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Abstract: We investigate in this paper the properties of multimodular functions. In doing
so we give alternative proofs for properties already established by Hajek, and we extend his
results. In particular, we show the relation between convexity and multimodularity, which
allows us to restrict the study of multimodular functions to convex subsets of Z™. We then
obtain general optimization results for average costs related to a sequence of multimodular
functions. In particular, we establish lower bounds, and show that the expected average
problem is optimized by using balanced sequences. We finally illustrate the usefulness of
this theory in admission control into a D/D/1 queue with fixed batch arrivals, with no
state information. We show that the balanced policy minimizes the average queue length
for the case of an infinite queue, but not for the case of a finite queue. When further adding
a constraint on the losses, it is shown that a balanced policy is also optimal for the case of
finite queue.

Key-words: Multimodular functions, convexity, balanced sequences, admission control
into a queue.
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Multimodularité, convexité et propriétés d’optimisation

Résumé : Dans cet article, nous nous intéressons aux propriétés des fonctions multimo-
dulaires. Ce faisant, nous montrons de nouvelles preuves des propriétés établies par Hajek
et nous étendons certains de ses résultats. En particulier, nous montrons la relation qui
existe entre multimodularité et convexité qui nous permet d’étudier la multimodularité sur
des parties convexes de Z™. Ensuite, nous obtenons des résultats généraux d’optimisation
pour le cotit moyen d’une suite de fonctions multimodulaires. En particulier, on exhibe des
bornes inférieures et on montre qu’elles sont atteintes pour les suites équilibrées. Finale-
ment, on illustre 1'utilité de cette théorie pour le controle d’admission dans une file D/D/1
avec des arrivées par paquets de taille fixe, sans information. On montre que la politique
équilibrée minimise la longueur moyenne de la file pour une capacité infinie mais pas dans
le cas d’une file & capacité finie. Dans ce cas, Si ’on ajoute une contrainte sur les pertes,
on montre aussi qu’une politique équilibrée est optimale.

Mots-clé : Multimodularité, convexité, controle d’admission, suites équilibrées.
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1 Introduction

The multimodularity property of functions was much investigated in the context of queueing
systems. There are several cases in that field in which this property was exploited to solve
stochastic control. Optimal admission control under no queue information was studied
by Hajek [7]. The precise problem was to admit customers to a single queue, under the
constraint that the long run fraction of customers admitted be at least p. The optimality
of a policy based on a balanced sequence of admission actions was obtained in [7] for the
number of customers in a one-server queue with exponential service and a renewal arrival
process.

Another application of multimodular functions is in the control of queues with full state
information. Weber and Stidham [8] (and later Glasserman and Yao [4]) obtained monotone
properties of the optimal control policies as a function of the state, in a problem of control
of service rates in a system of m queues in tandem. The methodology was strongly based
on the multi-modularity properties of the immediate costs and the cost-to-go functions.

The purpose of this paper is to study the properties of multimodular functions, as a tool
for further investigating the control of queueing systems. We provide alternative proofs for
properties already established by Hajek. We further show the relation between convexity
and multimodularity, which allows us to restrict the study of multimodular functions to
convex subsets of Z™.

We then develop basic optimization tools for average costs, related to a sequence of
multimodular functions. In particular, we establish lower bounds which are achieved by
balanced sequences.

We finally illustrate the usefulness of this theory in admission control into a queue; we
cite some results for the G/G/1 queue, and provide a detailed analysis of the D/D/1 queue
with fixed batch arrivals, with no state information. We show, for the latter, that the policy
which is defined through a balanced sequence minimizes the average queue length for the
case of an infinite queue, but not for the case of a finite buffer. However, when further
restricting to those policies for which no losses occur, we obtain again the optimality of
balanced policies. To conclude that example, we study also the case where it is possible to
admit a part of an arriving batch.

In follow-up papers, we shall make use of the theoretical results of this paper in order
to study more general admission and service control problems in dynamic systems that can
be described using the max-plus algebra, with general inter-arrival and service times.

2 Properties of multimodular functions

We present in this section a short overview and extension of Hajek’s theory of multimodu-
lar functions. We begin by presenting the definition of multimodularity, and some general
properties (Subsection 2.1). We then present in Subsection 2.2 the relation between mul-
timodularity and convexity. The properties presented in Subsection 2.2 are those needed
in the following sections on optimization and control.

RR n- 3181



4 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

Let e; € N™, ¢ =1,...,m denote the vector having all entries zero except for a 1 in its
ith entry. Define d; = e;_1 — ¢;, i = 1, ...,m (for an integer ¢ taking values between 0 and
m, we understand throughout s — 1 = m for i = 0).

Let F = {—61, dQ, . dm, em}. Define g = {61’, —€;, di, —di, 1= 0, 1, . m}

Definition 2.1 (Hajek). A function f on Z™ is multimodular with respect to F if for all
xeZ™ v,weF, v#w,

fle+v)+ fz+w) > flz)+ flz+v+w). (1)
Unless otherwise stated, we shall say that f is multimodular if it is multimodular with

respect to F.

