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Probleme d’optimisation de forme pour
I’equation de la chaleur

Résumé : Dans cet article, on cherche a sélectionner une courbe optimale
représentant une source de chaleur. Cette courbe apparait comme le sup-
port d’une mesure intervenant dans I’équation de la chaleur par I'intermédiaire
d’une condition au bord. On montre 'existence d’une solution optimale dans
une classe raisonnable de courbes admissibles. On s’intéresse également au
comportement de cette solution optimale pour un temps 7' quand on fait
tendre T' vers l'infini et on montre qu’elle converge vers la solution optimale
du probleme stationnaire. On explicite également les conditions d’optimalité
du premier ordre.

Mots-clé : optimisation de forme, mesure de Radon, la dérivée par rapport
au domaine, equation parabolique
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1 Introduction

In this paper we will consider a problem related to the following. Given a flat
piece of material — a pane of glass in a window for example — we attach a heating
wire to one surface of this material. This wire is modelled as a continuous curve
connecting to fixed points A and B. We want to investigate which curve would
optimize the temperature distribution on the opposite surface at a given time?

We refer the reader to (Henrot, Horn and Sokolowski, 1996) for the related
results in the stationary case. In the paper the time dependent problem is
considered. We prove, under appropriate assumptions on the set of admissible
curves, the existence of an optimal solution. We also investigate the behaviour
of the optimal solution for 7', when 7" — oo and we prove that it converges
to the optimal solution of the stationary problem. The first order necessary
optimality conditions are derived.

2 Existence of a classical solution

2.1 Presentation of the problem

We assume that  is a simply connected domain in IR? and let ¥ = Q x (0, d).
We denote Qg = Q2 x {0}, @3 = Q x {d} and I' = 9Q x (0,d). Therefore

Given a curve v C g parametrized by ¢ € [0, 1], we assume that A = v(0) and
B = ~(1) are fixed points in 9. We are interested in the heat equation where
~ can be looked as the heat source. For physical reasons, it seems reasonable
to consider such a heat source independent of the time ¢. So let us consider
the following problem where u = u(z,t) is the temperature.

ou

a—Au = 0 in ¥ x(0,7),
(P1(7)) du
~3, = hu on I' x (0,7,

RR n"3185



4 Antoine Henrot and Jan Sokolowski

ou
_a_n = U — P on {4 ><(07T) >
ou
_a_n = u—goo—(sw on QOX(OvT)
u(z,0) = uo() in >,

where k£ > 0, g, 1 are given L? functions (independent of ¢), &, is a Dirac
measure supported on the curve v, and the initial data belongs to L*(X). We
denote by Pi(p) the initial boundary value problem with the Dirac measure
d, replaced by a Radon measure p.

Let us introduce the Banach spaces V = W#(X), g <p< % (therefore, by
the Sobolev-Rellich theorem V' C L*(X) with compact imbedding), H = L*(%)
and V' the dual space of V' and let us denote by

W(0,7)={ue L*0,T;V) such that % belongs to L*(0,T;V')}.

In section 2.4 the space W,(0,T) is considered for V = W'#(%,), where ¥, =
Ts(X) is introduced in section 2.4.

By classical results, we refer to (Lions, Magenes, 1968) and (Aubin, 1963)
the space W(0,T) is continuously embedded in C'(0,7'; H) the space of conti-
nuous functions from [0, 7] in H and compactly embedded in L?(0,7'; L*(X)).

Since the problem involves a Radon measure on a part of the boundary, we
need to define in a convenient way the notion of a solution to the parabolic
problem P (7). Since, in our case the measure does not depend ¢, we have the
following representation of solutions to Pi(7).

Remark 2.1 The solution to the problem Pi(v) is of the form
u(z,t) =u(z,t) + w(x) ,

where w € WHP(X) is the unique solution to the stationary problem

—Aw = 0 n X,
O
—a—L: = Kw onl

INRIA



Shape Optimization Problem for Heat Fquation 5

ow
—al; = w— Py on €y,
ow
—al; = w— @y — 0, on g ,

and T(x,t) satisfies the following parabolic equation

ou _ ,
E—Au = 0 in ¥ x (0,7,
ou _
~3, = KU on ' x(0,T),
a,—
—a—Z = u on Q x (0,T),
_du = u on Qo x (0,T),
on
u(xz,0) = wue(z)—w(x) in X

s0, it is enough to define the solution in the stationary case.

