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La dérivée topologique en optimisation de
formes
Résumé : Dans cet article, la dérivée topologique pour des fonctionnelles

de formes est définie. Des exemples numériques sont donnés dans le cas des
équations elliptiques et d’un systeme d’élasticité.
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1 Introduction

The topological derivative for a shape functional is defined in the following
way.

Assume that © C TR" is an open set and that there is given a shape
functional

J  Q\K >R
for any compact subset K C ). We denote by B,(z),z € €, the ball of radius
p >0, B,(z) = {y € RY||ly — z|| < p}, B,(z) is the closure of B,(z), and
assume that there exists the following limit

(o) — tim TN B) = T ()
W [B,)

which can be defined in an equivalent way by

J(Q\ By(2)) = T ()

N

T(z) = llggl ;
The function T(x),z € , is called the topological derivative of J(2), and
provides the information on the infinitesimal variation of the shape functional
J if a small hole is created at = € (). We shall show in the sequel that the
method is constructive, ie. the topological derivative can be evaluated for
shape functionals depending on solutions of elliptic equations defined in ().
The following function is used for the definition of the so-called Morrey
spaces LPA(Q), p > 1,1 >0,

g(z) = sup P_A/ |u|Pdz = sup p_’\ /|u|pd$_/ |u|Pdz
0<p<1 B,() 0<p<1 O NELE)

for u € LP(Q), see eg. [1] for details. However, the function g(x) is not usefull
in applications to the shape optimization.

Let us point out that the difference between the topological derivative and
the function g(x) is substantial, since for our applications the function u = u,
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4 J. Sokolowski and A. Zochowski

is given by a solution of the partial differential equation defined in the domain
Q, =0\ B,(z) and we would rather consider eg. the following function

h(z) = sup p~* [/ |uQ|pdx—/ |qu|pd:E]
0<p<1 Q Qp

The partial differential equation for u, = ugq, is called the state equation for the

shape optimization problems under considerations. We show that for a class of
shape functionals it is sufficient to solve in the unperturbed domain €2 the state
equation as well as the appropriate adjoint state equation in order to evaluate
the topological derivative Z(x),x € Q. This means that the derivative can be
used in shape optimization for broad classes of shape functionals and partial
differential equations. Some examples, where the derivative is explicitely given
for model problems, are provided.

Our results can be described in the following way. For the shape functional
J(Q\ B,(x)) we introduce the function of the small parameter p > 0 of the

form J(p) = J(Q\B,(z))) and determine for N = 2 the second order derivative
J"(0F). Therefore, the following expansion is obtained

T(0) = T@)+ 20 (0%) + o(p?)

In the very special case of the energy functional, the so—called compliance
functional in linear elasticity, the topological derivative is in fact considered
in [7]. The derivative is used in numerical methods of optimal design for the
specific choice of shape functional [7]. In order to differentiate the energy
functional with respect to the variations of the boundary of the domain of
integration the knowledge of the shape derivative of the state equation with
respect to the boundary variations is not required. Therefore, the results
obtained for the particular case of the energy functional cannot be directly
generalized to the case of an arbitrary shape functional.

In the paper the derivative is defined for an arbitrary shape functional and
evaluated for solutions of scalar elliptic equations and the system of elasticity
in the plane.

INRIA



On topological derivative in shape optimization 5

2 Elliptic equation in R

Assume that Q C IR? is a bounded domain with the boundary 9Q = I'y U T,
0 € Q. Let K = [kij]ax2,kij € R,1,57 = 1,2, be a symmetric positive definite
matrix.

We consider the following elliptic equation with nonhomogenous Dirichlet—
Neumann boundary conditions.

div(K-Vu) = f in Q, (1)
u = g on I,
O
anlj( = h on T,

Let A, Ay be the eigenvalues of K, €', ¢% € IR? the corresponding eigenvectors
ie. K -6 = X6 ,1=1,2,and Ry = [£! ,€%,x2 a rotation matrix consiting of
the eigenvectors. Using the matrix R, the following ellipse £, C IR* depending
on the small parameter p > 0 is defined,

2,2

2
Y Y
Ep:{l’:(l’la@”fﬁ:]%wya ‘y=(y1,yz), )\—1+)\—Z§P2}-

For sufficiently small p > 0 it is always possible to remove E, from ), obtaining
Q,=0\E,, 00,=00U0E,.