2.1 General properties
For a function g defined on Z™, define
Aig(r) = Aeg(z) = g(z + &) — g(z), Ay =Ai19 — Ag.

We further define A_,, = —A.,, A_;. = —A,,. Note that Ay.g(x) = g(x+e;+d;)—g(z+e;).
It is easy to check that

Lemma 2.1. A, is a linear function for any v € G. For allv,w € G, A, A, = ALA,.
Lemma 2.2. f is multimodular if and only if

AALF <0 2)
forallv,w e F, w#wv.
Proof. Consider first w = d;,v = d; (v # w). Then

A AL f(z) = (Aici —A)N(Aj-1 — A)) f(z)
(A1 = A)(f(x+ej 1) — flz+ey))
= f($+€j—1+€i—1) —f($+€j—1+€i) —f($+€j+€i—1)+f($+€j+€i)

flz+d;j+d;) — f(z+dj) — f(z+d;) + f(2) (3)
where z = T +e;+e;.
Let v =e;,w = —e;. Then

—Aj(f(r+e) — f(z))
—flx+e+e)+ flx+e)+ flx+e5)— f(z)
—flz+e;) + f(2) + f(z+ [-e] +e) — flz+[-ei) (4)

INRIA



Multimodularity, Convexity and Optimization Properties )
where z = T+ €;.
Let v=e,w=d; (j#i+1).
AApf(z) = Ai(Aj1—Aj)f()
= Ai{f(z+ei-1) — flz+e))
= flx+e_1+e)—fle+e_1)—flx+e+e)+ flz+e;)
= f(z+d;j+e)—flz+d;) — f(z+e)+ f(2) (5)
where z = z + e;.
Let v = —e;,w =d; (§ #1).
AApf(z) = —Ai(Ajo1 = Aj)f(x)
= —A(f(z+ej-1) — f(z+¢)))
= —flx+e-1+e)+flz+ei1)+ flz+ei+e)— flx+e;)
= —f(z+d;)+ fz+d; + [—e]) + f(z) + f(z + [—ei]) (6)
where z = x + ¢; + ¢;.
The above equations easily imply the Lemma. g
Lemma 2.3. (i) If [ is multimodular then
(1) For alli,7,
and
(i1) For all i, 7,
AVYAVY B WANVARY 8 (8)

Proof. (i) Without loss of generality, assume that ¢ < j. Then

NN f = (—A_el — ZAdk> ( > Ag A Aem) f
k=2

I=j+1

The proof of (i) is established by applying Lemma 2.2.
For 7 < j we have

NAF = (A —A)AF+ 8D > (A — M)A f

() ()

and (ii) is established by applying Lemma 2.2. For i > j we have

m—1 7
Aj=2i— > Ny =Ap—A =) A
k=1i+1 k=2

RR n~ 3181



6 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

Hence
AAF = 8j(A; = A+ AGA 2 Aj(A; — A f
j m j
= (—A_el -y Adk> (- > Ay —An—A, =) Ak) f.
k=2 k=i+1 k=2
Again, (ii) is established by applying Lemma 2.2. g

Remark 2.1. The converse of the above Lemma holds for the 2-dimensional case: F =
{—e1,ds,e2}. Indeed, assume that (7) and (8) hold. Then A_. A, < 0 due to (7);
A Ay, = Ao (A, — Ae,) <0, and A, Ay, = A, (A, — Ag,) < 0 due (8). Hence f is
multimodular by Lemma 2.2.

Lemma 2.4. If f is multimodular then for all i =1,...,m,
(Z) AeiAdif =0,

(i) Ae;Ag, f <0, 5 <iand Ag;Ag, f 20, 5 > 14,

(155) Ag, Ay, f <0, 1 #1,

(ZU) AdiAdif = 0.

(U) AdiAdjf < 0 fO’f"L.#j, i 7é 17 .7 7é 1.

Proof. By taking ¢ = j — 1 in Lemma 2.3 (ii), we obtain (i).
(ii) For j < 1,

AeiAdjf = (Z Adk + Aem) Adjf-

k=1

For 5 > 1,

AuAy f = (—Ael - Adk) Ag f.
k=2
For both cases, the proof is established by applying Lemma 2.2.
(iii)
Adl Admf = (Aem + A_el)Adif'

The proof is established by applying Lemma 2.2.

(iv)
A Agf = Ay, (— ZAdj) f

J#i
For 7 # 1, the proof is established by applying Lemma 2.2. For 7 = 1 it follows from part
(iii) of this Lemma. g

INRIA



Multimodularity, Convexity and Optimization Properties 7

2.2 Multimodularity and convexity

In the space R™, m + 1 extreme points in Z™ form a simplex.
A simplex consisting of the extreme points{z?,...,2™} of Z™ is called an atom (defined

in [7] §3) if and only if for some ordering of the subset and for some permutation {iy,--- , i}
of (0,1,...,m),

' = 2° + gi,

a? = ' + gi,

2 = 2"+

where fy, ..., f,n are the elements of F.

