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Abstract: In the framework of perfect loop nests with uniform dependences, tiling has been extensively
studied as a source-to-source program transformation. Little work has been devoted to the mapping and
scheduling of the tiles on to physical processors. We present several new results in the context of limited
computational resources, and assuming communication-computation overlap. In particular, under some
reasonable assumptions, we derive the optimal mapping and scheduling of tiles to physical processors.
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Partitionnement avec un nombre fini de ressources

Résumé : Dans le cadre de 1’étude des nids de boucles parfaits & dépendances uniformes, le parti-
tionnement a été largement étudié en tant que technique de réécriture du programme source. Peu de
travaux ont été consacrés a l’allocation et & 'ordonnancement des tuiles sur les processeurs physiques.
Nous présentons plusieurs résultats dans le contexte de ressources de calcul limitées, et de recouvrement
calculs-communications. En particulier, sous un certain nombre d’hypothéses raisonnables, nous calculons
I’allocation et 1’ordonnancement optimaux des tuiles sur les processeurs physiques.

Mots-clé : partitionnement, recouvrement calculs-communications, allocation, ressources limitées.



1 Introduction

Tiling is a widely used technique to increase the granularity of computations and the locality of data re-
ferences. This technique is restricted to perfect loop nests with uniform dependences, which we define as
in Banerjee [3]. The basic idea is to group elemental computation points into tiles that will be viewed as
computational units. The larger the tiles, the more efficient the computations are performed using state-
of-the-art processors with pipelined arithmetic units and a multi-level memory hierarchy (this is illustrated
by recasting numerical linear algebra algorithms in terms of blocked Level 3 BLAS kernels [7, 6]). Also,
another advantage of tiling is the decrease of the communication time (which is proportional to the surface
of the tile) relatively to the computation time (which is proportional to the volume of the tile). The price to
pay for tiling may be an increased latency (if there are data dependences, say, we need to wait for the first
processor to complete the whole execution of the first tile before another processor can start the execution
of the second one, and so on), as well as some load-imbalance problems (the larger the tile, the more difficult
to distribute computations equally among the processors).

Tiling has been studied by several authors and in different contexts. A short review of the existing
literature is provided in the extended version of this paper [5]. Basically, most of the work amounts to
partitioning the computation domain of a uniform loop nest into tiles whose shape and size are optimized
according to some criteria. Little attention has been paid to distributing the tiles to physical processors and
to computing the final scheduling. For example, if each physical processor is assigned several tiles, what
should be the computation ordering of these tiles? An in-depth study has been presented by Ohta et al [10],
who have extended results of Hiranandani et al. [8] on fine grain pipelining for DOACROSS loops. We survey
their work in Section 3.

In this paper, we build upon the work of Ohta et al [10]. We reformulate the problem of tiling with
limited resources using more realistic assumptions on data dependences and communication-computation
overlap than those used in [10]. We also derive an optimal mapping to assign tiles to physical processors.
All these results are presented in Sections 4 and 5. Finally, we state some conclusions in Section 6.

2 Tiling as a loop transformation technique

When targeting a data-parallel or SPMD style of programming, classical constraints in the literature to
define tiles are the following;:

Tiles are bounded For scalability reasons, we want the number of points inside a tile to be bounded by a
constant independent of the domain size.

Tiles are identical by translation This constraint is imposed to allow for automatic code generation: a
tile must be the image by a translation of any other one unless it crosses the computation domain
boundaries.

Tiles are “atomic” Each tile is a unit of computation: all synchronization points are beginnings and ends
of tiles. The order on tiles must be compatible with the order on nodes: one must thus avoid that two
distinct tiles depend upon each other.