In such a domain we define the following system

div(K - Vu,) = f in Q,
U, = g on I,
(P(2,) T
anK
ou
an; = 0 on I,=0F,.

which coincide with (1) for p = 0.

RR n"3170



6 J. Sokolowski and A. Zochowski

The shape functionals we shall consider have the following form:

Ti(9,) = Ju(p) = / Fluy) d2, 2)

70 = J(p) = [ [Vu, K-Vl an, )
Qp

where p > 1 is selected in such a way that (3) is well defined. The value of

p depends on the types of admissible domains and the regularity of boundary

data. We distinguish two typical cases of non smooth domains for which the

results are applicable.

(A1) Pure cracks are admissible, even having different types of boundary condi-
tions on both edges (ie. Neumann and Dirichlet). Then p =1 and g,h must
be compatible with « € H*(Q) which means that the boundary data g, h are
selected in such a way that the solution to (1) is a weak solution in the Sobolev
space H'(Q).

(A2) Reentrant corners with o < 2II are admissible and the same types of
boundary conditions on both edges (Neumann—Neumann or Dirichlet—Dirichlet)
are prescribed. Then p =2 and g, h must be compatible with v € W} ().

We refer the reader to [2] for the regularity of solutions to the elliptic equa-
tions in non smooth domains. Observe, that the interior regularity of u in 2
is determined by the regularity of the right hand side f for elliptic equations.
The rather restrictive assumption f € C'*(Q) is sufficient for our purposes, but
it is not optimal. On the other hand the formulae (4), (5), defined below at
zo = 0, formally can be used to define functions J;(z), J)(z),z € @ which
have the following property

Ji(), JJ(x) € Lie(Q)
for w,v,w € H'Y(Q), and say f € L*(Q).
The following form of topological derivatives is obtained.

Theorem 1 Assume that f € C'(Q) and the boundary data (g, k) satisfy (A1)
or (A2), then

JI0) = =211/ A A2 F'(u(0)) + f(0)w(0) + 2Vu - K - Vwl|y=o ], (4)

INRIA



On topological derivative in shape optimization 7

and

JJ(0) = —20Iy/ A A2 [k(p) ][ Vu(0)]|* + £(0)v(0) + 2Vu - K - Vv)|o=o],| (5)

where the coefficient k(p) takes the values
k(1) =2, k(2) = 6.

The functions w,v are the adjoint state variables defined by (26),(27), respec-
tively.

Remark 1 From (4), (5) it follows that the topological derivatives for the
shape functionals (2), (3), take the following form at x =0,

T1(0) = =V A Aa[ F(u(0)) + f(0)w(0) +2Vu - K- Vw|o—o],

and

—V Mk (p)||[Vu(0)]]** + £(0)v(0) +2Vu - K - Vvl|.—] ,
respectively.

Proof: Proof is divided into three steps. The first step consists in transfor-
mation of (P(9,)) defined in Q, = O\ E,, into the simpler elliptic equation
defined in the domain 2, = Q\ B, by using an appropriate change of variables.
Here we denote B, = B,(0), 0 € . In the second and third steps the formulae
are derived for the latter equation and then translated to the original problem
by the inverse change of variables.

Step 1.

Let us make the substitution y = Bz, where B = A™'?R,, and A =
diag(A1, A1). Since V, = BTV,, (1) is transformed to the Laplace equation,
the ellipse E, is transformed onto the ball B, centered at 0 and the resulting
domain is 2, = O\ B,. To keep notation simple, we shall use the same
notation for the transformed problem as for (1). Therefore, the transformed
state equation takes the following form.

Au = f in €, (6)
u = g on Iy,

du

a_n = h on FQ.
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8 J. Sokolowski and A. Zochowski

The corresponding equation in the domain €2, with the hole B, has the form

Au, = [ in Q, (7)
u, = g on I},

ou

a—np = h on FQ,

ou

8—np = 0 on I',=0B8,.