The stationary case is considered in (Henrot, Horn and Sokolowski, 1996) in a
classical way using the duality method. We recall the result here, applied to
our problem.

Proposition 2.1 Let pu be a bounded Radon mesure supported on Q. There

exists the unique solution w € WH2(X), for all p € [1 !

,5), to the problem

ow

o, = Kw onl
ow

_a—n = w — 991 on Ql 5
ow

2w — o — 0
o W — Qo — [ on o ,

?

RR n"3185



6 Antoine Henrot and Jan Sokolowski

moreover, there exists constants Cy and Cy depending only on X, ¢o and ¢,
such that

[wl[wirzy < C1+ Caollullmyao) -

Using this result, the "decoupling” remark 2.1 and classical estimates for
the parabolic equation satisfied by @ we obtain immediately that

u = U 4+ w belongs to the space W(0,7') and
[ullwo,ry < Cr + Callpllmy(s0)- (1)

Moreover, it is a consequence of the above results that the variational formu-
lation of the heat equation Pi(7) is given as follows.

Find v € W(0,T) such that for all functions v € W1(X)

d

—(u(t),v) + a(u(t), v) = L(v)
(P2(7)) dt
u(0) = g
in the sense of distributions on (0,7"), where
a(u,v) = / Vu - Vodzx —I—/ uvdo + uvdo + li/ uvdo (2)
s ol Qo r
L(v) = . c,ol'vda—}—/Q povdo+ < 6y,v >, (3)

u,v) = uvdz .
(u,v) /E uvdx
From the inequality (1) and the compact embedding of W(0,7) in L*(0, T; L*(X))

we obtain the following continuity result of solutions to Py with d, replaced
by a mesure p with respect to the measure p.

Proposition 2.2 Given a sequence {u,} of Radon measures supported on g,
||| My (0) < O, there exists a subsequence, still denoted by {p,} and a Radon
measure 1 € My(Qo) such that

fn = o in My(Qo) weak — (%)

Uy —> U strongly in L*(0,T; L*(Y)) and weakly in L*(0,T;V),
du, R du

dt - dt

weakly in L*(0,T;V").

INRIA



Shape Optimization Problem for Heat Fquation 7

where u,, n = 1,2, ..., is a solution to Py(pn).

Proof. From the boundedness assumption of the sequence u,, we have
immediately, in view of (1) that w, is bounded in W(0,7T) and then converges
strongly in L*(0,7; L*(X)) and weakly in W(0,T) to a function u*. The only
point that remains to be proved is that u* is the solution to the parabolic
problem P;(u) for the weak-(*) limit g of the sequence p,,.

Using the elliptic equation in Proposition 2.1 with p replaced by u, we
have the weak convergence of the sequence of solutions w, € W?(X) to the
limit w*. Then, for the initial condition @, (z,0) = ug(x) — w,(x) the sequence
of solutions w, to the parabolic system in remark 2.1 converges weakly in
the space W(0,T) to the solution w*. Using the remark 2.1 it follows that
u* =u* 4+ w* is a solution to P(u).

Since the solution to the problem P(u) is unique, it follows that u* = wu.
Now, since u is the unique accumulation point of the sequence u,,, the whole
sequence converges to u, which completes the proof. 0O

Remark 2.2 In order to show that u, — u strongly in L*(0,T; HY(X)) it is
sufficient to have the following convergence

< gy Uy, >—< Uyt > . (4)

Indeed, using (4) and classical arguments, we have

X, (T) := %|un(T) —u(T)|* + /OTa(un(t) —u(t), un(t) —u(t))dt — 0

furthermore
T
0<a [ Jlun(t) = u(t)| dt < Xo(T)
0
therefore, the strong convergence follows.

Lemma 2.3 The sequence u,(T,x) converges weakly to u(T,z) in L*(X) for
any fired 0 < T < 0.