Next we present a characterization of an atom |7], which is essential for the optimization
result that we obtain in the following sections. Denote by |z] the largest integer smaller
than or equal to x. Then the following trivially holds

1
/ 2+ 0]d8 = 2. (10)
0
Given z € R™, 6 € R, define the vector u*(f) in Z™:
i =1,...,m. Then by (10),

1
/ u®(0)do = z. (11)
0
Since

1
/ |0+ 21+ ...+ 2]d0 =2+ ... + 2,
0

1
/ L9+Zl++zz_1Jd9=Zl++Zz_1
0

u?(0) is periodic in 6 with period 1, and piecewize constant with at most m + 1 jumps
per period. Thus, the set {u*(f) : 0 < 6 < 1} contains at most m + 1 vectors, all integer
valued. The next Lemma follows from [7]:

Lemma 2.5. A point z is contained in an atom called S(z) if and only if the extreme
points of S(z) contain {u*(0) : 0 < 0 < 1}. A point z is in the interior of an atom S(z) if
and only if the extreme points of S(z) equal {u*(0) : 0 < 0 < 1}.

RR n~ 3181



8 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

Each point z € R™ is contained is some atom S(z). It can thus be expressed as a
convex combination of the extreme points of S(z).

For any function f on Z™, we define the corresponding function f on R™ as follows.
It agrees with f on Z,,, and its value on an arbitrary point in z € R™ is obtained as the
corresponding linear interpolation of the values of f on the extreme points of the atom

S(z).
Theorem 2.1. f is multimodular if and only if ]? 1S convez.

Proof. “only if™

We check convexity at a point z; it is established by showing that at point z, at any
direction d, the right derivative is greater that or equal to the left derivative. It obviously
suffices to check at points that are on the boundary of an atom, since, by definition, f is
linear in the interior of atoms. Hence, we first assume that the point z is on the interior of
a face (of dimension m — 1) which is common between two adjacent atoms. Without loss
of generality, assume that the atoms (defined below by their extreme points) are

A= A(zo, %1,y Trm) and A= A(xo, 2%, .. Tm).
where z; satisfy (9) and
Ty = Zo + i, Ty = 5 + Giy-

Case 1: g;; = —e1 = (—1,0,...,0), g;, = em = (0,0, ..., 1).

X, X7
€m €m
p Common
_-- face
=17 of dimension m — 1
X1+ e Xo

Figure 1: Checking convexity at a point z, Case 1.

Decompose direction d in its projection d!l over the common face and in the direction
d* perpendicular to that face. In the direction d', the left and right derivatives are equal.
Note that the hyper-plane through z;, xg, 2, 7 is perpendicular to the common face. In

the direction d*, the right derivative is a constant c times f(x}) — f(z). The left derivative

INRIA



Multimodularity, Convexity and Optimization Properties 9

is ¢(f(z) — f(x1)). Omitting the constant ¢, we get for the difference

[(F(@}) = f(x0)) — (f(@2) — f(=1))] (12)
[(f(21) = f(z0)) = (f(22) — f(a}))] (13)

The fact that both (12) as well as (13) are nonnegative follows by applying (1) with z = .
Then,

] =To +enm
(12) > 0 since Ty =Tg— €1+ €Em
1 =Ty — €1

1 =Ty — €1
(13) > 0 since Ty =Ty — €1 + €,
i =20+ em

Case 2: g;, = e, and g;, = —e;. It is handled as Case 1.
Case 3: g;;, = dy = (1,-1,0,...,0), g;, = —e1. We thus set = g, and 27 = 2o — €1, 23 =
Tog — e1 + do,x1 = x9 + do. In this case, xo — x; is perpendicular to the common face.
We decompose again d to the projection on the common face d!l, and to the direction d*-
perpendicular to the face. As in Case 1, it suffices to consider the direction d*. The right
derivative in this direction is f(x}) — f(zo), and the left derivative is f(zy) — f(z;) (both
up to a multiplicative constant).

The difference between the right and left derivatives is indeed nonnegative: f(x3) —
f(zo) — (f(x9) — f(x1)) > 0. This is obtained again by applying (1).

Common face
of dimension m — 1 X2 €1 Xy

Figure 2: Checking convexity at a point on the common face, Case 3
Case 4: g;, = dy = (1,-1,0,...,0), g;, = d3. In this case, ] — x; is perpendicular to the
common face, and the analysis is as for Case 1.

All other cases, in which z is in the interior of a face (of dimension m — 1), common
to two adjacent atoms, are similar to one of those considered above. It now remains to

RR n~ 3181



10 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

consider the case where z lies on a subspace of AN A of dimension at most m — 2. We note
that the point z can be expressed as the limit of a sequence z, of points that are on the
boundary between two atoms which have a face (of dimension m — 1) in common. Since
f is continuous (this follows from the linear interpolation), and since the limit of convex
functions is also convex, the convexity at the point z is established as well.

_if™ Consider an arbitrary point z, and any two distinct elements g;, g; in . We have to
show that

f@o) + f(x2) — f(21) — f(27) <O, (14)

A L A A .
where T, = xp + gi, T] = %o + gj, Tz = T1 + g; = T} + ;-
Define z 2 0.5(z; + z7) = 0.5(z¢ + x2) and consider the line segment z; — z — z}.
The left derivative (1.d.) and right derivative (r.d.) in z are given by

ld. = f(é(xl +z7)) = flz1) = %f(xo) + %f(l'z) — f(@1),

~ ~ . 1 1
rd. = f(z7]) — f(§(900 +x2)) = f(a7) - §f($o) - §f(952)-
Since fis convex, r.d. — l.d. is non-positive, and hence (14) holds. g

Remark 2.2. (Restriction of Multimodularity to a conver set)

It is clear from the proof that we can restrict the domain of f in Theorem 2.1. Indeed, let A
be a convex set which is a union of a set of atoms. The equivalence of the multimodularity
of f and the convexity of f still holds if we restrict the function f to A, and restrict the
definition of multimodularity to directions that lead to points in A. In other words, [ is
multimodular in A if the following holds. If xq, o+ gi, o + g5, To + gi + g; are all elements
of A then

f(zo) + f(@o + 9i + g5) — f(@o + 9:) — f(@0 + g5) <O.