The resulting shape functionals after the change of variables take the following
form,

Ju(p) = V Ak A F(u,) dQ, (8)

Jo(p) = VA

This is due to the fact, that K = RyARL. To make the notation still simpler,
we shall compute derivatives of the following functionals:

i [Vu, - Vu,|? dQ. (9)

L(p) = / F(u,) d, (10)

L) = [ [V, up o, (1)

Step 2.
In the sequel we denote by (-)’ the derivative d(-)/dp which can be considered
as a particular case of the shape derivative. We refer the reader to [8] for the
details on the shape differentiabilty of integral shape functionals and solutions
to partial differential equations of elliptic type.

By an application of (56) it follows that

I (p) = /Q

Fy(up)u, d€) — / F(u,)ds, (12)

I3 Lp

INRIA



On topological derivative in shape optimization 9

T

u\ 2P
I (p) :/ 2p||Vu,| [P~ *(Vu, - Vu!) dQ—/ (%) ds. (13)
Q, r,
The weak solution u, € H}(f,) to (7) satisfies the following integral identity

_ v.up.v¢dgz/ hédS + fodQ, V¢ e HE (9,) (14)
Iz p

2p

where for p > 0 such that B, C (,
Hy(Q) ={¢ € H'(Q) | =g on I},
Hr, (@) ={y € H'(Q,) | =0 on T}

and we use the convention that the restriction to 0, of a function ¢ € Hlll (Q)
is denoted by ¢.

The strong shape derivative u/ € H} (,) of the solution u, to (14) satisfies
the following integral identity [8],

- vu;-wdmr/ ——dS /f<pd5 (15)
Q, r,

for all test functions ¢ € H} (9,) U H*(1,).
The adjoint state equation for the functional [, is defined as follows:

Find w, € HE (9,) such that
- [ v, vodr= [ Fwsde, veemi©) (o)
Q, Q,

and for the functional I:
Find v, € Hlll(ﬂp) such that

[ Vo, Véda = / 2|V, |73 (Vu, - Vo) dY, Vo e HL(Q,) (17)
Q, Q,

Using ¢ = u/, € H} (€2,) as a test function, the following form of the derivatives
(12), (13) is obtained

1oy , , %awp
I(p)=— /rp [F(up) + fw, + 5 o ds, (18)
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10 J. Sokolowski and A. Zochowski

b ou,\ " ’ Ju, dv,
I(p) = —/Fp [(W) + fo, + P 87] ds. (19)

Since all integrands are bounded,

lim I/ (p) = lim I/(p) = 0. (20)

p—0+ p—0+ I

By differentiating (17) once more, in view of (55) we get

My = [ (250 ) | 0 OOy

on on on ( or ot

ou, Ow
_ FI P P d
G+ g+ (GGG as
1 ou, Ow
S F( . —PZ7P1d
p/l“p[ (LLP)—I_fwP—I_ aT aT] S
= Li(p) + La(p) + Is(p). (21)
Observe, that g—n = —g—r on I',. Now, according to (47),
ou, 10u, p* P o
5 S0 = ( —|—1)sm0+b( +1)C059—|—O( ). (22)
Hence
2 2 2 2b
aan aaqu = —Za':—S sin 8 + 26':—3 cosf +0(p™) r:p _?a sin 8 + ? cos 0+ O(p™°).
Similarly,
' 2 2b
% <%> = —Qa% sin 9—|—Zbr'% cos 0+0(p™°) r:p —f sin 9—|—? cos 04+0(p~°).

Taking this into account leads to

d Odu,dw, du, dw,

8n( or or )= or ot )'=0("),

INRIA
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and the first two integrals cancel out,

lim [1y(p) + I2(p)] = 0.

p—0+

We use for w, the following expansion

2 2

w, = 'wo—l-c(p? +r) cosl9—|-d(p7 +r)sinf + O(p*™°). (23)
Taking into account (22),
lim I5(p) = —211F (ug) — 2I1f(0)w(0) — 411 (ac + bd).

p—0+

As a result
L(0) = =2L[ F(uo) + f(0)w(0) + 2(Vu - Viw)|y=0], (24)
and similarly
I5(0) = =201[k(p) [[Vu(O)|[* + f(0)v(0) + 2(Vu - Vv)l,=0],  (25)

where the coefficient k(p) takes on the values k(1) =2, k(2) =6. For p =0
the adjoint state variables w, v, satisfy the following integral identities,

w € Hlll(ﬂ) : /QV‘UJ -Vod) = — /Q Fl(u)gd, (26)

veH (Q): / Vv -VedQ = —/ 2p||Vul[?P73(Vu - V) dQ, (27)
Q Q

for all test functions ¢ € Hf: ().
In a special case, for p =1, I'; = () and g = 0, it follows that

