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Abstract: This paper presents a discussion on 2D block mappings for the sparse Cholesky
factorization on parallel MIMD architectures with distributed memory. It introduces the
fan-in algorithm in a general manner and proposes several mapping strategies. The grid
mapping with row balancing, inspired from Rothberg’s work [21, 22] proved to be more
robust than the original fan-out algorithm. Even more efficient is the proportional mapping,
as show the experiments on a 32 processors IBM SP1 and on a Cray T3D. Subforest-to-
subcube mappings are also considered and give good results on the T3D.
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Partitionnements par blocs bi-dimensionnels pour la
factorisation parallele creuse de Cholesky :
la méthode fan-in

Résumé : Ce rapport étudie les partitionnements par blocs bi-dimensionnels pour la
factorisation paralléle creuse de Cholesky sur des machines MIMD & mémoire distribuée.
Nous introduisons I’algorithme fan-in dans un cadre général et étudions différentes stratégies
de placement. Le placement sur grille avec équilibrage de charge sur les lignes, inspiré des
travaux de Rothberg [21, 22], s’avere plus robuste que ’algorithme fan-out original. Le
placement proportionnel est encore plus efficace, comme le montrent les expérimentations
sur un IBM SP1 a 32 processeurs et sur un Cray T3D. Le placement sous-forét vers sous-cube
est également étudié et donne de bons résultats sur le Cray T3D.

Mots-clé : factorisation creuse de Cholesky, algorithmes paralleles, communication
fan-in, partitionnement blocs 2D, placement proportionnel.
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1 Introduction

Many problems in scientific and engineering computation request to solve a linear system
Ax = b, where A is a sparse symmetric positive definite matrix. To solve the system, the
Cholesky factorization A = LLT is the most time consuming step.

Although a classic problem, the factorization continues to request interest due to the
effort to find algorithms well adapted to actual computer architectures. The class of parallel
algorithms is especially targeted, since many approaches are possible and promising. We do
not intend to begin with a brief history of the domain, but rather to spread it through the
paper.

To give only the general characteristic, our contributions concern the class of two-
dimensional block algorithms, using fan-in communication, on MIMD architectures with
distributed memory.

An outline of the paper follows. We remind in section 2 the main stages in computing
the sparse Cholesky factorization. Section 3 describes the operations preceding a 2D par-
titioning of the sparse matrix, such that BLAS 3 routines be used efficiently. In section 4,
we present the general principles of fan-out and fan-in algorithms and give an outline of
the previous work of Rothberg and Gupta [21]. In section 5, the fan-in algorithm for 2D
mapping is introduced in a general manner. Section 6 contains the key to efficiency: specific
mapping strategies, which combine known heuristics in a new way. Section 7 is devoted to
experiments, which show the good behavior of the new fan-in algorithms. Finally, in section
8, we discuss some promising perspective issues.

2 General lines for Cholesky factorization

The nonzero structure of the Cholesky factor L includes the structure of A (supposing that
no exact cancellation occurs); the other nonzeros are generally named fill-in. Since a sparse
matrix is stored in a compressed format, containing only the nonzero elements and the
index information required to access them, the process of factorization cannot be performed
directly on the initial matrix A, but is split, for efficiency reasons, in three distinct stages.

First, a permutation (ordering) of the initial matrix is computed, in order to reach several
objectives; the main is to reduce the fill-in occurring during factorization, and hopefully
the number of operations required to compute L. For a parallel implementation, a tradeoff
between minimizing fill-in and enhancing the natural parallelism offered by matrix sparsity is
desired. In a raw classification, there are two classes of ordering algorithms, using minimum
degree and nested dissection strategies, respectively. The purpose of this paper is not to
discuss such algorithms; however, we will present some comparisons in section 7.

Second, the symbolic factorization of A is computed, i.e. the structure of the Cholesky
factor L. This is crucial for efficiency, since storage requirements are solved and all the
elements of L have a fixed position in memory, after this stage but before their actual
computation.
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Figure 1: Structure of a Cholesky factor and its elimination tree.

Third, the numerical factorization is performed. This is the most time consuming stage.
Sequentially, there are several ways to organize the computation, all based on a Gaussian
elimination process. If we mention only column oriented algorithms, there are left-looking
and right-looking algorithms, the latter class including the multifrontal method. This paper
is concerned only with the numerical factorization stage.

An important tool for both sequential and parallel algorithms is the elimination tree
associated with the Cholesky factor. In this tree, each node represents a column; the father
of node j is node ¢, where [;; is the first subdiagonal nonzero on column j (i.e. the smallest
i > j such that [;; # 0). An example of sparse matrix and its elimination tree is given
in figure 1. For many algorithms, including some of this paper, it is important that the
elimination tree be numbered in postorder, i.e. a father be numbered immediately after
its sons; usually, ordering algorithms give a postorder numbering or at least offer all the
information to perform it. For an extensive study of elimination trees, see Liu [16].

The elimination tree illustrates the intrinsic parallelism of the sparse Cholesky factoriza-
tion; the computation of a column j of L may be done after all columns in the subtree rooted
in j are factorized (by contrast to the dense Cholesky factorization, where all columns k < j
must be factorized). Intuitively, an elimination tree with small height and large width is
more appropriate to parallel computation than a high thin tree. The elimination tree offers
a column view on parallelism, but we must stress that parallelism exists also for operations
within a column.

3 Block algorithms: basic ingredients
The architecture of current processors and their greater speed in performing arithmetic

operations, compared to memory accesses, imposed the use of BLAS 3 [7] as a crucial
condition to the effectiveness of linear algebra programs. BLAS 3 routines operate at block
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level; blocks may be kept in the fast memory (cache) while performing several operations
using the same matrix elements; this way, the floating point unit of the processor may be
fed at full speed.

For dense matrices, the block approach is natural and more or less straightforward for
most problems; the short interval at which LAPACK [2] followed BLAS 3 is a consequence
of this state of things.

For sparse matrices there are several difficulties. We will focus on the solutions appro-
priated to the Cholesky factorization.