Proof. Let us take v = u,, in the variational formulation, the bilinear form
a(+,-) being coercive by the Friedrichs—Poincaré inequality, by integrating the
resulting inequality over (0,7') we obtain,

1 T 1
SunlT)l+a [ llually < Cllunlly + 5ol (5)

RR n"3185



8 Antoine Henrot and Jan Sokolowski

Therefore, the sequence u, (7, z) is bounded in L*(X), so we can extract a
subsequence which converges weakly. In the same way as before we have
proved that u*(0) = wug, we are able to show that the weak limit of w,(7T)
is necessarily u(7"), and since this limit is unique, the whole sequence wu,(7T')
converges weakly to u(7). 0O

2.2 Admissible curves

We are going to define the set of admissible curves v. Any admissible curve
is the support of the Radon measure which is the heat source for the problem
under considerations.

To this end we denote by @ the cube Q = (0,1) x (0,1), by I C @ the
interval [ = {—%, %} x {0}.
Definition 2.1 A given curve v is called admissible if there exists a one—to—
one mapping F' : Q) — O, where O denotes an open neighbourhood of v in
Qo such that

F(Q)=0 F(I) =~ (6)
[Elwoe (o) < Ln IE~ w0y < Lo (7)

Prescribing uniform bounds L = Ly = Ly > 0 and assuming that the following
compactness condition is satisfied

(H) Given a sequence F, which satisfies uniformly the latter bounds, there
exists a subsequence, still denoted by F,, such that

11
FU 0= [P0 weably in 12 (—2,5) 8)
we define an admissible family

Fi, =17 is admissible |(H) is satisfied, HFHWI,OO(Q) < L and HF_IHVVI,OO(@) < L}

where L > 0 ts a given constant.

INRIA



Shape Optimization Problem for Heat Fquation 9

Remark 2.3 Without the assumption (H) on the family Fi, we cannot expect
that for any sequence {vy,} C Fy, there exists a subsequence, still denoted by
{¥n} such that

0ry, — 0y weak—(*) in the space My({) .
A counterezample can be constructed using F,(z,y) = {z,y + = sin(nz)}.

Remark 2.4 We use the above definition of a set of admissible curves Fi,
since we want to apply an appropriate trace theorem on . Such a defini-
tion is better suited for our applications than the simple definition of curves
parametrized over an interval.

Remark 2.5 We can replace definition 2.1 by a more general notion of a
Lipschitzian manifold, where the existence of a global parametrization is not
required. We prefer to work with the global parametrization for the sake of
simplicity. The same result can be obtained for the more general setting of
a Lipschitzian manifold, provided that the uniform bounds are prescribed with
the same Lipschitz constant for any collection of charts. Using a partition of
unity the problem can be localized in a standard way.

Remark 2.6 Some classes of admissible curves in the plane are introduced
by I.I. Daniliuvk (Daniliuk, 1975) in the framework of integral equations in
non-smooth domains.

On the other hand, it seems to be possible to use some families of admissible
curves defined by using capacity type constraints, which probably assure the
existence of a solution in a slightly wider class. But this approach is rather
complicated and it is not evident that such families of admissible curves can
be of any interest for the numerical methods. We refer the reader to the
monograph (Ziemer, 1989) for the definition and properties of capacity, and to
(Bucur, Zolesio, 1995) for some results in the case of admissible domains with
capacitary constraints for homogeneous Dirichlet problems.

An admissible curve is defined in the parametric form

z(l) = Fi((,0) 11
{y@ - R0 (el

RR n"3185



10 Antoine Henrot and Jan Sokolowski

where F' = (Fy, Fy) is bi-Lipschitz mapping. For v € F, it follows that
P2 F g
0= [y [ (G w0+ 52 ) < v

therefore the length of admissible curves in the set F7 is uniformly bounded,
but the uniform boundedness of the length is a weaker condition for a curve
than the condition to be a member of F7.

Proposition 2.4 Given a sequence of curves v, in Fr, there exists a curve
~v € Fr, and a subsequence v,, such that

)

Tng

— 0y weak—(*) in the space My(£) .
Proof. Given v, = F,(Qo) € F1, we have
| Frllwie < L and | F7 lwe < L

By the theorem of Ascoli there exists a function F' which is continuous over ()
such that for a subsequence F),,

F..(z) — F(z) uniformly over Q) .