As already said, tiling is restricted to perfectly nested loops with uniform dependences, such as the
following simple example:

for 1 = 0 to Ny do
for 5 =0 to Ny do
Cl(l,_]) = a(l - 3a.7) + a(iaj - 2)
b(i,j)=a(i—2,7—3)+b(i—2,5—-1)
enddo
enddo
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This loop nest has depth 2. The dependences are uniform (intuitively, dependence vectors are transla-
tions), and they can be encapsulated into the dependence matrix

0 3 2 2
b= < 2 0 31 ) '
The atomicity constraint can be expressed by the analytical condition HD > 0, where H is the matrix
of vectors normal to the edges (or the edges in two-dimensional problems) of the tile [9]. In Figure 1, we

sketch a valid tiling for our example. The matrix H is the one derived using the scalable communication-to-
computation criteria of Boulet et al. [4]:
1L/0 3
H=— 3 ).
16 ( 3 0 )

We check that HD > 0. Note that the volume of the tile, which represents the number of computations per
tile, is given by the determinant of H ~1: Veomp = det(H_l) = 96. The number of communications is the
following: each tile sends

e 24 data items to its right neighbor,
e 34 data items to its lower neighbor,
e and 6 data items to its lower-right neighbor.

Note that the third message (the diagonal communication) may be routed horizontally and then vertically,
or the other way round, and even may be combined with any of the first two messages.

i
Figure 1: Optimal tiling for a computation volume V,omp = 96.

It is important to point out that the dependences between tiles are summarized by the vector pair

(o)

In other words, the computation of a tile cannot be started before both its left and upper neighbor tiles have
been executed.

As stated above, the atomicity constraint implies that inter-processor communications only take place
at the end of the processing of each tile. Note that current architectures do allow for communications and
computations to overlap, and it is important to point out that the atomicity constraint does not prevent a
given processor from simultaneously communicating boundary data of one tile (whose execution it just com-
pleted) and starting the computation of another tile. Also, minimizing communication start-up overheads
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is a “sine-qua-non” condition towards achieving good performance. Even though sophisticated routing stra-
tegies are designed and implemented in hardware, communication start-up costs remain very expensive as
opposed to the elemental time for communicating one data item (and even worse for performing a compu-
tation). Frequent exchanges of short messages should therefore be replaced by fewer sends and receives of
longer messages. To summarize, in the context of distributed memory architectures, tiling is a technique
that permits to optimize communications while increasing the granularity of computations.

3 Tiling with resource constraints

Ohta et al. [10] aim at determining the best tile size under the following hypotheses:
(H1) There are P available processors interconnected as a ring.
(H2) The computation domain is a two-dimensional rectangle of size N; x Ns.

(H3) Tiles are rectangular and their edges are parallel to the axes (see Figure 2). The size of a tile is
ni X ng, where ny and ny are unknowns.

0

(H4) Dependences between tiles are summarized by the vector pair {( (1) ) , ( 1

)} (as in the example of
Section 2).

(H5) Tiles are assigned to processor using a one-dimensional cyclic distribution: in other words, tile (¢, j)
is allocated to processor j mod P.

(H6) The scheduling of the tiles is column-wise: at step 0, processor Py executes tile (0, 0) and the computed
value is communicated to the adjacent processor P; (more precisely, a rectangular slice of width w and
height ny is sent). At step 1, processors Py and P; execute tiles (0,1) and (1,0) simultaneously. After
having executed a whole column of tiles, a processor moves on to its next column.

: R P P,
I 00 | (10)

[

[

[

(©.D)

Figure 2: Mapping rectangular tiles onto a ring of processors.

A step is the time required to compute a tile and to communicate data. Ohta et al. [10] use the following
expression:
CZjtile = Tcomp + Tcomm = ninat + (CL + an)

where t is the elemental computation time, @ is a communication start-up and b is the inverse of the
communication bandwidth times the width w of the slice being communicated (the communication cost is a
linear expression in the message size).
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To compute the total execution time, Ohta et al. [10] use the formula (M; + M,)Tiiie, where M; = P —1
is the latency (the step at which the last processor begins to work) and M, = % is the number of tiles
per processor (assumed to be an integer). Using the approximation M; = P, they derive the total execution

time 1" as

N1 Ny
T=(P t bns).
(P+ Pnlnz)(n1n2 + a+ bna)
The execution time is found to be minimal when choosing n; = % and ny = %21?