The main constraint is that sparsity is opposed to arbitrary grouping (consecutive) co-
lumns, as for the dense case. A group of columns j, j + 1, ..., 7 +s — 1, for which the
diagonal block L(j : j+s—1,j: j+s—1) is full lower triangular and which share the same
structure of rows with index i > j + s, is called supernode; in the elimination tree, these
columns are each one a son of the next one; (if the son is unique, then the supernode is called
fundamental;) if the elimination tree is not in postorder, the columns are not necessarily
consecutive; this is an important reason to use postorder. For the matrix in figure 1, there
are 5 supernodes, made up of columns {1}, {2,3}, {4}, {5,6}, {7,8}.

The columns of a supernode can be factorized together as for a dense matrix, allowing
block operations; this approach was used, to give only few examples, in [18] or [9], but goes
back to [5] and even earlier.

However, the supernode structure is specific to each matrix, so the supernodes may
be too small or too large (the size of a supernode is s, the number of its columns). The
latter case is benign; if required, large supernodes can be divided into panels, i.e. groups of
consecutive columns which obviously have the same properties as supernodes.

Small supernodes are indeed a problem because their behavior is similar to that of isolated
columns. It is worth mentioning that most supernodes have small size. A compromise is in
order: several supernodes can be considered as a greater supernode, but with the sacrifice of
treating some zeros as nonzeros, such that the new amalgamated supernode fit the definition
of a true supernode, i.e. its columns have the same row structure. For example, in figure
1, if the element (3,1) is treated as a nonzero, then columns 1, 2 and 3 form a larger
supernode. Even if more floating point operations are necessary to factorize the matrix
after amalgamation, one can hope a reduction of the execution time due to greater block
sizes. Ashcraft and Grimes [4] proposed an effective and simple algorithm for supernode
amalgamation, depending on a single parameter — the maximal number of nonzeros that
may be added to an amalgamated supernode. We coded and used this algorithm for all our
tests. (It should be mentioned that supernodes selected for amalgamation are not necessarily
consecutive; thus, a reordering of matrix columns is required in order to obtain real block
columns in the physical memory; however, rows are not affected by reordering: indices are
modified, but not the relative positions of elements.)

From now on we assume a given block column structure, obtained with the techniques
listed above. As for storage, the use of BLAS 3 imposes that a block column is indeed a
matrix, i.e. zeros corresponding to the upper part of the submatrix L(j : j+s—1,j: 75+
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Figure 2: Block sparse Cholesky factor and its elimination tree.

s —1) are explicitly stored. The extra memory required is however relatively not important,
moreover when large supernodes are split into panels.

So far, the treatment applied to the matrix is common for many sequential and parallel
methods for the Cholesky factorization. We turn our attention to parallel methods.

All parallel algorithms working by columns presented in the early review [13] can be
successfully extended for block columns. There are several implementations for distributed
memory multiprocessors; the recent review of Duff [8] offers some bibliographical references.

The principle of allocating parts of the matrix to processors is a first sensible point.
Schreiber [24] was the first to explain that a one-dimensional mapping (i.e. a whole block
column to one processor) has poor scalability, and thus two-dimensional (2D) mappings are
required for parallel efficiency.

At the present time, two classes of algorithms seem to take great advantage of the 2D
mapping: the block fan-out algorithm of Rothberg and Gupta [21], based on a classic right-
looking Gaussian elimination, and the multifrontal parallel algorithm proposed by Gupta,
Karypis and Kumar [12].

Since our study is in the same framework, let us start describing the basic lines of
Rothberg’s approach, which is very simple. After splitting the matrix vertically in N block
columns, as described above, the same split is applied by rows and thus a 2D partitioning is
obtained. A block sparse matrix results, i.e. sparsity is now thought in terms of blocks Ly
(we will use capital letters for block indices); however, nonzero blocks are not necessarily
full; all we can say is that if a row of a block is nonzero, then all its elements are nonzero;
only diagonal blocks are surely full lower triangular. We present in figure 2 the 2D block
structure of the matrix from figure 1, after amalgamation (zeros (3,1) and (5,4) considered
as nonzeros); there are 3 block columns (rows); block Lo is zero; blocks L3q, L3o have only
one nonzero row.

INRIA
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BLOCK GAUSSIAN ELIMINATION (L is initialized with A)
for K=1:N
compute in place the Cholesky factor of Lx
for I € col(K)
Lix « LIKLI_(TI;
for J € col(K)
for I € col(K) and I > J
Lij« Ly — Lig LT,

o Utk WD

Figure 3: 2D block-level Gaussian elimination.

We work now with a block column elimination tree, defined similarly to the column
elimination tree, as seen in figure 2. Its signification is the same: a block column J can be
computed only after all columns in the subtree rooted in J are computed.

The sequential Gaussian elimination algorithm at block level is similar to the element
level one. We present in figure 3 the kij, or ”right-looking” version; this algorithm should
be viewed only as a general framework. We denote by col(K) the set of row indices of
subdiagonal blocks of column K, i.e. col(K) ={I | Lix #0, I > K}.

The Cholesky factorization of a diagonal block may be performed with the DPOTRF
routine from LAPACK. BLAS 3 routines may be used for the other operations; in statement
4, DTRSM is used directly for the computation of Ly, since a block contains full rows; the
matrix multiplication L;x LY is performed with DGEMM,; the result of this multiplication
usually has not the same structure as Ly, neither on rows or columns; an insert-add ope-
ration completes the update 7 of L. The techniques outlined here are detailed in [21]; we
note also the use of relative (row) indices (Schreiber [23] introduced this notion). Adapting
the traditional notation, we will denote by bdiv(K,I) and bmod(K,I,J) the operations 4
and 7, respectively (standing for ”block division” and ”block modification”).

4 Fan-out, fan-in algorithms

We describe here in general terms the possible organization of parallel algorithms based on
the 2D block structure of a sparse matrix.

This 2D structure allows the mapping of a block column K to several processors. The
set of processors sharing K will be called group(K), or simply group, when the context is
clear. We will denote by owner (I, K) the processor holding the block L;x. From now on
we will use ”panel” instead of ”block column”.

Although the 2D mapping was proved to be superior to 1D mapping, there is still in-
terest in allocating all the blocks of some panels to the same processor. If |group(K)| > 1,
communication is needed; for example, owner (K, K) must send Lgk to all other processors
in group(K) in order that bdiv operations be possible. The benefit is greater for bmod; let
us assume that a whole subtree of the elimination tree is mapped to a processor, as in figure
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Figure 4: An elimination tree: local subtrees and distributed panels.