/vv-wdnz—/ﬁbdﬂ, Vo e HE ()
Q Q

hence v = 2u. The function k(p) is obtained by the following integration

211
/ (—2asin § + 2b cos 9)2p df = k(p)(a2 + 62)p.
0

RR n"3170



12 J. Sokolowski and A. Zochowski

Step 3.
The proof is completed by the change of variables z = B~ 'y . 0O

The matrix K in the definition of .J; may be replaced in fact by an arbitrary
matrix, say H. However, in such a case it is not possible in general to get a
simple closed form of the expression

A(u,p) = lim — [Vu, - H-Vu,)”dS,

where H = BHB”. We must introduce locally the orthogonal coordinate
system (e,, €q), see the expansions in elasticity in Appendix. Denoting ¢ =
cosfl, s = sinf, it follows that in this frame of reference the matrix H trans-

forms like a second order tensor H — H = R(@)[:[R(H)T, where

s ¢
After substituting the expansion for u,, and keeping in mind that 8;7,” =0 on
I',, so that Vu, = | ,%]T on I',, we get

211
A(u,p) = 4/ [haa(—as + be)?]P do
0

211
0

Having computed the integral, we must again express it in terms of H. The
assumption H = [ is adopted in the paper in order to simplify the obtained
formulae.

3 Test cases for Laplace equation

The explicit formulae for the derivatives obtained in the previous section are
presented for three examples.

Fzample 1. Let Q@ = Bg(0), and u(x) = z, so that

Au=0, in Q u=2x on Of.

INRIA



On topological derivative in shape optimization 13

The solution u, to (P(Q,)) takes the following form

RQ p2
— 72 -|-,02(7 +r)cosé,

up

and the adjoint state w is given by

1

w = Z(TS — R2r) cos

for the functional

Whence

RQ )2[ 4(1 R 1 )‘I‘ 2R2 5 4—|-1R4]
Rrg ) trn np)+p Pty

Lu(p) = 11( ;

and simple calculations show that

J!(0) =11 R*.
Notice, that Vu(0) = [1,0], Vw(0) = [-1/4R?,0], so, according to (4),

J!(0) = (—4I1)(—1/4 R*) = TIR?.
In general, the expression for J! has the form
J!' = <21l [2* + %(3;1;2 +y? — RY) = 1[5z + y* — R?].
Hence the level set J! < 0 is an ellipse with the boundary
Sz? +y* — R* = 0.

Consider the second functional

1) = [ IVl o,

RR n"3170



14 J. Sokolowski and A. Zochowski

In this case with the adjoint state variable v = 0, in view of f = 0. Thus (4)
leads to
J;(0) = —411 [[Vu(0)]|> = —4I1.

On the other hand
RQ

Jy(p) = QH(W

1 1
)2 [ 532 — §p4R_2] thus J;/(O) = —4I1
and the inequality J; < 0 holds in {).

FExample 2. Let us consider the equation
Au = —1, u=0 on 09,

where () = Bg(0). Hence

u = i(RQ - 7“2),

1
u, =u-+ 5,02 In(r/R).
Observe that (46) holds, since Vu(0) = [0, 0]. the adjoint state w is given by

w = —ir4+ l]%27“2 _3
32 8 32

R*.

Hence the gradient of w vanishes at 0 and from (4) it follows that

1 3 5
J'0) = 211 [(-R*)?* + (—1)(—== RY)] = —— [IR?
1(0) = ~2[GRY + (~1)( o5 B)] = 2
Explicit computations give the same result.
Again, we may compute the general expression for J!. After appropriate

transformations,

1 r
" _ ——H 4 Y T 1

hence the level set J! < 0 is the circle r < 0.6R.

r

7))+l

INRIA



On topological derivative in shape optimization 15

The gradient of the functional J, is obtained after some simple calculations.
We have v = 2u, so that Vv(0) = [0, 0] as well. In addition
Y
ar 2r

[[Vul]* = (
hence
J;’(O) = IR~
From our formula
1

J;’(O) = —2H[(—1)(§R2)] = [IR*.

