to
be non-zero modulo mj. The algorithm may be also implemented if m; is a power of a
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prime, or if my is the product of two primes. This would be desirable mainly for taking
my, = 2% for which modular arithmetic is done naturally by integer processors, though here,
special care must be taken about even output. Other choices of m; do not seem to bring
any improvement.

With IEEE double precision (b = 53), we choose moduli smaller than 227 so that
2(™=)? < 253 Gaussian elimination intensively uses (ps — gr)-style operations; here we
may apply one final modular reduction, instead of two for each product before subtracting.

This algorithm performs O(n?) operations for each modulus m;. Assume that the entries
are integers smaller than 2°. With Hadamard’s determinant bound and m;, greater than

20/2 only k = [n(2+ li%ﬂ)-l finite fields need to be considered. Hence the complexity

of finding the sign of the determinant is O(n*logn) single precision operations, when the
entries are b-bits integers.

More generally, when the entries are integers of bit-length L, we have to take into account
the computation of these n? entries modulo m;, for i = 1,...,k. In this case, Hadamard’s

bound yields k& = [n%-l Each computation amounts to computing the remainder of

the division of an L-bit integer by a single-precision integer, in time O(L), for a global cost
of O(n®L(logn+ L)), which can be sped up to approximately O(n?(logn+ L)(logn+log L))
as shown in [1], by using divide-and-conquer. Hence, the entire computation takes time
O(n%(n? + L)(logn + L)), where b is considered as a constant.

To summarize:

Theorem 6.2 The algorithm described above computes the sign of a n X n determinant
whose entries are integers of bit-length by using O(n?(n? + L)(logn + L)) single precision
operations.

Using the algorithm of Bareiss for this problem yields a bound O(n3M (n(logn + L)), where
M (p) is the number of operations to compute the product of two p-bit integers. In practice,
we almost always have L = O(n). Using multiplication in time M (p) = plogploglogp
yields a slightly worse bound than given in the theorem, albeit with a huge overhead. More
practically, using multiplication in time M (p) = O(p?) yields an order of magnitude slower.
Our algorithm is easy to implement and entails little overhead. This is also corroborated by
the practical study of section 7.

On a O(n?log n)-processor machine, the time complexity drops to O(n), if we use custo-
mary parallelization of the Gaussian elimination routine for matrix triangulation (cf. [24]),
which gives us the value of the determinant. (We apply this routine in modular arithmetic,
with simplified pivoting, concurrently for all m;’s.) Theoretically, substantial additional
parallel acceleration can be achieved by using randomization [5, ch. 4], [36], yielding the
time bound O(log2 n) on [n3 log n] arithmetic processors, and the processor bound can
be decreased further to O(n?37), by applying asymptotically fast algorithms for matrix
multiplication.
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7 Experimental results

We present several benchmark results of our implementations in C of the described methods
for computing the sign of a determinant, and compare them with different existing packages.

e Method FP is a straightforward f.p. implementation of Gaussian elimination.

e Method MOD is an implementation of modular Gaussian elimination as described in
section 6 using our recursive relaxation of the moduli (version 2.0).

¢ Method PROB is the probabilistic variant described in section 4.2, that fails to give
the correct result with a probability bounded by 2759.

e Method GMP is an implementation using the GNU Multiprecision Package (version
2.0.2), of Gaussian elimination for dimension lower than 5, and of Bareiss’ extension
of Gaussian elimination for higher dimensions.

e Method LEDA uses the routine sign_of_determinant (integer_matrix) of Leda [9]
(version 3.5).

e Method LN [21] provides a very fast implementation in dimensions up to 5 but was
not available to us in higher dimensions.

Of the other methods available, the lattice method of [6] has not yet been implemented in
dimensions higher than 6, and both the lattice method and our implementation of Clarkson’s
method [12] are limited in the bit size of the entries.

Among the methods that guarantee exact computation, our implementations are at least
as efficient as the others, and for certain classes of input they outperform all available
programs. Furthermore our approach applies to arbitrary dimensions, whereas methods
that compute a f.p. approximation of the determinant value are doomed to fail in dimensions
higher than 15 because of overflow in the f.p. exponent.

All tests were carried out on a 200MHz Sun UltraSparc-1 workstation. Each program is
compiled with the compiler that gives best results. Each entry in the following tables repre-
sents the average time of one run in microseconds, with a maximum deviation of about 10%.
We concentrated on determinant sign evaluation and considered three classes of matrices:
random matrices, whose determinant is typically away from zero, in table 1, almost-singular
matrices with single-precision determinant in table 2, and lastly singular matrices with zero
determinant in table 3. The coefficients are integers of bit-size 53.