Next we consider the integer convexity properties of a function f. A function f is said
to be integer convex if the following holds. For vectors z and d in Z™, we have

fla+d)— f(z) > f(z) - f(z —d).
Theorem 2.2. Let f be multimodular. Then it is integer convex.

Proof. Define §] (z):= the right derivative of f at  in the direction d and 9, (z):= the
left derivative of f at z in the direction d. Since f is convex (Theorem 2.1) then

55 (@) > 37 (). (15)

INRIA
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Since f(y) = f(y) at the integer points, and since f is convex, we have

< Fard—I@ @)= fa—d)
R I B i

This, together with (15) imply the integer convexity of f.
The converse of the above theorem is not true:

Counter-example 2.1. Consider the convex function f : N® — R given by f(z) =
,,,,,, mZ;. It is integer convex since it is the maximum of convex (linear) functions.
However, it is not multimodular. Indeed, consider m = 2, = (i + 1,4) for some integer i.

Then
2i+2=f(r—e1+en)+f(z)> flz—e)+ flz+e)=2i+ 1
Hence f is not multimodular.

Theorem 2.3. Let f be multimodular, and let h : R — R be conver nondecreasing. As-
sume that f(z+d;) < f(x),i =2,...m, and f(z—en) < f(x). Then h(f) is multimodular.

Proof. Let g € F, g # d;. Since f is multimodular, we have:
fla+d)—f(@) > fla+di+g) - fla+g) = (16)
Hence,

Mfz+di+9) —h(flz+g) = h(flz+d)+a)—h(f(z+d)) <h(f(z)+ )= h(f(z))
= h(f(z) + f(z +di + 9) — f(z+g)) — h(f(2))
< h(f(z +di)) — h(f(x)).

The first inequality follows from the convexity of h, and since f(z + d;) < f(x). The
second inequality follows from the fact that h it is nondecreasing, and the fact that by

(16), f(z +di) = f(z) + f(z + di + g9) — f(z + g).
The same argument holds for e,, replacing d;, which establishes the proof. g

3 The optimality of regular policies for a single criterion

In this section, we will use multimodularity to optimize a cost function based on a sequence
of functions which will represent a quantity of interest in a given model, such as workload
in a queue for example (see § 6 for a more precise instance of the problem).

Consider a sequence of nonnegative functions f; : N° — R that satisfy the following
assumptions:

e <1> f; is multimodular.

RR n~3181



12 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

o <2> fk(a’la "'aak) 2 fk—l(a% "'aak)’ VK > ]-a

For a given sequence {ay}, we define the cost g(a) as

Let p and 6 be two positive reals. We define the balanced sequence {a} ()} with rate p
and initial phase 6 as,

ap(0) = lkp+0] — [(k—1)p+0], (17)

where |z| is the largest integer smaller than or equal to z. Note that the set {a}(6),0 <
6 < 1} are extreme points of an atom containing the point (p,p, ..., p).

The aim of this section will be to prove that this sequence minimizes the function g,
provided that some conditions (including <1> and <2>) above hold. This sequence was
used by Hajek in [7], and we use several properties of the balanced sequence established
therein. To establish the main optimization results, we need the following technical Lemma.

Lemma 3.1. If f, satisfies assumption <2>, then the function ﬁc satisfies assumption
<2> for positive real numbers.

Proof. Let z = (21,---,2) € R%. This point belongs to an atom S(z) made by the
extreme points z°, 21, - -+, 2*. The numbering of the extreme points of the atom is chosen
such that according to the base F* = (—e¥,df,--- ,df_,,ef), 21 = 2° — e¥. The other

indices are arbitrary. This implies that 22 = z7 for all j > 2. If we call P the projection
of R% onto R~ along the first coordinate,

P(d}) = Py)ifl<j<k
P(df) = —ei
Pf) = 0
Ple) = e
P(') = (25, ,x})
Theses equalities imply that P(z°) = ) and P(z'),---, P(z*) form an atom in

(=
RY !, using the definition of an atom. Also, P(z) belongs to this atom, and if

(21,29, ,21) = (1—20@) 2 4+ gzt + -+ o,

=1
then

(Z27”'7Zk) = P(Zlv'ZQ:"';Zk)

N (1—20‘2) %) + arP(a") + -+ + a P(a")

INRIA



Multimodularity, Convexity and Optimization Properties 13

Now,

k
f}c(zla'zZa"'azk) = 1—20@ fe(z®) + o fu(@') + - - + e fu(z")
i=1

V

1-— Z (6%} fkfl(P(.’L'O)) + alfk,l(P(xl)) +---+ Ozkfk,l(P(a:k))

= 1- Z o fk_l(P(-fUl)) + -+ O‘kfk—l(P(xk))

— ﬁ_l(ZQ’...  2).