In general,
Jy = =41l [r® — R?/4],

and the level set of J) > 0 is the ring r > R/2.

FExample 3. Let us consider the homogeneous Laplace equation Au = 0 in
Q =1[0,1] x [0,1]. The boundary conditions are presribed as follows,

u=0 on [g=09-{0}x]0,1],

u=1 on TIy={0}x[0.3,0.7],
Jdu
a—nz() on Fn:aﬂ—(FOUFl)
The functional J,(p) = pr u? is defined for Q, = Q\ B,(z), here x € Q stands

for the center of the ball B,(z). The distribution of its second derivative as a

function of = € ), computed numerically, is shown in Fig.1.

4 Plane elasticity problems

Let us consider the elasticity equations in the plane,

ATDAvw = f in Q, (28)
u = g on I},

BT'DAu = h on Ty,

RR n"3170



16 J. Sokolowski and A. Zochowski

0 o

Figure 1: A graph of J! and its 0 — level line.

and the same system in the domain with the circular hole B,(z¢) C € centered

at xo € Q, Q, = Q\ B,(x0),

ATDAw = f in Q,, (29)
u” = ¢g on I7,
BT'DAw = h on Ty,

BT'DAuw" = 0 on I,.

Assuming that 0 € Q, we can consider the case xq = 0.

Here u = (uj,uy)? denotes the displacement field, ¢ is a given displacement
field on the fixed part I'y of the boundary, h is a traction given on the loaded
part I'y of the boundary. Finally, the volume forces are denoted by f. In
addition, the following differential operator is introduced,

0
81‘1 ? (8)
A - 0 , 8_
2
- 9
8271 ? 1

INRIA



On topological derivative in shape optimization 17

and the matrix of material (Lame) coefficients is denoted by

A+ 2 A , 0
D = A , A+2u , 0
0 ; 0 y M

The following matrix is used for the Neumann boundary conditions

BT — ny , 0 , N2

0 , ny , ng |’

where n = [n1,7n,]? is the unit outward normal vector on 92,. In this notation
the stress tensor is replaced by the vector o = [o71, 022, 0'12]T, strain tensor is
given by the vector ¢ = [e;1, €22, ")/12]T and the surface tractions are defined by
the following formulae

e=Awu o=D-e t=B-o (30)
The first shape functional under consideration depends on the displacement
field,
o) = [ P, R =Ty = (0 ey 31
Qp

It is also useful in the framework of elasticity to introduce the yield functional
of the form

J(p) = / o) 5o d = [ o) Saw) R, (32

2

where S is an isotropic matrix. Isotropicity means here, that S may be ex-
pressed as follows

[+ 2m l 0
0 0 4m

The following assumptions assure that J,,.J, are well defined for solutions of
the elastity system.

RR n"3170



18 J. Sokolowski and A. Zochowski

(B1) Pure cracks are admissible, even having different types of boundary condi-
tions prescribed on both edges (ie. tractions and displacements). Then p =1

and g, h must be compatible with u € H'(Q; IR?).

(B1) Reentrant corners with o < 2II and the same types of boundary condi-
tions are prescribed on both edges of each corner (traction—traction or displacement—
displacement). Then p =2 and g, h must be compatible with u € W} (Q; R?).

The interior regularity of u in £ is determined by the regularity of the right
hand side f of the elasticity system. For simplicity the following notation is
used for functional spaces,

H;(Qp) = { = (Y1,¢02) € H'(Q,;R*) | =g on I},

Hy, (Q) = {¢ = (¢1,¢2) € H (YR [ =0 on Ty},
here we use the convention that eg. [(,) stands the Sobolev space of vector
functions Hj(€,; IR?).
The weak solutions to the elasticity systems are defined as follows.