4; then, at least for panels K and J belonging to this subtree, where K is an descendant
of J, the operation bmod(K,I,J) is local for any I. Greater (higher) the local subtrees,
smaller the communication volume.

Certainly, there must be a tradeoff between the size of local subtrees and balancing
processor load. Deferring the details to section 6, we assume now that some algorithm has
been used and the elimination tree is separated in several local subtrees and panels that are
distributed among processors. In figure 4, a dotted curve separates the local subtrees and
the distributed panels. Let us remark that several subtrees may be mapped to the same
processor and that a distributed panel is not mapped to all processors, generally.

Let us further study how a parallel algorithm could be described, given the above dis-
tribution of blocks. The strategies to be used are two, well known as fan-out and fan-in,
depending on the processor computing bmod(K, I, J).

In the fan-out strategy, bmod(K, I, J) is computed by owner(I,J) (”at destination”, as
sometimes said); to this purpose, Lrx and Lk must be sent to owner(I,J).

In the fan-in strategy, bmod(K, I, J) is computed either by owner(I, K) or owner(J, K)
(”at source”); we assume that owner(I, K) performs the mentioned update, recalling that
I > J; this could be somehow an arbitrary assumption, but simplifies the presentation and
the practical behavior was satisfactory (however, more complicated schemes may be tried).
Each processor involved in the computation of Ly holds its own contribution in a local
block; only owner(I,J) initializes this block with Ay, while the other processors with zero.
When a processor has finished all updates of its contribution, it sends it to owner(I, J) which
adds it to Lyy; in fact this is rather an insert-add operation, since contributions structure
may differ of that of Lr;. To conclude, in the fan-in strategy, for each bmod(K, I, J) (here
K is variable), the block Ljx must be sent to owner(I, K), but each processor sends at
most one aggregated contribution to owner (I, J).

Generally, the fan-in strategy implies a smaller number of communicated blocks. It
is difficult to make a similar assertion about communication volume; supernodes tend to

INRIA
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Distributed step

Fan-out | Fan-in

2D block mapping: costly

Local | Fan-out column mapping: [11]

2D block mapping: Rothberg [21] 2D block mapping: this paper

step Fan-in column mapping: [14] column mapping: [3]

Figure 5: Communication strategies and possible combinations.

became larger for greater indices, and thus destination blocks (Lyy) usually have greater
size than source blocks. However, our experiments showed a smaller communication volume
of fan-in methods.

Costs modeling depend on the communication strategy; the cost of bmod(K,I,J) is
associated with block Ly for fan-out, and with Lk for fan-in.

We must distinguish now between the local computation step and the distributed one.
Part of the local computation potentially affects panels that are distributed; to be more
precise, let assume that K is a local panel and Lk, Lyg are subdiagonal blocks; if panel
J is also local (and necessarily mapped to the same processor), then bmod(K,I,J) may
be performed locally, as we already remarked; if panel J is distributed, then some blocks
must be sent to owner(I,J), depending on the strategy. An essential observation is that,
no matter the strategy, the communication could be postponed until all local subtrees are
computed.

A 2D block parallel algorithm for the Cholesky factorization will thus have three steps :

1. Factorization of panels in local subtrees (only local computation).

2. Communication of blocks (or updates) computed at step 1 and affecting distributed
panels.

3. Factorization of distributed panels (involving computation and communication).

It is not necessary that the same communication strategy (fan-out or fan-in) be used in
the local and distributed steps. Figure 5 presents the four possible combinations. Three of
them have ”ancestors”, i.e. column oriented algorithms; the fourth, which is fairly unnatural,
was never tried; despite the age of about a decade of these algorithms, we never saw such a
classification.

For 2D block mappings, the only existent algorithm belongs to Rothberg and Gupta
[21] and is of ”fan-in fan-out” type. The ”fan-out fan-out” algorithm is presumably less
efficient due to large communication costs, as for the column case; we implemented this
algorithm and its efficiency is indeed lower; however, less communication is required than
for a 1D based algorithm, since only few blocks of local panels are sent. The ”fan-in fan-in”
algorithm is much more appealing; we will present it in the next sections.

RR n° 3156
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For the sake of brevity, Rothberg’s algorithm will be called ”fan-out”, while our algorithm
”fan-in”.

We present now an outline of the fan-out algorithm distributed step. The underlying
architecture is supposed to be a p, X p. grid; a cyclic mapping is used, i.e. a block Ly is
mapped to processor (I mod p,,J mod p.). Thus, the communication is reduced: a compu-
ted block Ljg must be sent only to processors owning row I or column I of L, to participate
if necessary to updates bmod(K, I, J) or bmod(K, J,I). The algorithm is data driven; after
receiving a block, a processor looks at what updates this block can participate, perform
these updates and, if it is the case, diagonal block factorizations and bdiv operations on
local blocks; finally, it sends any newly factorized block to appropriate processors. A very
clear description of the algorithm is presented in [21].

Since the cyclic mapping is rigid and may cause load imbalancing, Rothberg and Schrei-
ber [22] proposed an improved mapping scheme; matrix block rows and columns are still
mapped to processor grid rows and columns, but not cyclically; instead, a balancing of grid
rows (columns) load is searched. (The problem reduces to bin packing.) For rows, the
idea was indeed effective; for columns, it seems that usually the cyclic mapping is fairly
satisfactory.

5 The fan-in algorithm: general presentation

We present in this section the details of the fan-in algorithm, excepting matrix blocks map-
ping, which is the key of efficiency, but is not affecting the validity of the algorithm; we
need only the notion of group of processors owning blocks in a certain panel K, denoted
by group(K). The reader familiar with Rothberg’s algorithm can imagine that group(K) is
a column of the processor grid. Only the distributed step is detailed, since the others are
straightforward.

The main structure of the algorithm is presented in figure 6, and two important functions
are listed in figures 7 and 8.

The general communication pattern was described in the previous section. We recall
that once a block Lrx of the Cholesky factor is computed, it is broadcast by its owner to
all processors in group(K). By the other hand, each processor accumulates all his updates
for non local blocks and sends them only once to the owner.

