Gibbs Fields with Multiple Pairwise Pixel Interactions for Texture Simulation and Segmentation

Georgy L. Gimel'Farb 1
1 PASTIS - Scene Analysis and Symbolic Image Processing
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Modelling of spatially homogeneous and piecewise-homogeneous image textures by novel Markov and non-Markov Gibbs random fields with multiple pairwise pixel interactions is briefly overviewed. These models allow for learning both the structure and strengths (Gibbs potentials) of the interactions from a given training sample. The learning is based on first analytic and then stochastic approximation of the maximum likelihood estimates (MLE) of the potentials. A novel learning approach, giving explicit, to scaling factors, estimates of the potentials, is outlined. It exploits the conditional MLE provided that the training sample may rank a feasible top place within the parent population in its total Gibbs energy. The models embed both simulation and segmentation of the grayscale piecewise-homogeneous textures into the same Bayesian framework exploiting a controllable simulated annealing to generate the desired texture or its region map. Experimental results in simulating and segmenting various natural textures are presented and discussed.
Type de document :
Rapport
RR-3202, INRIA. 1997
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073487
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:00:01
Dernière modification le : samedi 27 janvier 2018 - 01:30:56
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:03:40

Fichiers

Identifiants

  • HAL Id : inria-00073487, version 1

Collections

Citation

Georgy L. Gimel'Farb. Gibbs Fields with Multiple Pairwise Pixel Interactions for Texture Simulation and Segmentation. RR-3202, INRIA. 1997. 〈inria-00073487〉

Partager

Métriques

Consultations de la notice

139

Téléchargements de fichiers

3726