Find u” € H (Q,) such that, for every ¢ € Hyf (),
—/ (Au”)T DA dS) + / hf¢dS = o dQ. (33)
Q, Ty Q,
The adjoint state equations for the functional J, are introduced.
Find w? € HE () such that, for every ¢ € H (),
— / (Aw”)'DAGdQ = / Fl(u?) ¢ d. (34)
Q, Q,
Finally, v* € Hlll () is the adjoint state for .J, and satisfy for all test functions
¢ € H} () the following integral identity:
— / (Av?)TDAGdQ = 2p / [o(u”) T So(u?)|PVo(u?) ' SDAGAN.  (35)
Q, Q,

Now we may formulate the following result:

INRIA



On topological derivative in shape optimization 19

Theorem 2 Assume that the distributed force is sufficiently regular, f €
CYQ;R?), and (B1) or (B2) is satisfied, then

1
JI0) = =21 F(u) + ffw+ E( Ayl + 2b,by, €08 26 ) Jimy s (36)

1
JI0) = —211[s5, K, (aw, by) + o+ E( Ay ly + 2byby, 0820 ) | pmsy - (37)

Some of the terms in (36), (37) require explanation. The function K, takes
the following values

K, (a,b) a’ + 2b? for p=1
o (a,b) =
P a* + 6b* 4+ 12a%b* for p=2

In the reference frame tied in turns to the principal stress directions for the
displacement fields u, w, v, respectively,

ay = o11(u) + oa2(u), by = o11(u) — o2a(u),
ay = o1 (w) + o(u), by = o11(w) — o22(w),
ay = o11(v) + o92(v), b, = o11(v) — 022(v).

Finally, the angle § denotes the angle between principal stress directions for
displacement fields v and w in (36), and for displacement fields v and v in
(37). By principal stress directions we mean, as usually, the coordinate system
in which the stress tensor is diagonal.

Proof. Let us calculate the derivatives of the functional J,(p) with respect
to the parameter p, which determines the size of the hole B,, by using the
material derivative method. This leads to

J(p) = /Q Fl(w?) u d9) — / F(u”)dS, (38)

P Lp

and in the same way for the state equation:

— / (Au*Y' DA dQ + / (Au*)'DAGdS = — | fFodS,  (39)
Q, T, T,

RR n"3170



20 J. Sokolowski and A. Zochowski

where u”’ is the shape derivative.
After substitution of the test functions ¢ = w? in the state equation, ¢ = u*’
in the adjoint state equation, we get

Lo == [ [(Aw) DA + Fw) + fTwr]as

__ /F [%agg(w’q)agg(up) +F(uf) + fTw?] dS, (40)

since for the displacement fields u”, w” the boundary conditions ogy = 7,4 = 0
on I', are prescribed, here oy, 7,4 denote the components of the stress tensor
in the reference frame tied with normal and tangent unit vectors on I',.
It is obvious, that
Julp) — 0,

p—0+

therefore, we compute the second derivative:

J(p) = Lip) — Lap) — Is(p), (41)
where
o) = [ selpom(w)om(u) + F(u) + ] ds
r, an E
1
h(o) = [ [omuw)oa(u)) + FL(ur ) + fTu") ds
Lp
1 1
B(p) =+ [ [goms(wou(u?) + F(u!) + 57 w’) dS,
PJr, E
Taking into account, that dd—n = —% on I'y, and using the expansion (54), we
obtain
O o) = [ P b 2]+ O(p~) = ay — Gbycosd + O(p~)
5, 0e0(u”) = lau 3 u 5 €08 P = aup upcos P o).
Similarly,
3 1 1
%O’gg(’up) = [aur'% — 6bu':—4 cos260] + O(p™) = au; — 6bu; cos + O(p™°).
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This means, that the singular terms cancel out,

0 0
5,700 (") = a—paee(’up) =0(p™),

and
Ii(p) — L(p) — 0.

p—0+

Now, we express the asymptotic expansion for ogg(w”) in the reference frame
tied with principal stress directions for the displacement field u,, and not with
its own field w,:

2

1 1 4
oon(w’) = Jau(l + %) - 5l + 3%) cos2(0 — 8) + O(p'~°).  (42)
This leads to
211

: P P _
pl_l}réqF i oog(u)ogg(w?) df =

211 45
= / [ay — 2b, cos 20][a,, — 2b,, cos2(8 — §)] df = (43)
0
= 2Il[ay,a,, + 2b,b,, cos 24]

and the final expression for the second derivative of J, results.
In the case of J, the integral terms become

0.1
A = —|[—=0gs(v")ogg(u” S990g0(u”)?)P Tyvr1ds
(p) . 5 L 700 (V7)000(u”) + (522066(u"))" + 0]

L(p) :/F [%(Uﬁe(vp)ffee(up))’Jr +2pshy000(u”) 7 oge(u”) + fTo”']dS

I3(p) = %/F [%Ugg(vp)agg(up) + (522000 (u”)*)? + fTv?] dS.