Similarly to Rothberg’s fan-out algorithm, the number of updates a block must suffer
is computed initially; we denote it by nmod(I, J); this computation may take place in the
symbolic factorization stage. During the factorization, nmod(I,J) is decremented at each
update.

Let us explain the data structures appearing in the algorithm; wait(K) is a list containing
row indices of local blocks from panel K which need only the bdiv operation to be factorized
(i.e. the arrival of block Lik); ready(K) is a list of local or received blocks of panel K
of the Cholesky factor (i.e. already computed); diag(K) is a flag indicating if the block
Lk was factorized and is present in the local memory; queue is a list of local blocks that

INRIA
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can be factorized with local information; their factorization was postponed for a simpler
organization of the algorithm. All these variables have an initial value set to zero or empty.

An important question is when a processor sends to owner(I,J) its contribution to Ly,
since this communication must be performed only after all possible local updates were ag-
gregated. The solution we adopted is to count, initially, the number of updates a processor
must perform on each block; the cost of this operation similar to a partial symbolic factoriza-
tion, is negligible, moreover when block size is large; we use nmod(I, J) to keep the number
of updates; note that nmod has different significations for local and non local blocks.

We will denote by bmod_send(K, I,J) (see figure 7) the operation bmod(K, I, J), follo-
wed, if Ly is not local, by a check of the number of updates and by a send, if all updates
were performed; note that the number of updates must be transmitted to owner(I,J), in
order to adjust nmod(I, J) in line 15 of the main algorithm; if Ly; is local, and is completely
updated, then it is added to the list wait(J) or to the queue.

Although the algorithm is detailed, there are several aspects to be made more clear.
Statements 24 in the main routine, 8 and 13 in last_block_op are not quite correct; when
scanning ready(K) for indices J, there are three situations when the current processor
performs bmod_send(K,I,J): if Lyx and Ljk are both local; if L;k is local, Ly is a
received block (in the sense that owner(J,K) # me), and I > J; if Lix is a received
block, Lk is local and I < J. In a real program, when calling bmod_send(K, I, J), second
argument value must be greater than (or equal to) third argument value; our description
doesn’t actually respect this rule.

The condition in statement 8 of the main routine is implemented by initially counting
the number of blocks of the Cholesky factor to be received by a processor and updating this
number after each receive of such a block; another counter with the number of local blocks
is decremented when a block is factorized.

Another small remark is that when last_block _op is called for a block Lrx extracted from
the queue, this block is always factorized, i.e. one of the following conditions is true: I = K
or diag(K) = 1.

6 Mappings for the fan-in algorithm

We present now several methods to map the blocks of a matrix such that the fan-in algorithm
be efficient. There are two objectives (recall figure 4): to find large enough local subtrees
that can be mapped to processors such that the load imbalance is reasonable; and to map
the blocks of the distributed panels. These objectives may be attained by the same, or by
distinct algorithms.

Such algorithms are based on costs associated with the computation performed on a
panel; these costs can be computed with low overhead in the stage of symbolic factorization;
the cost associated with a panel is the sum of its blocks costs; the cost of a block operation
may be modeled as the sum of the number of floating point operations and a constant
representing other operations (function calls, block address calculation, etc.) [22]; the costs
of block Lik Cholesky factorization and of bdiv(I, K) are associated naturally with blocks

RR n° 3156
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(me is the number of current processor)
// local step and involved communication
1. for K=1:N
2. if K is a local panel
3. factorize all blocks in col(K)
4. for all I,J € col(K) with I > J, bmod_-send(K,I,J)
5. else if me € group(K)
6. performed all possible computation on local data
7. initialize lists wait(K) and ready(K)
// distributed step
8. while there are blocks to be received and local blocks to compute
9. while queue is not empty
10. take block Lk from queue
11. last_ block_op(I, K)
12. if a block L;; was received
13. if Ly is an update block
14. insert-add it to local block Ly
15. subtract from nmod(I, J) the number of updates of the received block
16. if nmod(I,J) =0
17. last_block_op(I,J)
18. else (L, is a block of the Cholesky factor)
19. ifI=J
20. diag(J) <+ 1
21. bdiv(I', J) for all I' € wait(J)
22. else
23. put 7 in list ready(J)
24. perform all my bmod_send(J,I,I'), for I' € ready(J)

Figure 6: The fan-in 2D block algorithm.

INRIA
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function bmod_send(K,I,J)
bmod(K,I,J)
nmod(I,J) + nmod(I,J) — 1
if nmod(I,J) =0
if me = owner(I,J)
if I =J or diag(J) =1
put Ly in the queue
else put I in list wait(J)
else
send Lyy to owner(I,J)

Figure 7: Function bmod_send.

function last_block_op(I, K)
ifI=K
compute in place the Cholesky factor of Lg
diag(K) + 1
broadcast Lkg to processors in group(K)
for all I' € wait(K)
bdiv(I', K)
put I' in list ready(K)
perform all my bmod_send(K,I', J), for J € ready(K)
else if diag(K) =1
bdiv(I, K)
broadcast Lk to processors in group(K)
put I in list ready(K)
perform all my bmod_send(K,I,J), for J € ready(K)
else
put [ in list wait(K)

Figure 8: Function last_block_op.
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Lk and Lk, respectively; the cost of brnod(K, I, J) is associated either with L;x or Ly,
for the fan-in or fan-out methods, respectively. The cost associated with a subtree is the
sum of its panels costs.

It is not very easy to evaluate a mapping; there are two criteria, usually in conflict:
communication volume and load balance. For evaluation, the relative importance of these
criteria depends on the properties of the parallel computer, especially on the ratio commu-
nication vs. computation speed. In this section we will thus present qualitative comparisons
between the mappings presented below, with respect to the two criteria. In the next section,
the experiments will give a more precise insight.

6.1 Grid mappings

Geist and Ng [10] algorithm is used to map local subtrees. They proposed to keep a list of
subtrees, initialized with the root, and to try a mapping by the means of a bin-packing algo-
rithm (i.e. giving subtrees in decreasing cost order to the currently least loaded processor);
if the workload imbalance is unacceptable, the heaviest subtree is deleted from the list, and
its sons are added to the list.