The objective of this paper is to discuss the hypotheses (H1) to (H6) of Ohta et al., and to reformulate
their results using a more accurate modeling of current architectures. Indeed, their study is conducted
while assuming that processors cannot simultaneously communicate bordering data items of the last tile and
perform computations for the next tile. However, overlapping computations and communications is a facility
provided by all distributed memory computers, so we relax this restriction. This simple modification has a
tremendous effect on the determination of the best tile size.

4 Allowing for communication-computation overlap

4.1 On the model

Hypotheses (H2), (H3) and (H4) may appear very restricting. However, we point out the following justifica-
tions:

Tile shape We assume that the tiles are rectangular. This is to be understood as the outcome of previous
program transformations. The first step in tiling amounts to determining the best shape and size of
the tiles, assuming an infinite grid of virtual processors. Because this step will lead to tiles whose
edges are parallel to extremal dependence vectors in the convex hull of the dependence cone, we can
perform a unimodular transformation and rewrite the original loop nest along the edge axes. The
resulting domain may not be a rectangular, but we can approximate it using the smallest bounding
box (however, this approximation may impact the accuracy of our results).

Dependence vectors We assume that dependences are summarized by the vector pair ¥V = { < (1) ) , < (1] ) }.

Note that these are dependences between tiles, not between elementary computations. In the example
of Section 2, we had 4 dependence vectors in the original loop nest, but we ended up with V after tiling.
This is a very general situation if the tiles are large enough. For instance, having a dependence vector
(0,a) with a > 2 between tiles, instead of having vector (0, 1), would mean unusually long dependences
in the loop nest (in the example of Section 2, a(%, j) would depend upon a(i, j — 8) but not on a(¢, j — z)
for 2 < 7). Note that having (0, a) in addition to (0,1) as a dependence vector between tiles is simply
redundant.

On the other hand, hypotheses (H5) and (H6) are unnecessarily restrictive, because the mapping and
scheduling of the tiles should be an output decision of the procedure of tiling with limited resources, rather
than being given a priori. We overcome this restriction in Section 5.

4.2 Revisiting the results of Ohta et al.

The total execution time is given by the following proposition:

Proposition 1 Under the hypotheses (H1) to (H6) of Section 3, and allowing for communication-computation
overlap, the total computation time T is (assuming all fractions to be integer):

T Ty = (P —1)(ninat + a+ bns) + %t if Nanqt > P(ninat + a + bns) (1)
Tl Ty = (g—i — 1)(ninat + a + bng) + Nangt otherwise
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Proof According to hypothesis (H4), the computation goes column-wise. When a processor has completed
the execution of a whole column of tiles, it starts the next column that has been assigned to it. The time to
process a whole column of tiles is the number of tiles in the column, namely g—j, times the time to compute
a tile, namely T¢omp = ninat. We obtain the value Nynit for processing a whole tile column.

Now, according to hypothesis (H5), tile columns are distributed cyclically to processors. If a processor
starts the execution of the first tile in a given column at time-step ¢, its right neighbor cannot start the
execution of the first tile in the next column before time-step ¢ 4 Tij., where Tijie = Teomp + Teomm =

ningt + (@ + bny) (this is due to the dependence vector ( (1) )) Note that T3 is the same as in Section 3,

but we pay a communication cost only when the processors owning the tiles are not the same. Two cases
can occur:

R R R R
0 2 4
1 3 5
2 4 6 10
3 5 7 11
4 6 8 12
5 7 9 13
6 8 10 14
7 9 11 15
J

Figure 3: Scheduling tiles with Tiomp = 1, Teomm = 1 and P = 3.

e Either there are enough tiles in each column so that when a processor has completed the execution of
a whole tile column, it does not have to wait for its next tile column to be ready. This will happen if
N, Teomp = Nanit is greater than or equal to the delay imposed by horizontal constraints, i.e. if

na2

&Tcomp Z P 71tile~

n2
If this condition holds, all processors remain active throughout the entire computation, once they have
started execution. Since the last processor starts at time (P — 1)Ti;e and has 113\25122 tiles to execute
(each in time Tiomp = ninat), we obtain 77, the first expression in Equation (1). See Figure 3 where
Teomp = Teomm = 1, and P = 3. There are g—j = 8 tiles per column, and P7Ti;. = 6, hence the

condition is satisfied.

e Or each processor has to wait upon finishing a tile column until the next one is ready. This translates
into the condition g—chomp < PTije. In that case, the total computation time is equal to the time at
which the last processor starts the execution of the first tile in the last column, namely (g—ll — 1)Tzite
plus the time needed to process this column. We obtain the expression (g—ll — DTite + g—chomp, as
stated in the second formula of Equation (1). See Figure 4 where Teomp = 1, Teomm = 2, and P = 3.

