K. Abend, Compound decision procedures for pattern recognition, Fifth Symposium on Adaptive Processes, pp.777-780, 1966.
DOI : 10.1109/SAP.1966.271162

M. B. Averintsev, On one method of describing random fields with discrete argument, Problems of Information Transmission, vol.6, issue.2, pp.100-108, 1970.

M. B. Averintsev, Description of Markov random fields using Gibbs conditional probabilities . Probability Theory and Its Applications, pp.21-35, 1972.

C. L. Barnhart and R. K. Barnhart, The World Book Dictionary, 1990.

O. Barndorff-nielsen, Information and Exponential Families in Statistical Theory, 1978.

J. E. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Royal Statistical Soc, pp.36-192, 1974.

P. Brodatz, Textures: A Photographic Album for Artists an Designers, 1966.

R. Chellappa and A. Jain, Markov Random Fields: Theory and Application, 1993.

D. Chetverikov, On some basic concepts of texture analysis, Proc. 2nd Int. Conf. on Computer Analysis of Images and Patterns. Sept. 2-4, pp.196-201, 1987.

D. Chetverikov and R. M. Haralick, Texture Anisotropy, Symmetry, Regularity: Recovering Structure and Orientation from Interaction Maps., Procedings of the British Machine Vision Conference 1995, pp.57-66, 1995.
DOI : 10.5244/C.9.6

G. R. Cross and A. K. Jain, Markov Random Field Texture Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.5, issue.1, pp.1-25, 1983.
DOI : 10.1109/TPAMI.1983.4767341

H. Derin, H. Elliot, R. Cristi, and D. Geman, Bayes smoothing algorithm for segmentation of images modelled by Markov random fields, IEEE Trans. Pattern Anal. Machine Intell, vol.6, pp.6-707, 1984.

R. L. Dobrushin, Gibbs random fields for the lattice systems with pairwise interaction, Functional Analysis and Its Applications, vol.2, issue.4, pp.31-43, 1968.

R. L. Dobrushin and S. A. Pigorov, Theory of random fields, Proc. 1975 IEEE-USSR Joint Workshop Information Theory, pp.39-49, 1975.

R. C. Dubes and A. K. Jain, Random field models in image analysis, Journal of Applied Statistics, vol.39, issue.2, pp.131-164, 1989.
DOI : 10.1109/TPAMI.1987.4767898

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intell, vol.6, pp.6-721, 1984.

G. L. Gimel-'farb, Texture modeling by multiple pairwise pixel interactions, IEEE Trans. Pattern Anal. Machine Intell, vol.18, pp.11-1110, 1996.

G. L. Gimel-'farb, Non-Markov Gibbs texture model with multiple pairwise pixel interactions, Proc. 13th IAPR Int. Conf. Pattern Recognition, pp.591-595, 1996.

G. L. Gimel-'farb, Gibbs models for Bayesian simulation and segmentation of piecewiseuniform textures. Ibid, pp.760-764

G. L. Gimel-'farb, J. Schmidt, and A. Braunmandl, Gibbs fields with multiple pairwise interactions as a tool for modelling grid-based data, Proc. Int. Workshop on Process Modelling and Landform Evolution, 1997.

G. L. Gimel-'farb and A. K. Jain, On retrieving textured images from an image data base, Pattern Recognition, vol.29, pp.9-1461, 1996.

R. M. Haralick, Statistical and structural approaches to texture, Proc. IEEE, pp.786-804, 1979.
DOI : 10.1109/PROC.1979.11328

M. Hassner and J. Sklansky, The use of Markov random fields as models of textures, Computer Graphics Image Processing, vol.12, pp.4-357, 1980.

A. Isihara, Statistical Physics, 1971.

M. Jacobsen, Existence and unicity of MLE in discrete exponential family distributions, Scandinav. J. Statistics, vol.16, pp.335-349, 1989.

A. K. Jain and G. Gimel-'farb, Retrieving textured images from an image data base, Proc. of the 9th Scandinavian Conf. on Image Analysis, pp.441-448, 1995.

B. Julesz, Textons, the elements of texture perception, and their interactions, Nature, vol.32, issue.5802, pp.91-97, 1981.
DOI : 10.1038/290091a0

R. L. Kashyap, Image models. Handbook on Pattern Recognition and Image Processing, pp.247-279, 1986.

R. L. Kashyap and R. Chellappa, Estimation and choice of neighbors in spatial-interaction models of images, IEEE Transactions on Information Theory, vol.29, issue.1, pp.1-60, 1983.
DOI : 10.1109/TIT.1983.1056610

D. S. Lebedev, A. A. Bezruk, and V. M. Novikov, Markov Probabilistic Model of Image and Picture, Preprint: Inst. of Information Transmission Problems, Acad. Sci. USSR. VINITI, 1983.

S. Z. Li, Markov Random Field Modeling in Computer Vision, 1995.
DOI : 10.1007/978-4-431-66933-3

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1091, 1953.
DOI : 10.1063/1.1699114

M. Tuceryan and A. K. Jain, Texture analysis. Handbook on Pattern Recognition and Computer Vision, pp.235-276, 1993.

G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods, 1995.
DOI : 10.1007/978-3-642-97522-6

L. Younes, Estimation and annealing for Gibbsian fields Annales de l, Institut Henri Poincare, vol.24, issue.2, pp.269-294, 1988.

A. V. Zalesny, Homogeneity & texture. General approach, Proceedings of 12th International Conference on Pattern Recognition, pp.592-594, 1994.
DOI : 10.1109/ICPR.1994.576369

I. Unité-de-recherche, . Lorraine, V. Technopôle-de-nancy-brabois, I. Lès-nancy-unité-de-recherche, and . Rennes, Campus scientifique, 615 rue du Jardin Botanique Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unité de recherche INRIA Rhône-Alpes, p.78153, 2004.