Again, in the same way as before,

Ii(p) — I(p) — 0.

p—0+

RR n"3170



22 J. Sokolowski and A. Zochowski

The function K, is defined by the expression

K b—L . — 2bcos 20)*" df
,(a, )—21_[ i (a cos 26) .

The proof of theorem 2 is completed. O

Remark 2 The matriz in the definition of J,, in fact, may be arbitrary, si-
milarly as in the case of the scalar equation, and not only isotropic. However,
it 1s difficult to imagine such a need for the isotropic material. Anyway, in
the general case, we would have to transform S according to the known rules
determined by the rotation of the reference frame. Then, in the definition of
I3(p) instead of sy2 we would have an expression containing all the elements
of S and trigonometric functions of 6. The integration is again possible, but
leads to more complicated formulae.

5 Examples for plane elasticity

Ezxample 4. Let us take the square domain, fixed on small segments at the
lower and upper left corner. The elastic body is pulled by the leftward force
distributed over the segment located in the middle of the right side. The
initial and distorted configurations are shown in Fig.2. The material Lame
coefficients satisfy relation A = p. We consider the functional J, with p = 8
(approximating maximal displacement) and the following three types of J,,
corresponding to the common yield criteria:

1. The elastic energy yield criterion (rarely used), which is equivalent mo-
dulo a proportionality factor (assuming A = p for Lame coefficients) to
the following relation:

2 _ a2 a2 . 2
Orog = 3071 + 3055 — 2011022 + 8075.

This in turn corresponds to the isotropic matrix S with [ = —1 and
m = 2.

INRIA



On topological derivative in shape optimization 23

2. The Huber yield criterion (frequenty used), which is equivalent modulo
a proportionality factor to the following relation:

2 9 2 9 2 . 2
Oreg = 2071 + 205, — 2011093 + 607,.

This in turn corresponds to the isotropic matrix S with [ = —1 and

m = 3/2.

3. The maximal tangent stress yield criterion (often used), which is equiva-
lent modulo proportionality factor to the following relation:

Oreq = 01y + 033 — 2011022 + 407,
This in turn corresponds to the isotropic matrix S with [ = —1 and
m = 1.

The second derivatives of these functionals are shown in Fig.2 — Fig.5. The
energy yield criterion is similar to the compliance functional considered in
[7]. The level lines are distributed uniformly across the range of functions. It
means, that while the distributions of functions and the densities of the second
derivatives of functionals look similar, they are not, however, proportional to
each other.

Fzample 5. Let us take the elongated rectangle, fixed on both left and right
sides and loaded over the small segment in the middle of the upper side. Its
initial and distorted configuration is shown in Fig.6. Again we consider the
same yield functions, under assumption A\ = p. The numerical results are

shown in Fig.6 — Fig.9.
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—E

Figure 2: The square (original and distorted) and the distribution of the .J!
density.

A == 4

;
.

Figure 3: The distribution of the energy function and J” density for energy.
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Figure 4: The distribution of the Huber yield function and the corresponding

J! density.
N\ .
a d oA

Figure 5: The distribution of the maximal tangent stress yield function and
the corresponding J! density.

-
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Figure 6: The object (original and distorted) and the distribution of the .J!
density.

" - W T — -
=y Y s -
Figure 7: The distribution of the energy function and J” density.
-
|
__g
-

Figure 8: The distribution of the Huber yield function and the corresponding
J? density.