There are g—j = 8 tiles per column, and PTi;. = 9, hence g_chomP < PTije. Processors remain idle

at the end of each tile column, waiting for their next column to be ready. [ |

The optimal number of processors that should be used so as to minimize the total execution time is given
by the following proposition:
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R P R, R
0 3 6 9

1 4 7 10
2 5 8 11
3 6 9 12
4 7 10 13
5 8 11 14
6 12 15
7 10 13 16

j

Figure 4: Scheduling tiles with Tiomp = 1, Teomm = 2 and P = 3.

Corollary 1 Under the hypotheses (H2) to (H6) of Section 3, and allowing for communication-computation

overlap, let
N1 Not Naonit
Py=/—22  and Pg = B —
ninast + a + bno ninst + a + bnsy

The number of processors P that minimizes the total execution time is given by:
o if Pg<1or P, <1< Pg, then P=1,
o if 1 < Pg <P, then P = Pg,
o if 1 < P, < Pgthen P=P,.

Proof The “steady-state” condition Nanit > P(ninat + a + bng) in Equation (1) can be rewritten as
P < Ps.

Consider T = (P — 1)(ninat + a + bna) + N1PN2t (see Equation (1)). The minimum of 77 is obtained for
P = P,. The expression of T shows that is a non-increasing function of P when P < P,, and then a
non-decreasing function of P when P > P,. Also, note that 75 does not depend on P (except than through

the condition P > Pg). Then the result follows according to a simple case analysis. [ |

For large domains, we will have 1 < Pg < F,, and it is no surprise that the optimal number of processors
is the one required to ensure steady-state execution: Equation (1) in Proposition 1 states that all processors
remain active once started if

NQTth Z P(?’Llnzt + a4+ bnz)

So far, we have assumed that n; and ns were input parameters, because the size and shape of the tiles
may be imposed by some a priori considerations (such as the cache size). We can try to determine the values
of n1 and ns in the range 1 < ny < Np, 1 < ny < N; that would minimize the total execution time. We
rewrite the steady-state equation by introducing the following function f:

Ngnlt — Pa
—_ 2

Corollary 2 Under the hypotheses (H1) to (H6) of Section 3, and allowing for communication-computation
overlap, the total execution time is minimum for

ny > f(n1) =

- J(V&E‘jg’g and ny = 1 if f(3) <1
o ny = tﬁ&,ﬁf% and na = 1 otherwise.
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Proof We break down the problem into two subcases depending on the values taken by the function f,

whose argument n; ranges from 1 to %;

e Vny, f(n1) < 1. Since f is a nondecreasing function of ny, this condition is equivalent to f(%) <1.1In
this case, Equation (2) is always satisfied (ny > 1). Then the minimum of 7" is obtained by minimizing
Ty with ny = 1, namely

N
T'=(—% = 1)(mt +a+0b)+ Nonyt
1
This easily leads to n; = ](V]\l,i‘it?g, as stated in the theorem

e dny, f(n1) > 1. Since f is a nondecreasing function of ny, we can safely take n{ be such that f(n?) = 1.
Note that all values of ny > nf will lead to admissible values for ny, because we always have f(n;) < %
by definition of f. Now consider the expression of T' for arbitrary n; and ns:

— if ny < f(n1), then T =T, T is a non-increasing function of both n; and ny decreases, then the

minimum is obtained with ny = 1 and n; = n(lj.