Theorem 3.1. Under assumptions <1> and <2>, let © be a random variable, uniformly
distributed in [0,1], and denote the expectation w.r.t. © by Eg. Then

lim_Bo fu(@}(6).....d4(6)) = Jim Fu(p.p....n). (18)

N—oo

Proof We have for all n,
Eofn(a?(©),...,a2(0)) = fulp, ..., ). (19)

(This follows (11), from Lemma 2.5, and fact that fn is affine on each atom, and agrees
with f,, for the extreme points of the atom.) Since fN(p,p, ...,p) is increasing in N by
Lemma 3.1, the limit in N exists (it is possibly infinite). g

We call the sequence {a?(©)} the randomized balanced policy.

Theorem 3.2. Under assumptions <1> and <2>, for every 6 € [0, 1],

N

S Fulah(6), - a(6)) < Jim Fup,p, - p). (20)

n=1

Proof. Define
Fm(0,0) 2 F(a}(0), -, a2, (6)).

fm is periodic (in 6) with period 1. Define

F(0,9) = fn(a? 111 (), -, aB(6)).

Then we have

2(0',p) = fm(0,p) where 6 =60—mp, (21)

RR n-3181



14 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

Indeed,

frln(glvp) = fm(a]im—kl(el)?""ag(gl))
= fm(aZ,41(0 +mp), ..., ag(0 + mp)) = [ (0, p),

where the last equality follows from the fact that a” (0 +mp) =a}(6), k =1,...,m. [,
is again periodic w.r.t. 6, with period 1, and is increasing in m so that the following limit
exists (possibly infinite):

fio(0,p) £ Tim_f,(0,p).

Moreover, we have that Fgf! (0,p) = fm(p, ..,p), where © be a random variable, uni-
formly distributed in [0, 1] (this follows (11), from Lemma 2.5, and fact that f, is affine on
each atom, and agrees with f, for the extreme points of the atom). Hence,

Consider now the balanced sequence for fixed . Then

m=1
1 N

< NZfN(ag(me)(g)’ ,aﬁ(@), 7afn(9))
m=1
1 N

< = ' (—

The last inequality follows from assumption <2> for the functions fi, as well as an argu-
ment similar to the one used in (21).

If p is irrational, applying the ergodic theorem of Weyl and Von Neumann ([5]), we
have

N

1

lim > fl(~=mp+0,p) = Eofi,(O,p).
m=1

N—oo

From Equation (22), we have Fg f._(0,p) = limy_ fN (p, p, ..., p). This implies that if
p is irrational,

N—o0

N
. 1 1 1 f
lim ﬁ;foo(—mer@,P) = lim fu(p,p,..p) (23)

If p is rational, then p = q/d were ¢ and d are relatively prime and d > 1. This implies
that the sequence (a” y _,.,(0), ..., a5(0), ..., a},(0)) is constant if & mod 1 € [j/d, (j+1)/d],

aeey Wiy
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for all j. Therefore, f! (0, p) is also constant on these intervals and by passage to the limit,
f.(6,p) is constant on these intervals. Now, note that Frac(0 — mp) € [j/d,(j + 1)/d]
for exactly one value of m out of d consecutive values of m because ¢ are d are relatively
prime.

Now, we have

2
&

-1

lim 3 f(—mp+0,0) = 5 3 [ (m/d,p) = Foflu(©,)

1

3
I
3
I

Equation (22) concludes this case as well. g

3.1 Lower Bounds

In this subsection, we establish lower bounds for the discounted cost for all sequences {ay}.
This then serves for obtaining a lower bound on the average cost. Here, we use the following
assumption for the functions fx.

e <3> For any sequence {ax} 3 a sequence {b} such that
Vk,m, k>m, fk(bl, cee b, Gy e, am) = fm(al, . am).

We use the notions defined in the previous sections.

. . A
Let us fix the sequence {a;}, as well as some arbitrary integer, N. We define p, =

(1—a) 32, o ar.

Now, using assumptions <1> through <3>, we have

oo

Z(l - a)an_lfrb(a’la as..., a’n)
n=1
N o)
P Z(l - a)an_lfN(bla e bN—n7 ai, a?---aan) + Z (1 - a)an_lfN(a‘n—N-l-l’a?"'a an)
n=1 n=N+1
_ N-1 N-2
> fn (171 d (=)o +aVpa, by Y (1—a)a" + ™ pa, - ,pa>
n=1 n=1
= B(N, a,pa), (24)
where

N-1 N-2
B(N’ aap) é fN (bl Z(l - a)a”—l + aNpa bZ Z(l - a)an_l + aN_lpa e ap> (25)

n=1 n=1

Note that B is defined for a fixed sequence {a;}. Also note that B(N,«,p) is lower
semi-continuous in «a for 0 < a < 1 and in p.

RR n- 3181



16 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

Using Lemma 7.1 in the Appendix, we find,

1 m L oo
li —_ n s P, Un 2 li 1- n_ln y 7Ty Un
T DUACERIAIE R ) DA

> @B(Na a/vpa)
2 inquLB(Na ]-: q)a (26)

where L is the set of all limit points of p, as a 1 1.