The functions F,, are uniformly Lipschitz continuous with the constant L, the
same remains valid for F', thus F' € W*(Q) with ||F||w1.« < L. We denote

= I(Qo).
Furthermore, the inequality ||F ||y~ < L implies that

1

Fu(e) = Fuly)l 2 Fle =yl Ve,yeQ (9)
hence taking the limit it follows that
1

[F(e) = Fly)l 2 Tle -yl VYeyel (10)

which shows that F'is one-to—one. We denote O = F/(Q), thus there exists

the inverse mapping F~! : O+ @, F~! being Lipschitz continuous with the
constant L in view of the latter inequality. Therefore v € Fp.

INRIA



Shape Optimization Problem for Heat Fquation 11

For the sake of simplicity we denote by ~,, the subsequence ~,, .
We are going to show that 4., converges to d.,. To this end we assume that
there is given a continuous function ¢, henceforth

bruvit) = [ ot = [ o (B(0.0) [EL(E,0)

Tn 3

The sequence F), satisfies uniformly (5), using the assumption (H) it follows
that

11
|F/(-,0)] — |F'(-,0)] weakly — (*) in L? (—_— _—) )

Since @ is continuous, hence uniformly continuous on (g,

o (Fu(0) > o (F(,0)) i 1 (=3, 7)

thus X
(610) = [ 0 (F(L,0) [F(L,0)]de = (6, )
a
Let us consider a sequence of admissible curves v, and the admissible curve
v such that 4., converges to d, weakly in M;(€g). We denote by u,, u solu-

tions to P; and P, for the boundary data 4., and ¢, respectively. Using
Proposition 2.2, we have immediately:

Proposition 2.5 Let {v,},v € Fr be given, such that 4., — 6., weakly in
My(Qo). Then,

Up —> U strongly in L*(0,T; L*(X)) and weakly in L*(0,T;V)

and
du, R du
dt dt

weakly in L*(0,T;V").

RR n"3185



12 Antoine Henrot and Jan Sokolowski

2.3 The shape optimization problem

We are interested in the following shape optimization problem:
Minimize a cost functional

J(y) = lluy(2, 1) — uall

where w., denotes the solution to the heat equation P;(v) for any v € Fy, and
the Dirac measure ¢., in the boundary conditions, w4 is a given function, and
| - || is a norm, or a seminorm on the space W(0,T') which will be specified
below.

Using the above results we are in position to prove an existence result for
the optimization problem under considerations. Assume that there is given
a functional J(-) continuous with respect to v = u., in the norm topology of
the space L*(0,T; H) or weakly lower semicontinuous on L*(0,7;V). Let us
consider, as an example, the following cost functionals

Ji(7) :/OT/E(uW(t,:L‘)—ud)de—l—/OT/E|Vuw(t,:c)—Vud|p de (11

or

() = [, (T ) = () da (12)
Theorem 2.6 There exists a solution to the minimization problems

inf Ji(y) or inf Ji(v) (13)

YEFL YEFL

Proof. Let {v,} denote a minimizing sequence, then for a subsequence, still
denoted by {~,} we have, by Proposition 2.4 and 2.5,

Usy,, — Uy strongly in L*(0,T; L*(X)) and weakly in L*(0,7; H* (%))
(14)
hence

lim inf Ji (y,) > Ji(7),

therefore 4 is a minimum of J;.
For J;, we use the same argument, by Lemma 2.3 above, which completes the
proof of theorem. 0O

INRIA



Shape Optimization Problem for Heat Fquation 13

2.4 Optimality conditions

We start with the auxiliary results on the differentiability of the following
shape functional

yé/gm.

We assume that the function G € L'(vy) may depend on the curve v. We use
the material derivative method (Sokolowski and Zolesio, 1992)

Let the sufficiently smooth mapping F, : IR® — IR3 be given, s € [0,9) is
a parameter, such that F, = Fj g for any s € [0,) satisfies the assumptions
of definition 2.1, i.e.

Fy(Q)=0 Fy(I)=~
[Esllwre @) < L 17 (o) < La

Given parametrization {z(¢),ys(¢)}, £ € [0,1], of the curve 75, we denote

/ Gudrys = /gs 25(0), ys(0) /2 2(0) + y2(0)d

The derivative takes the form

+ [ GOm0

where 75(¢) = % is the unit tangent vector to v and &(¢) = dds (z5(€),ys(£)).