— if ng > f(n1) then T = T and is a non-increasing function of ny. Then the minimum of 7' is
reached if ny = f(n1). In that case 75 = T3, and again the minimum is reached when ny = 1 and

n :n(l)

This result is disappointing in that we end up with degenerate tiles in most practical situations. For
instance if P <« Na (which is very likely to happen in practice), f(1) > 1, and the optimal tile size is
ny = ns = 1, not a very coarse-grain tiling indeed! For other values of the problem parameters we would
have an optimal tile size that depends upon the domain size, thereby contradicting the assumption that tiles
are bounded (Section 2). Note that Ohta et al [10] also have this problem in their original model. The flaw is
that the model is not accurate enough to take the impact of data locality and data reuse into account (which
are the main objectives of tiling, and the main motivation for designing blocked linear algebra algorithms [7]).
A first solution is to model the computation cost of a tile by an affine expression like T¢omp = ninat + u,
where u represents some access overhead. It is not difficult to plug this expression into the formula given for
the total execution time 7', and to derive the optimal tile size. Another solution is to assume a fixed tile size
that would be imposed by some a priori considerations (such as the cache size). Again, we can let nyny = S
in Equation (1), and minimize T' for ny, say.

4.3 Generalizing the model

Assuming communication-computation overlap seems a reasonable hypothesis for current machines which
have communication coprocessors and allow for asynchronous communications (posting instructions ahead,
or using active messages). We can think of independent computations going along a thread while commu-
nication is initiated and performed by another thread. As written in Pacheco [11, p. 268], “if we have
communication coprocessors (and smart compilers) ... the actual running time [for performing & computa-
tions and sending/receiving a message of length m] ... might be max{t; + mit., kt,}” (with our notations,
ty =1, t; = aand t. = b/w).

A very interesting approach has been proposed by Andonov and Rajopadhye [2]: they introduce the tile
period Py as the time elapsed between corresponding instructions of two successive tiles that are mapped to
the same processor, while they define the tile latency L; to be the time between corresponding instructions
of two successive tiles that are mapped to different processors. With these notations, the parallel execution
time becomes [2]

Ty=(P—1)L+ 25 224p  iff2p > PL,
T= (3)
Ty = (& - 1)L, + g—th otherwise

n1
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The power of this approach is that the expressions for L; and P can be modified to take into account
several architectural models, while Equation (3) still remains valid. A very detailed architectural model is
presented in [2], and several other models are explored in [1].

With our notations, Py = Teomp and Ly = Teomp + Teomm. We can rewrite Equation (1) as

Tl = (P - 1)(Tcomp + Tcomm) + ]X_llg_j%Tcomp if g_chomp Z P(Tcomp + Tcomm)
T= 4)

T = (g—ll — 1) (Teomp + Teomm) + Jrzf_chomp otherwise
Equation (3), or its variant Equation (4), is the key to our tiling problem, because it expresses the parallel
execution time as a function of the domain size, of the number of processors, and of the tile parameters P;

and L;, or equivalently Ttomp and Teomm .

5 Optimal mapping and scheduling

Hypotheses (H5) and (H6) are very restrictive in that they impose the mapping of tiles to processors as
well as their scheduling. The intuitive motivation for (H5) is that a cyclic distribution of tiles is quite
natural to load-balance computations. Once the distribution of tiles to processors is fixed, there are several
possible schedulings (any wavefront execution that goes along a left-to-right diagonal is valid). Specifying a
column-wise execution may lead to the simplest code generation.

It turns out that (H5) and (H6) provide the best solution among all possible distributions of tiles to
processors, which is a very strong result. This result holds true under the assumption that the communication
cost for a tile is not larger than its computation cost. Since the communication cost for a tile grows linearly
with its size, while the computation costs grows quadratically, this hypothesis will be satisfied if the tile
is large enough!. This result is formally stated in the theorem below. Beforehand, we need to refine the
communication cost as follows:

® Teomm_horiz = @+ bna is the cost of communicating data from (the processor owning) tile (¢, j) to (the
processor owning) its right neighbor tile (i + 1, 7),

® Teomm_vert = @' +b'ny is the cost of communicating data from (the processor owning) tile (¢, j) to (the
processor owning) its bottom neighbor tile (4, j + 1).