3.2 Optimality of the Balanced Sequences

Theorem 3.3. Under assumptions <1>,<2> and <3>, and given some p € [0,1], and
any 0 € [0,1], if the functions fr(ai,---,ax) are increasing in all a;, then the balanced
sequence aP(0) minimizes the average cost g(a) over all sequences that satisfy the constraint:

1 N

N—oo

Proof.
We denote by

A 1 &
2 lim — .
By using Lemma 7.1 in the Appendix,

p <p<limp, =inf{g,q € L}.
- all

If the functions { fy} are increasing, then B is increasing in p, therefore,
9(a) > infyec B(N, 1,q) > B(N, 1,p), (27)

by Equation (26). Note that for any given p, by definition of B, B(N, 1,p) = fN (D, Dy, D).
If we let N go to infinity, we get

1 m _
= lim — E “e > lin .
9(a) rrlzl—mo m = Fulon = s ) > ]\ll—wo Iy (p:p:p) (28)

Theorem 3.2 shows that imy_e fn(p,p,p) = g(a?(8)). Thus g(a) > g(a?(6)). u
When the functions f; are decreasing, we have the analogous result.

INRIA



Multimodularity, Convexity and Optimization Properties 17

Theorem 3.4. Under assumptions <1>,<2> and <3>, and given some p € [0,1], and
any 0 € [0,1], if the functions fr(ar,--- ,ar) are decreasing in all a;, then the balanced
sequence aP(0) minimizes the average cost g(a) over all sequences that satisfy the constraint:

lim — Z an <

N—>oo

Proof. The proof is similar to the previous one, using the fact that if

N
lim Z
N

IID

then

p2p> @pa = sup{q,q € L}.

4 The optimality of balanced policies for multiple crite-
ria

In this section, we establish general conditions under which the balanced policy is optimal
when the cost function depends on multiple criteria. This has applications for routing
control in several queues rather than admission control in one queue as in the previous
section.

Now, We study the following general optumzamon problem. Consider K sequences of
functions fn .t = 1,..., K. Each set of functions f will satisfy assumptions <1>,<2>
and <3>, as in Sectlon 3.

A policy is a sequence a = (ay,as,...), where a,, is a vector taking values in {0, 1}¥.
We consider the additional constraint that for every integer j, only one of the components
of a; may be different than 0. A policy satisfying this constraint is called feasible.

Let h be a convex increasing function from R¥ to R. Define

A—lN

g(a) = Jim — ;h(fi(a), o (@),

Following notations introduced in Section 3, we get a bound called B;(N,a,p;) for

sequence 7. Here, we denote by

Bi(aapi) é sup Bz(N: aapi)a
N

RR n~3181



18 Eitan ALTMAN Bruno GAUJAL and Arie HORDIJK

and

A
B; (pz) = Sup Bi(a: Pi)-

agl

Note that by convexity of fff), B;(p;) is continuous from below.
Our objective is to minimize g(a) (with no constraints on the asymptotic fractions).

Theorem 4.1. Assume that for all i, the functions f,(f) satisfy assumptions <1>,<2> and
<8>. The following lower bound holds for all policies:

gla) > inf  A(Bi(p1),-.., Bk(pk))-

p1+..+pr=1

Proof. Due to Lemma 7.1 in the Appendix, Jensen’s inequality and Equation 24, we have

]\}1_{1(1)0—5 h(f}, ...,

> T - ) S a7 9
> }Lijm1h ((1 —a) ian_lfé, v (1 — ) ia"_lff>
> lim h(Bi(e, pi(e), .., Bx (o, pic(a))) (29)

where
pia)=(1-« Z ot (30)
k=1
We note that Zfilpf(a) = 1. Hence, one may choose a sequence a, 1 1 such that the

following limits exist:

lim pf(an) = pi, i=1,., K (31)

n—oo

and S°% p; = 1. From the continuity of B;(, p;) in p and o we get from (29)

g(a‘) 2 h(Bl(l,pl),,,BK(l,pK)) (32)
> inf  A(Bi(1,p1), -, Bk(1,pK))-
p1+...+pr=1

Note that there exists some p* that achieves the infimum

inf h(Bl(lapl)’"'7BK(]'ipK))’

p1+...+pr=1

INRIA
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since h(B1(1,p1), ..., Bk(1,pk)) is continuous in p = (p1, -, px)-
Consider the policy a?” (6) given by

af [(0) = Lkp} + 6:] — [(k — 1)p} + 6. (33)

There are some p* for which the condition of feasibility of the policy a?” () is satisfied,
that is, there exists some § = (01, ..., 0 ), such that the policy a?” () given in (33) is feasible.
These p* are called balanced and are more exhaustively studied in [3] and references therein.

Theorem 4.2. Assume that h is linear nondecreasing and that p* is balanced. Then a? ()
is optimal for the average cost, i.e. it minimizes g(a) over all feasible policies.

Proof. The proof follows directly from Theorem 3.2 together with Theorem 4.1. g

The balance condition on p* is still not completely characterized, however, we can
mention two simple cases for which p* is balanced. i.e. for which there exist some 61, ..., Ok,
such that a?” () is feasible.

e Pl: K =2.
e P2: K criteria with symmetric costs (h(z) =Y, z; and all f* are equal).

Corollary 4.1. (i) Consider problem P1. There exists some p such that the balanced policy
15 optimal for any initial phase 6.

(i1) Consider problem P2. By symmetry, the balanced policy with p = 1/K is optimal for
any initial phase 6.