Under regularity assumptions, after integration by parts the latter integral
can be rewritten in the following form

e,
/gs (23,55) 7 fcw

(£)dl

= —/01 {Vgs (255 Ys) * (25, Ys) 75 - & + Gs (5, Ys) Ciw & }dﬁ
—I_gs (r5(1)7 yS(l)) Ts(l) ' 55(1) - gs ($5(0), ys(o)) 7'5(0) : 55(0)

RR n"3185



14 Antoine Henrot and Jan Sokolowski

On the other hand, we can use the material derivative method to obtain the
same derivative j'(s). Namely, we introduce the vector field

V(s,z,y,2) = (aa}_s o .7'—3_1) (z,y,z)
S

and assume that the support of the vector field is included in a small neigh-
bourhood O(7) of the curve v in IR®. Furthermore, we assume that for
(z,y,z) € O(y) and sufficiently small z € (—e,¢), ¢ > 0, the field is of the
following form

Vi(s,@,y)

V(‘S?x?y?’z) = ( ‘/1(87:E7y) ) = V(‘S?x?y?())
0

The shape functional we consider takes the form
J(v) = / Gdy .
2!
With the vector field V' we associate the mapping
T,V) : R®— R®,

in particular, under our assumptions on the support of the field V, suppV C

O(7), it follows that T,(V) = I on IR® \ O(7), where I denotes the identity

mapping.
Let us define the Eulerian semiderivative
o1
I V) = lim SIL() = T ()
For

vs =Ts(v), s€[0,9)
it follows that
7'(07) = dJ(v; V)
and therefore, by an application of the structure theorem for the shape gra-
dient, we obtain

dJ(v;V) = /01 {a;:'SZO + VG (z(£),y(L)) - 5(6)} a2 () 4+ y2(0)dl

INRIA
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+ [0 (0,90) G0 - 0y
46 ((1),4(1)) 7(17) - £(1) — G (2(0), 5(0)) 7(0°) - £(0)

since V(s,z({),y((),0) = (&(¢),0) for ¢ € [0,1], and the vector 7(£) € o,
¢ €(0,1), is tangent to v. If v(£) € Oy, £ € (0,1), denotes the normal vector
field on ~, the equivalent form of the first integral reads

/01 {aag| + VG (2(6),y(6) - f(@} 22(0) + y2(0)dl

:/01{%is|szo+[vg($(€),y(€)).y(ﬁ)]g(g).,/(g)} 0 T D

since the integral part of d.JJ(v; V'), by the structure theorem, depends only on
the normal component V (0, z(¢),y(¢),0)-n = &(€) -v({), £ € (0,1), of the field
V(0,z(¢),y(¢),0). We denote

g2 = [ {5+ 5O w0 €0 | a0+

/ng/ Vdy = /01 G (z(0),y(L)) Z_;(g) LE()de
(z(1),y(1)) = (z1,y1),  (2(0),4(0)) = (0, o)

Proposition 2.7 The shape funtional J(v) = [, Gdy is shape differentiable,
the Eulerian semiderivative takes the following form

dJ(3;V) = A Gy + A gr' - Vdy + G(z1, yi)r(er,v7) - V{0, 21,1,0)

_g($07 yo)T(l’g—, y(-JI—) : V(07 Lo, Yo, 0)

where G denotes the material derivative of G in the direction of the vector field
V.

Now, we are in the position to obtain the shape differentiability of solutions
to the problem P (7).

RR n"3185



16 Antoine Henrot and Jan Sokolowski

We denote X5 = Ty(X), us € L*(0,T; WH?(X,)) the unique solution to the
following integral identity, us(0) = ug in Xs,

dt/ t)pd>, —I—/ Vus(t) - Vdi, —I—/ us(t godas—l—/ (t)pdos

:/ uocpdas—l—/ ultpdas—l—/ wdys
o o 7

for all ¢ € WH9(X,), where Qf = T5(), ¢ = 0,1, 45 = Ts(y). The initial
condition for u; makes sense since u; € Wi(0,7'), the space W,(0,T') is defined
in the same way as W(0,7T) with the set ¥ replaced by .

