On Solvability of Boundary Value Problems in Elastoplasticity

Abstract : In the paper the existence of a solution to the three dimensional elastoplastic problem with the Prandtl-Reuss constitutive law and the Neumann boundary conditions is obtained. The proof is based on a suitable combination of the parabolic regularization of equations and the penalty method for the elastoplastic yield condition. The method is applied in the case of the domain with smooth boundary as well as in the case of an interior crack. It is shown that the weak solutions to the elastoplastic problem satisfying the variational inequality meet all boundary conditions.
Type de document :
Rapport
[Research Report] RR-3163, INRIA. 1997, pp.18
Liste complète des métadonnées

https://hal.inria.fr/inria-00073525
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:07:19
Dernière modification le : samedi 17 septembre 2016 - 01:06:49
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:21:15

Fichiers

Identifiants

  • HAL Id : inria-00073525, version 1

Collections

Citation

Alexander Khludnev, Jan Sokolowski. On Solvability of Boundary Value Problems in Elastoplasticity. [Research Report] RR-3163, INRIA. 1997, pp.18. 〈inria-00073525〉

Partager

Métriques

Consultations de la notice

115

Téléchargements de fichiers

85