Next, we restrict again to the case of a single objective (K = 1), and show that the
results of the previous section can be extended. More precisely, we show that balanced
policy is optimal in a stronger sense.

Corollary 4.2. Given some p € [0,1], and any 6 € [0,1], balanced policy a?(0) minimizes
the average cost g(a) over all policies that satisfy the constraint:

l'l—inl p1(a) > py. (34)

where p{(a) is defined in (30).

Note that the constraint limy_, ., + S @, > p1 (in Theorem 3.3) implies (34), due to
Lemma 7.1 in the Appendix. Therefore the minimization in Theorem 3.3 is over a subclass
of the set of policies on which minimization is performed in Corollary 4.2. Thus, Corollary
4.2 implies that a policy a that satisfies (34) does not perform better than Hajek’s policy
(with p = p1) even if limy_, . + SN an < pr.

Proof of Corollary 4.2: Choose an arbitrary policy a that satisfies (34). Choose a
subsequence «, 1 1 such that lim,_ p§(a,) = p1. The proof now follows by combining
Theorem 3.2 with (32). g
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5 Admission control in a queue

In this section we give a typical application of the multimodularity theory by looking at
a G/G/1 queue with batch arrivals and an admission control a that must accept a given
proportion p of the arriving customers. A more detailed analysis of this system can be
found in [2]. The model is illustrated in Figure 3.

arrivals a Q

./G/1 queue

lost

Figure 3: Admission control in a ./G/1 queue.

Let {T;}:en be the sequence of arrival times, with the convention that 77 = 0, the queue
being empty at time 0. The admission control is defined through an arrival sequence. The
arrival sequence is a sequence of integer numbers, a = (a1, as,--+ ,ay,---), where a; gives
the number of customers admitted to the queue at time 7;. We also denote by {04} the
sequence of service times in the server.

We denote by Wy(aq, - - -, ax) the workload in the queue at time 7T}, under the admission
control a. Here, W, will play the role of the functions f.

The following result is proved in [2|. (The special case of D/D/1 queue is analyzed in
details in the next section).

Theorem 5.1. The function E; Wi (ay,- -+ ,ax) (where E, 1 denotes the expectation w.r.t.
the service times and the inter-arrival times) has the following properties:

o E,vWi(ay, - ,ax) is multimodular.

o E,rWi(ai, - ,a1) = EorWi(@h—mi1, -+ ,ax) =, for k> m.
o E,7Wi(ar, - ,ar) =Eo7Wpn(0,---,0,a4,--- ,ax), for k < m.
o E,r7Wi(ay,: -+ ,ax) is increasing in a;.

The expectation of (any nondecreasing convex function h of) the workload satisfies
conditions <1>,<2> and <3>. The general theorem 3.3 applies and the balanced admis-
sion policy a?(f) with rate p minimizes the Cezaro limit

g(a) = lim —ZEJTW A1y ey Q)

N—>oo

among all policies with rate at least p.
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This example can be generalized. In [2], the traveling time of a customer in an arbitrary
network of queues which forms an event graph is shown to be multimodular with respect
to the admission sequence. The optimality of the balanced sequence in this case is proved
in [2]. More general applications of these results can also be found in a forthcoming paper

3].

6 Applications in high-speed telecommunication systems

In this section we present another illustration of the theorems that are given in sections 3
and 4 that we fully develop. Here, we consider a simple model composed of a controlled
D/D/1 queue with service times o, = ¢ and inter-arrival times 7,, = 7 all deterministic.
Assume that the available actions are 0 (corresponding to rejecting an arriving customer)
and 1 (corresponding to acceptance of an arriving customer).

The type of problem we consider is typical in high speed telecommunications networks,
and in particular, to the ATM (Asynchronous Transfer Mode). The latter has been chosen
by the standardization committee ITU-T [1] as the main standard for integration of services
in broadband networks. In order to handle efficiently a large variety of applications, such as
voice, data, video and file transfer, cells of fixed size are used, giving rise to our model that
uses fixed service times. Fixed inter-arrival times are typical for isochronous applications
(voice, video) and also for large file transfer.

Two important measures of quality of services in ATM networks are loss probabilities
(CLR - Cell Loss Ratios) and delays. According to the ATM standard [1], when a CBR
(Constant Bit Rate) session is established, the network should provide a guarantee that
these two measures are bounded by given constants. Since the available sources are limited
and, moreover, might be shared with other applications, a typical objective of the network
is to minimize the delay of the CBR session while meeting the constraint on the loss
probabilities. Losses might be due either to overflow, or to deliberate packet discarding
by the network (e.g. to allow the resources to be available for other applications). The
problem can be formulated in our framework as one of discarding cells so as to minimize
the average queue size (i.e. the workload in the system) which is known to be proportional
to the average sojourn time (due to Little’s law), subject to a lower bound p on the average
cell discarding rate.

We now describe the state evolution of the system. If x,, denotes the amount of workload
in the system immediately after the nth arrival that occurs after time 0, and the system
is initially empty (at time 0), then

Tpy1 = max(z, — 7,0) + a,0.