The integral identity is transported to the fixed domain ¥, so we denote
u® =us0Ts € WHP(X), set ¢ = voT ! and by standard change of variables it

follows that «® is the unique solution to the following inegral identity, u*(0) =
ug o T in X,

dt/ tyvdet(DT)dx —I—/ As -Vl (t), Vo)ypedY + u’(t)vwsdo

Qo

+ u’(t)vwsdo = /

Q Qo

usvwsdo + / ujvwsdo + / vpsdy
Q ¥
for all v € WH4(X), where the matrix A;, the boundary terms wy, p, are given,
sufficiently smooth functions of space variables and s € [0, d),
A, = det(DT,) DT -*DT!
ws = ||det(DT; )*DT_1 n|| g

22(0) + y2(£)
by = (W) , (@(0),y(0) €y, v =Ts(7), L€ (0,1) .

By an application of the implicit function theorem for solutions of the
latter integral identity we obtain the existence of the weak material derivative

in W(0,T) and L*(0,T; W'P(X)), 8 <p < 2

RTINS DR
u-l;igls(u u) .

INRIA



Shape Optimization Problem for Heat Fquation 17

The material derivative & € W'?(X) satisfies the following integral identity,

d [ . ,
%/Euvd1vV(0)dE—|—/EVu-VvdE—|—/E<A (0) - Vi, Vo) dX

+ uvdo + uvw'(0)do + uvdo + uvw'(0)do
Q ol Q

Qo
= / (o + upw'(0))vdo —I—/ (ty + uw'(0))vdo + / vp'(0)dy ,
Qo Q1 v
where we denote

A'(0) = divV(0)I — DV(0) —*DV(0)
W'(0) = divV(0) — (DV(0) - n,n)pR:
p'(0) = 7-DV(0) -7

Let us consider for example the shape functional

T
Jo) = [ [(unlt2) = wat, 2)) st
0 Jz
Theorem 2.8 A solution to the minimization problem

inf J(v)

YEFL

satisfies the first order necessary optimality conditions
dJ(v;V)=0
for all admaissible vector fields V', where
T T
dJ(7;V) =2 / /E (u(y) — uq) ©dS + / /E lu(7) — uq|*divVdy
0 0

The optimality conditions can be further simplfied using the standard adjoint
state equation.

RR n"3185



18 Antoine Henrot and Jan Sokolowski

3 Behaviour of the optimal solution when T
goes to +oo

In the paper (Henrot, Horn and Sokolowski, 1996) we investigated the statio-
nary problem, namely

-AU, = 0 in 0
6817]”: = 0 on I'
(SP() o,
~n = U,—¢ on
oU.
- anw = U, —po—9, on {)g.

We proved, in particular, that functionals analogous to those given by (12)
(without dependance in time), have a minimum in the class of admissible
curves Fi,.

In this section, we are interested in the behaviour of the optimal curve that
we have obtained for a time interval [0,7], when T' goes to infinity. More
precisely, we would like to prove that this optimal solution, say yr (since it
depends on T'), converges to the optimal solution for the stationary case. Of
course, we are going to work in this section with the following functionals:

Jr(v) = /E(uw(T,:v) —ua(w))* do = [Juy(T) = udllz2(z) (15)

and

Je(9) = [ (U(2) = wale)) do = U, = vallz2qs) (16)

where w., is the solution of the evolutionary problem P;(v), and U, the solution
of the stationary problem SP(v). Then, we have

Theorem 3.1 Let us denote by vyr (resp. Vo) an optimal curve for the func-
tional Jy (resp. J) defined above. Then vy converges uniformly to v, up to
a subsequence, in the sense that the parametrizations Fr given by the definition
1 converges uniformly to F.,, when T' — +o00.
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First of all, let us recall a classical convergence result.

Lemma 3.2 Let v € Fy, be fized. Then u,(x,T) converge to U,(x) strongly
in L*(X) when T — +oo.

Proof. We use the spectral representation of the solution of the problem
P1(v). Let us denote by Ay < Ay < ...\, < ... and ¢1,92,...,%n,... the
sequence of eigenvalues and eigenfunctions for the Neumann-Robin problem

—Ap = Ap in Q ,
g—:j =0 on ',
—aﬁ = on ) U .
on

Since the first eigenvalue of this problem is also given by

: Js Vv de + [o,uq, v¥ de
A = iInf tha
veHL(E) Jsvidx

it is strictly positive by the Poincaré-Friedrichs inequality.