We pay a communication cost only when the two processors that own the neighboring tiles are not the same.
So far we never paid any cost for vertical communications, and we always did for horizontal communications,
because of hypothesis (H5). We had to refine the communication cost because in this section, we do not
make any assumption on the mapping of tiles to processors. Depending upon the values of T¢omm_noriz and
Teomm_vert, the best mapping will be column-wise or row-wise:

Theorem 1 Under the hypotheses (H2) to (H4) of Section 3, and allowing for communication-computation
overlap, let ny and ny be chosen so that

/ /
maX{Tcomm_horiz ) Tcomm_vert} = max{a + bn2; a +b nl} S Tcomp = ninat.

1. If Teomm_horiz < Teomm _vert, assume that the steady state equation holds: Nanit > P(ninat+a+bna).
Then the absolute minimum for the total execution time is

NN,y

t
P

T1 = (P - 1)(Tcomp + Tcomm_horiz) +

and it is achieved by mapping and scheduling tiles according to hypotheses (H5) and (H6),

LOf course, we can imagine theoretical situations where the communication cost is so large that a sequential execution would
lead to the best result.
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2. If Teomm_vert < Teomm_horiz, assume that the steady state equation holds: Ninat > P(ninst+a’+b'nq).
Then the absolute minimum for the total execution time is
N1 N+
P

Tll = (P - 1)(Tcomp + Tcomm_vert) + t
and it is achieved by mapping rows of tiles using a one-dimensional cyclic distribution (tile (i, j) is
allocated to processor i mod P), and by scheduling the tiles row-wise.

Proof Without loss of generality, assume that Teomm_vert < Teomm_horiz (the result is symmetric in the
rows and columns), and let Teomm = Teomm_vert- We begin the proof with the following preliminary result,
where o denotes any valid scheduling of the tiles (o(7) is the time-step at which the execution of I begins):

Lemma 1 Let I = (i,j) be a tile index, and let I' = (i + 1,j) and I" = (i,j + 1) be its successor tiles. We
have
max{c(I") —a(I),o(I') — (1)} > Teomm + Tcomp-

Proof Let proc(I) be the processor that executes tile /. We have three cases to consider, depending upon
whether proc(I) also executes both successors I' and I”, or exactly one of them, or none of them:

both successors: proc(l) = proc(I') = proc(I')
The same processor executes both successors. They are executed sequentially and the last one being
executed cannot begin execution before time-step o(I) + 2Tcomp. AS Teomm < Teomp the result is
proven.

one successor: proc(I) = proc(I') and proc(I) # proc(I')
(respectively proc(I) = proc(I") and proc(I) # proc(I')). A communication is needed between I and I”
(respectively I and I'), hence o(I")—0(I) > Teomm +Tcomp (respectively o(I')—o (1) > Teomm +Teomp )

no successor: proc(I) # proc(I') and proc(l) # proc(I")
This case is similar to the previous one. [ |

Back to the proof of the theorem, let T), the total execution time using P processors. Let Idle be the
cumulated idle time of all processors during execution. Finally, let T,., = N1 N2t be the sequential execution
time. Clearly,

PT// = Idle + Tseq.

Hence, to show that T); > 11 = (P — 1)(Teomp + Leomm) + T;j", we need to show that

Idle Z P(P —_ 1)(Tcomp + Tcomm)~

The structure of the dependence graph does impose that some processors are idle at the beginning of the
computation, which will lead to a lower bound for Idle. For instance, during the execution of tile (0, 0), there
are necessarily P — 1 idle processors. To go on, we recursively define pivot_tile(k) as follows (see Figure 5):

e pivot_tile(0) = (0,0), and

o for k > 1, pivot_tile(k) is the one of the two successors of pivot_tile(k — 1) which is executed last: if
pivot tile(k — 1) =1 = (i,7), let I' = (i+ 1,7) and I = (4,j + 1) be the successors of tile I:

— If o(I') > o(I"), then pivot_tile(k) = I', and we define S(k) as the remaining tiles in column j:
S(k) ={(,j+10),1>1}),

— If o(I") > o(I'), then pivot_tile(k) = I, and we define S(k) as the remaining tiles in row i:
Stk) ={i+1,74),1 > 1},
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We know from Lemma 1 that for all k > 1,
o(pivot_tile(k)) — o(pivot_tile(k — 1)) > Teomm + Teomp-