Distributed panel blocks are mapped following the idea of Rothberg and Gupta [21], used
by them for the fan-out algorithm. Processors are supposed to be connected in a p, X p. grid;
a block row (column) of the matrix is mapped to a row (column) of the grid; the algorithm
from [22] is used to balance grid rows work; this mapping algorithm is adapted to the fan-in
strategy by only changing costs associated with blocks, as bmod operations are performed
at source and not at destination.

This grid mapping is attractive for its simplity and for limiting communication: since
group(K) is a grid column, a processor will broadcast a factorized block only to p, — 1
processors; on the other hand, owner(I, J) will receive updates only from processors on its
row because bmod(K, I, J) is always performed by owner(I, K) (recall that I > J).

For further reference, we will call fan-in on grid (FI_.GRID) the fan-in algorithm with
grid mapping with row and column locality and row balancing.

6.2 Proportional mappings

The grid mapping is somehow rigid; that is, always allocating a grid column to a panel is
a restrictive scheme. As noticed in the previous section, we are free to choose processors
in group(K) upon desire without affecting the correctness of the fan-in algorithm. Let us
suppose that the cost of a communication between any two processors is the same, no matter
the physical connectivity of the architecture (in fact this is a fair assumption for many actual
parallel distributed-memory computers).

Looking again at figure 4, let imagine that a distributed panel .J have two local subtrees as
descendants, like in the right side of the figure. Let suppose that two different processors are
in charge with the local computation of the two subtrees. Since all updates bmod(K, I, J)
are performed by the two processors, it is natural to map panel J to them; all updates
targeted to panel J will be communicated only between these processors; moreover, the
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factorization of panel J will also imply the same pattern. Finally, global load balance seems
to be preserved, with two conditions; first, that work on local subtrees has been balanced,
which is supposed to be true; second, that the work on panel J is evenly distributed between
the two processors forming group(J).

This mapping idea can be immediately generalized for the whole elimination tree. More
precisely

group(J)= | J  group(K),
Kesons(J)

i.e. a panel is mapped to all processors owning its sons.

Geist and Ng [10] mapping of local subtrees may be used, but it has the drawback of
mapping several subtrees to the same processor; presumably, more communication will be
necessary then in the case of one subtree per processor, because large groups of processors
tend to appear (every processor may be allocated to any subtree rooted in a distributed
panel).

The proportional mapping of Pothen and Sun [19], meant by the authors for the mul-
tifrontal method, seems more promising. Although the one local subtree per processor
condition is not guaranteed, this mapping is very effective in providing disjoint groups. We
present the basic lines of a slightly modified version of the algorithm in figure 9. The prin-
ciple is simple: each son K (in the elimination tree) of a panel J is mapped to a subset of
group(J) of size proportional to the cost w(J) of the subtree rooted in K; the algorithm is
recursively applied; the recursion is stopped when a group has size 1, i.e. a local subtree was
obtained. The calling arguments for prop_map are the root of the elimination tree (argu-
ment J), a list of all processors (g = group(J)) and a list of length p initialized with zeros,
standing for processor total work (pw). (If the elimination tree is in fact a forest, its trees
are mapped in decreasing order of costs; a more subtle approach could be taken, but it is
not worth since in practice only one tree is large, while the others, if any, are rather isolated
nodes.)

Since |group(K)| is an integer, there are problems caused by rounding, e.g. sons for
which less than ¢ processors can be allocated; the original paper [19] shows how to avoid all
these problems. We didn’t address the problem of how the i processors are selected in line
6; it seems difficult to propose a heuristic; so that we simply took the first i processors from
the list g.

The blocks of a panel J are mapped after the mapping of all subtrees rooted in sons of
J, i.e. a bottom-top approach was preferred. The explanation is natural; the mapping in
line 15 may be based on the most recent processor workload information, since the Gaussian
elimination evolution is from bottom to top in the elimination tree.

We intentionally left unaddressed the details of how blocks in a panel are mapped. Any
processor in group(K) may be a candidate to own any block. A mapping heuristic has two
requirements which are rather disharmonic: good load balancing and small communication
volume. We will distinguish two classes of mappings.

Greedy mapping. The simpler idea is to give, in line 15 of prop_map, the current
block to the least loaded processor of the group. The loop 14 goes in decreasing order
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13.
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15.
16.

function prop_map(J, g, pw)
sons(J) is the list of panel J sons, ordered upon decreasing cost
m < |g|, i.e. the number of processors in group(J)
W ZKGsons(J) U)(K)
// allocate processors in g to sons of J
for K € sons(J) (in decreasing cost order)
i+ |w(K)/w*m+0.5]
group(K) < a set of i processors in g
94 g\ group(K)
// recursive proportional mapping
for K € sons(J)
if |group(K)| > 1
prop-map(K, group(K ), pw)
else
map the subtree rooted in K to P (group(K) = {P})
pw(P) + pw(P) +w(K)
// map current panel blocks to group(K)
for I € col(J) U {J}
map Ly; to a processor P = owner(I,J) € group(J)
add to pw(P) the cost associated with Ly

Figure 9: An outline of the proportional mapping algorithm.
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of row indices, usually close to a decreasing block cost order. A good load balancing is
assured; a possible drawback is that there is no attempt to limit communication (if we don’t
count the limitations provided by the proportional mapping itself); a factorized block will be
broadcast to all processors in the group, while updates may be received from all processors
in the group.

Subgrid mappings. Let imagine the case of a supernode divided in several panels; in
the elimination tree, these panels form a chain; if the supernode is fundamental — and, if not,
in most cases — all the panels will be mapped to the same group of processors. Structuring
the group becomes interesting, as a way to further reduce communication; if the group is
split in subgroups and each panel is mapped to a subgroup, broadcasts will occur only inside
subgroups.

The most natural (to the block Cholesky factorization) is the (sub)grid structure. A
group of m processors may be thought as a m, X m. grid. A panel will be mapped to a
column of the subgrid.

Of course, there are some precautions to observe. Subgrid dimensions m, and m, may
be chosen among the divisors of m; we take m, and m, such that the subgrid be as close of a
square as possible. Since the proportional mapping algorithm doesn’t offer a control of group
sizes, m may have few divisors. We adopted the following heuristic necessary conditions to
use subgrid mapping instead of the greedy one: m, < m., m./m, < a, m, # 1; the constant
« is used to limit the ”distance” to a square grid; we used a = 3, but this choice is purely
intuitive.