Now, since the function U(t,z) := U,(z) (independant of time) is solution of
the following problem
%—?—AU - 0 X x(0,7),
g—g = 0 on I' x (0,7,
ou
—a—n = U—gﬁl on 91X(O,T),
ou
o = U—po—9, on Qo x (0,7
U(z,0) = U,(x) in %,
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the difference v(x,t) = w,(x,t) — U(x,1) is solution of

ov )
E—Av = 0 in ¥ x (0,7,
ov
o = 0 on I'x (0,7,
@ = ' QU 0,7
_an - v on ( 0 1) X ( ) ) 3
v(z,0) = wug(z)—Uy(x):= vo(x) in ¥ .

Therefore, it can be expanded in the basis of eigenfunctions:
vz, )= vpe o ()
k=1

where the coefficients vy are given by the expansion of the initial data vo(z) =
Yooy Vkek(2). So, it is clear by the Parseval identity that

lo(z, T)Zam) < e Flva(2)||72(m) — 0

when T — oo, which completes the proof of the lemma. O

Proof. (of theorem 3.1) Theorem 2.6 shows that for each fixed T' > 0, there
exists (at least) one optimal curve, say yr € F, which minimizes the functional
Jr defined by (15). According to proposition 2.1, there exists a curve v* € Fy,
and a subsequence vy, which converge uniformly to 4* in the sense defined in
the theorem, and such that

0

YTn

— G weak—(#) in the space (W'?(%))" |

in fact for p > 2, for p = 2 the result is in general false. In order to prove the
theorem, it is sufficient to prove the following lemma.

Lemma 3.3 The sequence uy, (x,T,) converges weakly to u,(x) in L*(X)
when n — oo.

We continue the proof of theorem 2.6, the proof of lemma 3.3 is given below.
Using the optimal solutions for T, we have

[t (2, 1) = wa@))?de < [ (o (2, D) — wa(@)) de. (17)
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Now, lemma 2.6 shows that w._(x,T,) converges strongly to U, _(z) when
n — 00, then by lower semi-continuity of the norm and in view of lemma 3.3,

we have
Joo(VF) = Jy(ugs(2) — ug(z))? de < liminf [ (uy, (2,T,) — uq(z))? dx
i ol (5. T) —wa@)? = ol (&) — wa(e))? = inf e

which proves that v* is also a minimum of the functional J,, which completes
the proof of the theorem 2.6. O

Proof. (of lemma 3.3) Let € > 0 be fixed. According to the proposition 2.4
of the stationary problem (cf Henrot, Horn and Sokolowski, 1996), the sequence
U,,, converges strongly in L*(X) to Uy, in particular, it is bounded,

[y lz <M and [[Uyelle < M (15)
Let us fix a positive number 7 large enough such that
N (uollzz + M) < =, (19

Let v be a fixed function in L*(X), we have to prove that

/E (tng, (2, T) — wys(2))0(2) daz —> 0. (20)

Let us write the left member of (20) as
[t (2, 1) =t (@7 Nole) da 4 [ (s, (@,7) = e, 7))o(e) da +
+/E(W(x,r) —wp(@))o(e) de. (21)

It is easy to let the second term in (21) less than € for n large enough using the
weak convergence of u., (z,7) to u(z,7) (cf Lemma 1). Moreover, thanks
to (19) and the proof of the Lemma 2,we have

ety 7) = Ul l2 < €7 lwg — Uz < e,

so the third term in (21) is also estimated from above by e||v||. It remains
to look at the first term. Using one more time the spectral expansion of the
solution of the parabolic problem, we are able to write

o, (8, T) — iy (2,7) = 30 (e — T2,
k=1
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Therefore, by Parseval identity

o0

i, (2, T) = vt (2, [ = 3 w7 — )2
k=1

Now, for T,, > 7, we have

0 < e—Ak‘T _e—Aan < e—Ak‘T < e—>\1‘T

then

o0
ity (2, T) =t (2, )2 < 297 Y0 0F = M7 lug — Uy [0 < 2

k=1

the last inequality coming from (18) and (19). Then the lemma is proved.
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