We prove by induction that for 1 < & < P — 1, at least P — k processors are kept idle between the
beginning of the execution of pivot_tile(k — 1) and that of pivot_tile(k). This will lead to be result that

P(P—1)

ldle> (P = 1)+ (P =2) + ...+ D(Teomm + Teomp) = ——

(Tcomm + Tcomp)~
This will prove the desired result, because the same amount of idleness, so to speak, will be spent at the end
of the computation (by symmetry of the dependence graph). Now, for the induction:

o Let k = 1: pivot_tile(1) is either (0,1) or (1,0). See Figure 5 where pivot_tile(1) = (1,0) and S(1) =
{(0,041),{ > 1}. Between the the beginning of the execution of pivot_tile(0) and that of pivot_tile(1),
the only successors of pivot_tile(0) that can be executed are in S(1). But all tasks in S(1) must
be executed sequentially, hence between the beginning of the execution of pivot_tile(0) and that of
pivot_tile(1), at least (P — 1) processors are kept idle.

o Assume that the hypothesis is true until step k. Between the beginning of the execution of pivot_tile(k)
and that of pivot_tile(k + 1), at most one processor can be active in S(1), at most another one in S(2),
..., and at most one processor in S(k+1), so that at most k+1 processors can be active, or equivalently,
at least P — (k + 1) processors remain idle.

2| 6, 9
8

S)
83

j
Figure 5: A schedule when T,opm = 1 and Teomp = 2. Pivot tiles are labeled, and sets S(k) are framed.

It is worth to point out that Theorem 1 holds true in a large framework. Whatever the model used for
estimating the communication time 7¢,p,,, and the computation time 7¢,yp, the parallel execution time for
a columnwise allocation of tiles to processors is given by Equation (4). Theorem 1 basically says that such
a columnwise or rowwise allocation will be optimal as soon as

1' Tcomm S Tcomp

2. Steady-state condition: the weight of a tile column (or tile row) is greater that the tile latency

Lt = P(Tcomm + Tcomp)
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The first hypothesis will be fulfilled if the tile is large enough (because the communication cost grows
linearly while the computation cost grows quadratically). The second hypothesis will be fulfilled as soon as
the domain is large enough in front of the number of processors, a situation very likely to happen in practice.

Finally, note that when the steady-state condition is not satisfied, we can still derive similar results. For
instance assume a square N x N tiled iteration space (N tiles per row and per column). Let T,omp be the
computation time for a tile, and let Teomm be the communication time (either horizontal or vertical). With P
processors, if NTeomp < P(Teomm +Teomp) @ columnwise allocation of tiles to processors leads to the parallel
execution time T'= (N — 1)(Tvomp + Teomm) + NTeomp- I Teomm < Teomp, this is optimal: use Lemma 1 to
show that the execution of diagonal tile (7,4), 0 <4 < N, cannot start before time-step #(27comp + Teomm )-

6 Conclusion

In this paper, we have studied tiling techniques aimed at adapting the granularity of uniform loop nest
algorithms towards execution on distributed-memory machines. We view tiling as a two-step process: the
first step amounts to determining the best shape and size of the tiles (assuming an infinite grid of virtual
processors), while the second step consists in mapping and scheduling the tiles to physical processors. We
have concentrated on the second step, assuming a realistic model where (independent) communication and
computation may overlap. We have obtained several new results, including a strong result on the optimal
mapping and scheduling. However, much remains to be done to extend these results to arbitrary dimensions
and domain shapes.

More generally, the relationship between tiling, scheduling and mapping is not yet well understood, and
the two-step approach may not prove too complicated for practical problems. Yet, such a two-step approach
is typical in the field of parallelizing compilers (other examples are general task graph scheduling, software
pipelining and loop parallelization algorithms).

Finally, the recent development of heterogeneous computing platforms may well lead to using tiles whose
size and shape will depend upon the characteristics of the processors they are assigned to ... a truly chal-
lenging problem!

Acknowledgment We are deeply indebted to Sanjay Rajopadhye for his useful comments on a first version
of this paper.
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