The problem is now how to map panels to columns of subgrids. We identified two
appealing techniques:

e mapping a panel to the currently least loaded subgrid column;

e wrapping the panels of a supernode on subgrid columns (starting with the least loaded
column).

Further on panel blocks must be mapped; we can favorize load balancing or communi-
cation reduction. Two strategies result, respectively

e mapping a block to the least loaded processor on current subgrid column;

e wrap mapping nonzero blocks of the panel on the subgrid column.

The subgrid column and row strategies are independent so that four combinations result
from the above discussion. (We should say however that other possibilities exist, for example
the trivial cyclic mapping. We chose those techniques that seemed offering more robustness.)

For further reference, we will use the following notations for the variants of the fan-in algo-
rithm with proportional mapping: FI_ PROP _G for the greedy mapping and FI_ PROP _SG _xx
for the subgrid mappings, where the first x is for the column strategy and the second for
the row strategy; we use the letter L for the ”least loaded” approach and W for the wrap
mapping.

RR n° 3156



18 B. Dumitrescu, M. Doreille, J.-L. Roch and D. Trystram

6.3 Forest-to-subcube mappings

As we mentioned, a difficulty of the proportional mapping is the lack of control on group
sizes. Gupta, Karypis and Kumar [12] proposed the subforest-to-subcube mapping, which
ensures that groups are always subcubes of a hypercube (the underlying architecture being
a hypercube). The basic idea is to try to split a list of unassigned subtrees, initialized with
the root, into two parts of roughly equal costs, and to map each part to a half of the current
group (initially, the whole hypercube); the algorithm is recursively applied for the resulted
sublists and subgroups (which are always subcubes of the hypercube); if, when splitting the
list, the imbalance is unacceptable, then the root of the heaviest subtree is mapped to the
whole group, the root is deleted from the list, its child subtrees are added to the list and
the algorithm is applied to the new list and the same group.

We can introduce in this algorithm, which is only panel oriented, the same techniques
for mapping the blocks of a panel as in the previous subsection. Let us name the algorithm
FI_CUBE (suffixes may be added like for FI_PROP). Since group sizes are a power of 2, the
advantage over the proportional mapping is that subgrids are always a square or a rectangle
with m. = 2m,.. A possible drawback is that there may be more local subtrees per processor;
moreover, like Geist and Ng’s mapping, a bound of the accepted imbalance must be input
to the algorithm; the proportional mapping has no parameters. We do not insist anymore
because the experiments showed that usually the proportional mapping is better.

6.4 Heuristic comparisons

When evaluating algorithms, we insisted above on communication volume; it is presumable
that the proportional mapping is the best for this criterion. Load balancing is harder to
evaluate in general, but we can appreciate that FI. PROP and FI_CUBE are better than
FI_GRID, due to their flexibility. Another feature of interest is the intrinsic parallelism
offered by the algorithm, besides load balancing; even if globally the processors have the
same amount of work, idle times may occur for some processors due to the lack of received
blocks. The proportional mapping seems more subject to idle times; a processor has assigned
blocks in panels that form a chain in the elimination tree, i.e. has no other work alternative
if idle. For the other mappings, a processor may have assigned blocks in panels of the whole
elimination tree; a temporary lack of work on one subtree may be compensated by available
work on another.

7 Experiments

We implemented in C all methods described in previous sections, using MPI [17] for commu-
nication. BLAS 3 routines were used whenever possible. Portable and (hopefully) efficient

programs resulted.
Let us recall the abbreviations for our methods; FO_GRID and FI_.GRID are the fan-
out and fan-in with blocks mapped as for a processor grid, with global row balancing;
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Matrix name Size | Nonzeros in A | Nonzeros in L | Mflop for L
B15 K 3,948 117,816 574,104 122.48
B15 A 627,763 155.45
B16 K 4,884 290,378 754,734 150.53
B16_A 812,183 186.42
B17 K 10,974 428,650 1,188,305 207.13
B17 A 1,055,927 162.99
B18 K 11,948 149,090 673,070 111.58
B18_A 645,717 131.67
B25 K 15,439 252,241 1,842,860 491.96
B25_A 1,479,108 316.32
G150 22,500 111,900 721,862 62.51

Table 1: Test matrices.

FI_PROP G is the fan-in method with proportional mapping of panels and greedy mapping
of blocks inside a panel; FI. PROP_SG_xx are fan-in methods using a proportional mapping
scheme combined with subgrid mappings. FI. CUBE_G and FI. CUBE_SG_xx use a subforest-
to-subcube general mapping, combined with greedy and subgrid mapping of panel blocks,
respectively.

We tested our programs on several matrices of the Harwell-Boeing collection presented in
table 1. For our use, we abbreviated their names; B15 stands for BCSSTK15, etc. The last
matrix, G150, is a 5-point grid discretization. We added a suffix indicating the method used
for ordering; K stands for the method used in METIS [15], using nested dissection principle
(K is from Karypis, the first author); A stands for the approximate (external) minimum
degree of Amestoy, Davis and Duff [1] (which is faster than exact minimum degree and gave
similar results for our matrices). Matrix G150 is ordered with optimal nested dissection.

At least for these matrices, minimum degree methods seem less suited for parallel me-
thods; we will report thus mainly for METIS orderings; a comparison will be finally given
for B17 and B25, the only matrices where minimum degree offered better sequential perfor-
mance.

As we described in section 3, supernodes were identified, amalgamated and split into
panels. To give an idea, let say that even after amalgamation supernode size is rather small,
about 10 in average; however, there are few large supernodes (among them, the last is the
largest) with sizes in the hundreds. Amalgamation implies a greater number of operations
for factorization; table 1 gives the flop count without amalgamation; however we will report
our Mflops performances to this flop count; as a consequence, the actual figures are 5-10%
better.

Panel size is an important issue. Intuitively, large panels favorize BLAS 3 routines,
while small panels offer a greater intrinsic parallelism; small panels are slowing not only
computation, but communication also, due to the increased effect of latency. A compromise
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is necessary between these antagonistic tendencies. In our experiments, we varied panel size
in order to find the best choice; we will present some recommendations which cannot be
generalized without care. When no explicit mention, we report results for the best panel
size.