The solution of this recursion is given by the expansion of the Lindley equation:

n—1

ZTnt1 = falay, ..., an) = max {O, Z(ajo -7),j=1,..,n— 1} + a,0. (35)

k=j
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We show by a simple inductive argument that f,, is indeed multimodular for all integers

m over Z™. The function zq(a) £ 0, a € {0,1}" is clearly multimodular, as well as the
function z1(a) = ayo. Assume that z, = f,(a) is multimodular. z,.i(a) is a convex
increasing function of f,, and is therefore multimodular by Theorem 2.3. Note that the
assumptions f(z +d;) < f(z),i =2,...,N, and f(zr —ey) < f(z) indeed hold since a > 0.
In particular, the assumption f(z + d;) < f(z),i = 2, ..., N, follows from the fact that

Tire = max(0,a;0 — T, 2; — 27 + a;0) + G;410.

Our goal is to obtain a policy a* that minimizes an expected average cost related to
the amount of work in the system at arrival epochs. The cost to be minimized is thus

subject to the constraint:

N—oo n=1

Consider first the case of a queue with infinite capacity. Then, it follows from Theorem
3.3 that a balanced policy (with arbitrary 6) is optimal. The assumptions of the Theorem
indeed hold:

e f, (in (35)) is indeed monotone increasing in a;;

e Property <3> (in Subsection 3.1) holds by choosing b, = 0, since

frlar, .yar) = fm(0,...,0,a1, ..., ar), k < m; (36)

m—k
e By combining (36) with the first monotonicity property, we get

fe—1(ag, .. ax) = fe(0, a2, ..., ax) < fi(a, ..., ax),
which establishes Property <2> (in the beginning of Section 3).

Consider now a queue with a finite storage capacity for the workload, i.e. the workload
at the queue at each time instant is bounded by C'. When the queue is full, the overflow
workload is lost. Hajek’s policy need not be optimal anymore, as the following example
shows.

Counter-example 6.1. (Non optimality of a balanced policy)
Let 7 =1, 0 = 100, C' = 100, p* = 0.01. Assume that the cost to be minimized is the
average queue length. Hajek’s policy achieves an average queue length of 50.5 for any 6.
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Consider now the periodic policy of period 200 that accepts 2 consecutive customers and
rejects all following ones. After the second acceptance, the amount of work in the system
is 100 due to the limit on the queue capacity, and there is loss of workload (of 99 units).
The average queue length is 25.75. Thus the new policy achieves half the queue length as
the previous one.

|
Although the balanced policy in the above counter example results in a larger queue, it
has the advantage over the other policy of not creating losses. As we now show, a balanced
policy is optimal if we restrict to policies with the further constraint that no losses are
allowed. Thus, consider the class of policies that satisfy the constraint:

Tn(al, ..., an) < C

where z, is given by (35).
Since x,, is multimodular for all n, the set

{(a1,...;a) : fular, ..., an) < C}

is convex for all n. Using now the remark 2.2 and Theorem 3.3, we conclude that a balanced
policy is again optimal.

In the above admission control we considered only the possibility of accepting or re-
jecting the whole arriving batch (of 100). In practice, arriving batches may correspond to
cells originating from different sources, and it is often possible to reject only a part of the
batch.

Assume, thus, that the available actions are a € {0,1,..., N}, where a = i means
accepting i(100/N) units of workload. Assume that the batch size of 100 is an integer
multiple of N. We can thus split an arrival batch and accept only a fraction of it; more
precisely, we can either reject it, or accept 1/Nth of the batch, or 2/Nth, etc.... The

smallest unit of batch which we can accept (i.e. N " is called a mini batch.

Consider now the balanced policy a*[N] that is given in (17) corresponding to p = p*N.
In other words, instead of considering a target fraction p of the whole batch to be accepted,
which is smaller than (or equal to) 1, the new target corresponds to the average number of
mini batches to be accepted, and can be any real number between 0 and N (in particular,
p = N will correspond to accepting N mini-batches, i.e. the whole original batch).

We may repeat the above calculation and show that this policy is optimal for the cases
of (i) the infinite queue and (ii) the bounded queue, restricting to policies that do not
generate losses. Moreover, for both cases, this policy is better than the one that consists
of accepting or rejecting the whole batch according to the policy a* defined above, since
a* is a feasible policy in our new problem, for which a*[N] is optimal (Theorem 3.3).

In order to illustrate the last point, consider N = 10. A balanced policy corresponds to
acceptance of a mini-batch of 10 units, once every 10 time slots. The average queue length
obtained by that policy is 5.5, i.e. about ten times less than the one obtained when the
whole batch was to be accepted or rejected.
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7 Appendix

The following Lemma is often used in applications of optimal control (or games) with an
average cost criteria (see e.g. [6]) yet it is not easy to find its proof in the literature in the

format in which it has been applied.

Lemma 7.1. Consider a sequence a,, of real numbers all having the same sign. Then

N [ee)
— 1 k=1,
11m—§ an/hml—a E o
n—oo N a—>1 =

o) N
1
> lim(1l — ) E oF gy, thE anép
k=1 n=1

a—>1 n—o00

Proof. Note that

Hence

for all N > N.. Then the right-hand side of (41) is bounded below by
Ne—1 &S]
(1—a)? (Z ( Zal )kak_l—eZkozk’_l)

k=1 k=N,
k
_ 1 -2
(NE  max, ;al kp) e(1—c¢)

for « sufficiently close to 1. This establishes (38). (37) is obtained similarly.

> (1-a) > —2¢

(37)

(38)

(39)

(40)
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