Our results suggest that our approach is comparable, and for certain classes of input
significantly faster than the examined alternatives that guarantee exact results. The running
times are displayed in tables 1-3. (For small dimensions, specialized implementations can
provide an additional speedup for nearly all methods.) Although full reconstruction of the
determinant value may take some time, our method to determine the sign is negligible as
can been seen from the difference with random (where it is linear) and null (where it is
quadratic) determinants. Our code is reasonably compact and easy to maintain. As an

INRIA



FExact geometric predicates with single precision arithmetic

25

RR n~°3213

[ FP [ MOD | PROB | GMP | LEDA | LN |

0.1
0.8
2.1
3.8
6.3
9.7
14.1
19.5
10 || 26.4
12 || 44.0
14 || 68.3

NoTNo BN e G, STJURN N | s

7.6
15.9
36.7
125
223
374
568
861
1270
2460
4400

8.0
17.8
41.9
131
236
382
595
887
1310
2520
4470

6.1
37.9
146
538
1300
2790
5120
9400
15400
37500
75700

88.4
336
988

2440
5170
10200
18100
30300
48300
123000
251000

0.2
0.4
0.7
3.7

Table 1: Performance on random determinants.

n ]| FP | MOD | PROB | GMP | LEDA | LN |
2 01 82 82| 63| 846 06
3| 08| 216| 128 270| 232 35
4| 20| 369 | 27.8| 989| 699 | 13.3
50 38| 19| 710| 221 | 1100 | 87.1
6| 63| 234 145 | 731 | 2880

70 96| 384 | 203 | 1110 | 3590

8| 143 | 58 | 348 | 2800 | 6610

9| 194 | 891 486 | 3430 | 10700

10 || 26.3 | 1320 | 738 | 6100 | 18300

12 || 43.9 | 2460 | 1410 | 13300 | 38400

14 || 68.1 | 4460 | 2450 | 27200 | 51800

Table 2: Performance on small determinants.

| »n ]| FP | MOD | PROB | GMP | LEDA | LN ]
2 0.1 9.3 4.8 6.4 78.7 0.6
3 0.8 19.8 7.4 38.5 284 3.6
4 2.1 39.7 11.9 149 717 | 13.2
5 3.8 134 25.9 547 1750 | 86.8
6 6.3 239 41.2 920 4850
7 9.7 397 58.7 2650 7300
8 13.9 594 76.2 4720 13800
9 || 19.6 894 105 7700 25500
10 26.3 1330 137 | 12600 46800
12 || 43.7 2550 216 | 30800 87700
14 67.9 4460 328 | 68100 | 209000
Table 3: Performance on zero determinants.
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obvious improvement, with a reasonably accurate f.p. filter, the penalty of exact arithmetic
can be paid only for small determinants (tables 2 and 3).

Some side effects may occur, due to the way we generate matrices. The code of the mo-
dular package is freely available (see the CGAL License terms), and anyone can benchmark
it on the kind of matrices that he uses. The code will be incorporated in the geometric
algorithms library CGAL [11]. It is available via the URL :
http://www.inria.fr/prisme/personnel/pion/progs/modular/.

8 Conclusion

RNS systems have been used in number systems because they provide a highly parallelizable
technique for multiprecision. As parallel and multi-processor computers are becoming more
available, RNS provide an increasingly desirable implementation of multiprecision. This
comes in sharp contrast with other multiprecision methods that are not easily parallelizable.
Perhaps the main problem with RNS is that comparisons and sign computations seem to
require full reconstruction and, therefore, use standard multiprecision arithmetic. We show
that one may in fact use only single precision and still perform these operations exactly and
efficiently. In some applications, the number of moduli may be large. Our algorithms may
be easily implemented in parallel with a speedup depending almost linearly on the number
of processors.

As an application, we show how to compute the sign of a determinant. This problem has
received considerable attention, yet the fastest techniques are usually iterative and do not
parallelize easily. Moreover, they usually only handle single precision inputs. Our techniques
are comparable in speed or even faster than other techniques (e.g. [3, 9, 12]), and can easily
handle arbitrarily large inputs.

A central problem we plan to explore further is to design algorithms that compute upper
bounds on the quantities involved to determine how many moduli should be taken. For
determinants, the static bounds we use seem to suffice for applications in computational
geometry [21]. They might be overly pessimistic in other areas (such as tolerancing or sym-
bolic algebra) where the nature of the data or algebraic techniques might imply much better
bounds. A valid approach we will further study and implement is Newton’s incremental
method of section 4, provided that we are willing to afford some small probability of error.

Ackowledgments. We thank Christoph Burnikel and Raimund Seidel whose comments
improved the contents and presentation of this paper.
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