We experimented our programs on two parallel computers. The first is a 32 processors
IBM SP1, located at LMC-IMAG. Its processors peak performance for BLAS 3 routines
is about 100 Mflops. The communication rate can go to 30 Mbytes/s, while the start-up
time for a message is about 60 us. Each node has 64 Mbytes of local memory. For sparse
matrix computations, we cannot hope at maximal computation and communication speed.
For block sizes resulted for the test matrices, fair figures are 60 Mflops and 10 Mbytes/s.
This means a ratio of about 50 flop for one transmitted double precision floating point,
which is rather high; i.e. communication is slow with respect to computation. More than
that, decreasing panel size implies a greater degradation of this ratio.

The second is a Cray T3D located at CEA Grenoble. Processors peak performance using
BLAS 3 is about 110 Mflops, i.e. similar to the SP1; communication rate with MPI is at
most 35 Mbytes/s; however, compared to the SP1, communication is roughly three times
faster for current block sizes.

In the SP1, any pair of processors can be physically connected by the means of a switch.
In the T3D, the communication network is a three-dimensional torus. On both computers,
communication speed is the same between any two processors if we neglect possible delays
due to conflicts on reserving switch channels on the SP1 or communication paths on the T3D.
Since programs execution times are affected by paging effects and possibly by communication
contention, we always report the best of four successive executions. Usually, there were not
significant variations.

7.1 Sequential performance

The sequential version of our programs attained usually 50-60 Mflops on the SP1, which
may be considered satisfactory for test matrix sizes, but only 25-30 Mflops on the T3D. We
must stress that the performance varies enough function of panel size. An example is given
in figure 10, for three of our matrices. On the SP1, it can be seen that for a block size of
16, the computation speed is little more than one half of the maximal speed (notice that
for panels larger than 128, performance is still slowly growing); this fact is clearly limiting
parallel speed-up, since small panels enhance problem parallelism. On the T3D, the higher
performance is attained for smaller blocks than on SP1; more than that, for very large panels,
performance becomes worse. These remarks, together with the better communication vs.
computation speed ratio, allow us to anticipate better speed-ups on the T3D.

7.2 Parallel performance

We present here some significant results issued from many timings for the different methods,
matrices and panel sizes. There are still parameters we didn’t vary; the most important is the
imbalance bound in Geist and Ng’s algorithm, used for local subtrees mapping in FO_GRID
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IBM SP1

Mflops
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16 32 48 64 80 9 128 16 32 48 64
Panel size Panel size

Figure 10: Sequential performance (Mflops) for variable panel size.

B15K | B16.K | B17K | B18 K | B25.K | G150 | B17.A | B25_A
on | p=16 0.7% 4.9% 0.4% 0.9% 0% | 10.8% 0.7% 0%
SP1 | p=32| 10.2% 9.9% 4.3% | 15.5% 6.5% | 18.0% 7.5% 71%
on |p=16 0.6% 3.6% | -2.6% 6.7% 2.0% | 7.9% 0% 1.1%
T3D | p=32 | -0.2% 5.2% 1.8% 4.3% 3.5% | 7.2% | -42% | -1.9%

Table 2: Performance improvement: FI_GRID with respect to FO_GRID.

and FI_GRID; we used the value 1.4 (the ratio between the largest load of a processor and
the average load), which gave good results for p = 16 processors; for p = 2 we used the
bound 1.2; it is clear that for some given matrix, p and panel size a better value can be
found, but we appreciate that the improvement is minor.

Since FO_GRID was implemented by Rothberg on a iPSC/860 [20] having a communi-
cation vs. computation speed ratio of the same order as the SP1 we compared his and our
speed-ups. They are similar, but we must remark that Rothberg used only minimum degree
orderings, to which the comparison was thus limited.

Grid mappings. Let compare first the two grid algorithms. For a small number of
processors (i.e. p < 8), FO_GRID and FI_.GRID have very similar performance. On the
SP1, for p = 16, there is a small advantage for FI_.GRID; for p = 32, FI.GRID is always
better. On the T3D, it is difficult to say which method to choose, although FI_GRID seems
slightly better. See table 2. The general performance of FI.GRID on the test matrices is
presented in figure 11.

RR n° 3156

80



22 B. Dumitrescu, M. Doreille, J.-L. Roch and D. Trystram
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Figure 11: Performance (Mflops) for the fan-in on grid (FI.GRID) algorithm.

Although FI_GRID brings an improvement over FO_GRID, the scalability of the algo-
rithm is poor on the SP1; in fact, the matrices used for experiments offer a small amount of
work, compared to processor power; even the largest, B25_K, is factorized in little more than
one second on 32 processors. We can thus expect much better results for larger matrices. It
is also to say that the test matrices are also irregular, excepting G150.

Proportional mappings. The proportional mapping reveals its superiority over the
grid mappings, for nested dissection orderings. Again, for p < 8, it is difficult to distinguish a
better method; for the proportional mapping it is intuitive that a small number of processors
is not favorable, because rounding errors in group allocation may be important (line 5 in
figure 9). For p = 16, p = 32, FI.PROP_G is largely superior, as seen in table 3; compare
also to table 2. However, let remark that the improvement on the T3D is smaller than on
the SP1.

The performance of FI PROP_G is presented in figure 12, which show a better scalability
of this algorithm, compared to grid ones. The best result is again for B25_K, letting us
estimate that larger matrices will furnish even better performance.

However, minimum degree orderings give advantage to grid algorithms. The explanation
is simple; the elimination tree is high and thin, at least in its upper part; the proportio-
nal mapping produces groups with slowly decreasing size; a greater communication volume
results. In this case, grid algorithms are more robust, with their general and simple com-
munication pattern.

Experiments with FI_ PROP_SG _xx algorithms didn’t show an improvement over the
greedy variant; among them, the "wrap” scheme (FI.PROP_SG_WW) seems the most pro-
mising; on the SP1, it gives better results than FI_ PROP_G on G150, but slightly lower on
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B15.K | B16. K | B17K | B18 K | B25.K | G150
on | p=16 1.9% | 21.8% 42% | 14.4% | 14.0% | 16.3%
SP1 | p=32| 18.6% | 43.1% | 18.0% | 27.5% | 27.0% | 40.2%
on | p=16| -6.4% 3.6% | -5.6% 8.1% 6.8% | 6.3%
T3D | p=32 | 13.7% | 32.7% 8.4% | 28.4% 9.1% | 13.8%

Table 3: Performance improvement: FI_PROP_G with respect to FO_GRID.