S

N, %

Figure 9: The distribution of the maximal tangent stress yield function and
the corresponding J” density.
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6 Appendix

Asymptotic expansions for Laplace equation in IR’.
Let us consider the equation

Au = [ in Q, (44)
u = g on Iy,

du

a_n = h on FQ,

with f € C'Q) thus the solution v € C3(2). We drill a hole at zq € ,
denoted B,(xg), p < d(xo,I'), and define the set Q, = Q\ B,(zo). Now,

consider

Au, = f in Q (45)
u, = g on I}y,

ou

a—np = h on Iy,

Jdu,

o 0 on I',=0B,(z0)

Assume for simplicity that zo = 0. Then, we have the following asymptotic
expansion relations. Denote

Ve = [a,b]".
The solution u as a function of r, 6, can be expressed for r > p as follows (see
[5], Satz 4, and [3],[6]):

P p’
u,=u+a—cosf +b—sinf + R (46)

r T

where

R =p*[0(5) +U(p.7)],

and [(p,r) may contain finite powers of Inp,Inr. Hence R = O(p*~¢) for any
e > 0.
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The above formula gives the asymptotic expansion in the function space
to which belongs u, the solution to (44). Besides, for smooth f € C'(Q), u is
three times continuously differentiable in an open neighbourhood of B,.

Therefore, in the ring p < r < 2p , taking into account the regularity of u
in the neighbourhood of zq = 0, we have the expansion

2 2

u, = u(0) + a(p— +r)cosf + b(p— +7r)sind + O(pQ_C) , (47)
r r
where u(0) denotes the value at zq of the solution to (44).
The above formulae are given in the polar coordinate system with the center
at xo = 0, which coincides with the center of the ball B,. In particular, from

(47) it follows that,
_ 10w

%h:p = 50 lr=p = 2(—asinf 4+ bcos ) + O(pl_e), (48)

Asymptotic expansions for the elasticity system in IR

Let us consider the systems (28) and (29) and assume, that the coordinate
system is aligned with the principal stress directions, so that o5 = 0. Denote
also

ay = [o11(u) + o22(u)]|z=0, (49)

by = [o11(u) — 22(w)]|z=0. (50)

Let us introduce the polar coordinate system (r,0). At each point in the
plane we define also the ortogonal coordinate axes, still denoted by (r,#8),
and defined by the unit vectors e,, ey, directed along r and penpendicularly
to it, anticlockwise. Given the displacement field u, we may compute the
components of the strain field (in the ortogonal system and using the polar
coordinates):
_ Ou,
oo

u, 1 0ug
NPT

10u, Oug g

=50 o

Err

(51)
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The corresponding isotropic Hook’s law has the form

1

Erp = E(O-T’T’ - VO—%’);
1

oo = E(Uee - VUrr)7 (52)
1

Yro = 67—7’6’-

where GG = E/2(1 + v). Then, similarly as in the Laplace case, the following
expansion holds (see e.g. [4] and [6]) in the ring p <r < 2p:

2P — Qu — 1)r? 4 92,2
up = ur(0) + o[k = D)r® 4 2p%] +
by 2 2 _ P_4 ‘ 2—¢ ‘
+ —[(k5 + 1)p? +r? = 5] cos 20 + O(p*™), (53)
AGr r?
4
h = ws0) = (= 1) + 9% + L] sin 20 + 0(*~),

where k = (3 — v)/(1 + v) for plane stress and

u-(0) = limu,(r, ),

r—0

ug(0) = limug(r, 6).

r—0

The corresponding expressions for the stresses have the form

o (u’) = l[a (1 - p_2) + b, (1 — 4p—2 + 3p—4)cos 20] + O( 1_5)
rr 2 u 7"2 u 7"2 7"4 p b]
1 p’ N 1=
0o (0) = S+ 25) = 0,1+ 3% ) cos 20] + 0", (54)
1 N -
Tro(uf) = —§bu(1—|—27ﬂ—2 —3T—4)sm20—|—0(,0 ).

Observe, that due to the free edge condition on the boundary of the hole, we
have

o (u’) =19(u”’) =0 on 0B,.
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Derivatives of general functionals.

Denote (-)), = 9(:)/dp. Then we know [8], that for general G,

, ! ! (. o0 aG(up) 1 .,
[ ctuast, = [ (Guu, =5 as 4 [ Guyas, 59

Tp

[ /Q Cilu,) 9, = /Q () a6~ / G(u,) dS. (56)

Ty

The formulae (55), (56) follows from the general formulae for the shape deri-
vatives of integral functionals, we refer the reader to [8] for the details.
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