IBM SP1
450 T T T T
400 - B15 K ——
| B16 K —+—
350 B17 K =—
300 F B18 K ——
250 | B25_ K ——

500

400

300 -

Mflops

200 |
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100 » 100
50 §
0 ot
1 2 4 8 16 32 1 2 4 8 6 32

Number of processors Number of processors

Figure 12: Performance (Mflops) for the fan-in proportional greedy (FI_PROP_G) algorithm.
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Figure 13: Relative performance: FI PROP_G vs. FI. CUBE_SG_-WW on the T3D.

the other matrices; on the T3D, it is on the same level as FI._PROP_G. However, further
investigation is needed, since there are several parameters to be tuned before stating a firm
conclusion.

Subforest-to-subcube mappings gave poor results on the SP1; the cause is the great
communication volume; we will exemplify later this issue. On the T3D, these mappings were
clearly the best for a small number of processors and left the advantage to FI._ PROP_G only
for p = 32. FI.CUBE_SG_WW is the best in the family; we give in figure 13 a comparison
between FI_ PROP_G and FI.CUBE_SG_WW on the T3D.

7.3 The effect of panel size

We present here some results and recommendations concerning panel size. In our experi-
ments we varied panel size from 16 to 128 on the SP1 and to 80 on the T3D.

A simple and general rule is obvious: as the number of processors increases, the best
panel size is decreasing. On the SP1, a panel of 128 is still the best for p = 2 and p = 4, for
all algorithms, while for p = 32 the best size is smaller and depends on the method. It is
interesting to remark that the fan-out algorithm requires a smaller panel size to reach the
optimum, than fan-in methods (going down to 16, for certain matrices); the same situation
occurs when fan-in on grid is compared to proportional mapping. Figure 14 presents the
execution times of four algorithms for B25 K, p = 32; we may affirm that curves shape is
representative. FO_GRID and FI_GRID have similar behavior for small panels, but FI. GRID
is less affected by large panel size. FI_ PROP_G has also a good behavior for large panel
size (due probably to the greedy strategy). On the contrary, FI. PROP_SG_-WW is not so
much affected by small panels, when the wrap mapping preserves load balancing; for large
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Figure 14: Execution times (in seconds) for B25_K, p = 32 and variable panel size, on the
SP1.

panels, the same mapping may cause ”accidents” (however, the degradation is not usually
as important as in figure 14).

On the T3D, the variation of optimal panel size is not so large, when the number of pro-
cessors is increased. This is natural, if we remember the sequential performance curve from
figure 10. For small number of processors, the best panel size is from 40 to 64, depending
on the matrix; for p > 16, the best panel size is 32 or 40. For a fixed p, FI.CUBE_G and
FI.CUBE_SG_WW have similar behaviors to FI.PROP_G and FI.PROP_SG_-WW, respec-
tively.

7.4 Communication volume

We argumented some of our strategies with intuitive evaluations of communication volume.
Using the same example — B25 K and p = 32 — we present in figure 15 the number of
messages and the communication volume of the six discussed algorithms.

It results — and the fact is true for the other matrices and other number of processors —
that fan-in generally implies less communication than fan-out; the exception is FI.CUBE_G.
Other remarks are that proportional mapping reduces communication with respect to grid
mapping and that the subgrid wrapping schemes reduce communication with respect to
greedy mappings. Moreover, FI. GRID, FI. PROP_G and FI.CUBE_G manifest a decrease
of communication when panel size is increased, which partially motivates the good behavior
of these methods for large panels.
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Figure 15: Average number of messages and communication volume (in Kbytes) per proces-
sor for B25_K, p = 32 and variable panel size.

7.5 Ordering effects

We will present here the behavior of FI_.GRID on the matrices for which METIS ordering
is sequentially less efficient than the approximate minimum degree one (in terms of flop
count for the Cholesky factorization), i.e. B17 and B25. As we mentioned, for minimum
degree, the proportional mapping is not very effective; however, FI.GRID remains better
than FO_GRID; on the T3D, FI.CUBE_SG_-WW is also a good alternative to the fan-out
algorithm.

Figure 16 presents the execution times (Mflops performance is not relevant, since the
sequential flop counts depend on the ordering) on the SP1. For both matrices, METIS
allows better execution times for p > 8. A similar situation occurs on the T3D, but for
p > 16.

For all other test matrices, the METIS ordering is better for any number of processors.

8 Conclusions and future work

We presented a fan-in algorithm for computing the sparse Cholesky factorization, using
several 2D block mappings. The algorithm FI_GRID, using a grid mapping, is usually better
than Rothberg’s fan-out algorithm. Even better is the FI PROP_G, based on proportional
mapping of columns and a greedy mapping inside a column.

Experiments on a IBM SP1 showed that mapping design aiming communication volume
reduction is successful, since proportional mapping was proved to be the best. On a Cray
T3D, where communication is cheaper, the differences between the proposed algorithms are
attenuated; while the fan-in principle remain better than fan-out, the subforest-to-subcube
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Figure 16: Comparisons of FI.GRID execution times (in seconds) for different ordering
algorithms.

mappings become an alternative for the proportional mapping, especially for a small number
of processors.

Although our algorithms proved their efficiency, there is still place to improvements and
comparisons. We will also continue to investigate the possibility of finding better mappings
and to test those already proposed on larger matrices and on a greater number of processors.

We are also working in the implementation of the sparse Cholesky factorization with
the ATHAPASCAN 1 programming interface [6], currently under development in the Apache
projet. This programming interface makes a clear distinction between the application des-
cription and the run time scheduling policy. Additionally, it is possible to chose the better
policy for a specific application and a target machine architecture. In the ATHAPASCAN 1, we
intend to integrate some of the various mapping techniques presented in this report for the
sparse Cholesky bi-dimensional factorization algorithm in order to compare this approach
with the MPI programming model used in this paper.
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