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Abstract: MuPAD is a general purpose computer algebra system with two programming
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Parallélisme en MuPAD

Résumé : MuPAD est un systeme de calcul formel général offrant deux sortes de
parallélisme : le micro-parallélisme pour les machines & mémoire partagée et le macro-
parallélisme pour les architectures distribuées. Cet article décrit par des exemples la sémantique
du langage MuPAD pour ces deux types de parallélisme et 1’état actuel de son implantation.

Mots-clé : calcul formel, parallélisme, machine & mémoire partagée, calcul distribué,
Centre Charles Hermite, MuPAD



Introduction

Most parallel computer algebra softwares (see [13] for a review) are either extensions of exis-
ting systems (ALTS and PACLIB for the SACLIB library, PARSAC-2 for SAC-2, | MAPLE]|
and Sugarbush for Maple, RR for Reduce), or systems specialized for some kinds of opera-
tions (PAC for linear algebra), or only tools for distributed computing, without any symbolic
manipulation system (DSC for C or Lisp programs). On the contrary, MuPAD is a gene-
ral purpose system whose language contains parallel instructions since the very beginning
(see [6, pages 169-181] and [7, pages 160-161]). However, until now no parallel version
was officially released (the last version, MuPAD 1.3, was released for sequential machines
in December 1996), due to lack of access to computers with enough processors and efficient
threads [16]. The situation changed in 1996, where an access was given to the Power Chal-
lenge Array (PCA) from the Centre Charles Hermite at INRIA-Lorraine (Nancy, France).
This machine has 4 clusters with up to 18 processors each (see Figure 1), i.e. it is exactly
the architecture for which MuPAD was designed for (interesting enough, at the time the
MuPAD language was designed, i.e. around 1989, such machines did not exist!). Up to now,
prototype shared-memory versions of MuPAD were ported on the following architectures:
Sun Sparc [16], Sequent Symmetry [17], Convex SPP 1600-16 and Silicon Graphics Power
Challenge.
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Figure 1: The Power Challenge Array architecture
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The paper is organized as follows. Section 1 describes the current state of the shared-
memory version of MuPAD, and shows a real example with the PCA prototype version.
Section 2 describes the language constructs of the distributed version, and gives some hints
how it will be implemented.

1 Micro-parallelism

In this section, we first describe the syntax of MuPAD parallel statements for shared-memory
machines, then how these statements are implemented, and give some timings for polynomial
factorization.

1.1 Language instructions

Two kinds of parallel constructs are available on shared-memory computers: parallel for-
loops and parallel blocks. Parallel for-loops are exactly like sequential loops, except the
keyword do is substituted by parallel:

for i from start to end parallel
private j k;
stmts

end for

The private keyword enables the user to declare auxiliary variables, which are local to each
processor. Parallel blocks are defined as follows:

parbegin
private j k;
stmiy

stmt,
end _par
where the statements stmt; to stmt, are executed in parallel. One of these statements may
itself consist of sequential instructions, in which case the seqbegin construct is needed:
seqbegin
stmiy

stmt,
end _seq

These three constructs (parbegin, seqbegin and parallel for-loop) are the only parallel
constructs! available in the micro-parallel (shared-memory) version of MuPAD. They are

I These constructs are also available in the sequential version, where parallel tasks are processed in a
random order. This enables the user to test parallel programs on a sequential machine.
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enough to write some nice parallel programs, as we will see through polynomial factorization
over finite fields.

Besides these constructs, since MuPAD version 1.3, semaphores and locks are available.
A semaphore can be used to guard a resource with n instances. sem:=Semaphore: :sinit(n)
creates a semaphore sem and initializes it with n instances. Semaphore: :P(sem) locks one
instance of the desired resource, i.e. decrements the semaphore sem. The task blocks if
the desired resource is not available, i.e. waits until the semaphore is greater than zero.
Semaphore: :V(sem) unlocks one instance of the desired resource, i.e. increments the se-
maphore. Semaphore: :N(sem) returns the number of instances guarded by the semaphore
sem.

A lock is a binary semaphore, the simplest type of a semaphore. 1:=Lock::1linit()
initializes a lock 1, Lock: :1ock(1l) locks it, and Lock: :unlock(1l) unlocks it. For example
a lock can be used to prevent multiple tasks from executing simultaneously a given section
of a program (critical section), e.g. an access to a shared variable; the section begins with a
lock operation and ends with an unlock operation.

1.2 Implementation

The implementation of the micro-parallelism concept is based on the memory management
system MAMMUT [15]. MAMMUT offers a virtual shared memory machine, i.e. the pro-
grammer sees a set of parallel running MuPAD kernels sharing a common memory. In the
shared memory, the stacks of the shared MuPAD variables and the problem heap of parallel
executable MuPAD tasks are stored.

On Unix platforms the current version of MAMMUT works as follows. At the beginning
the main MuPAD kernel process allocates shared memory using the Unix system call mmap.
Shared variables are realized with pointers into that shared memory. After initializing some
shared variables, parallel processes (also executing the MuPAD kernel) are created with
a fork system call.? Thereby the number of processes is defined in the initialization file
.MMMinit. The scheduling of the processes on the available processors is managed by the
operating system.

In order to do some synchronisation between the processes a lock mechanism is neces-
sary. For example the access to the stacks of the MuPAD variables in the shared memory
must be coordinated. MAMMUT offers the possibility of locking a MAMMUT object, by
setting its lock bit. The operation of testing and setting the lock bit must be protected
using the operating systems lock (for example using the system functions ussetlock() and
usunsetlock() on SGI machines), in order to prevent two processes from setting the lock
bit of the same object simultaneously.

As mentioned above, MuPAD tasks that can be done in parallel are stored in a problem
heap in the shared memory. When a process has nothing to compute it takes a task out of

2 Threads could also be used in order to implement parallel running MuPAD kernels. However, when
implementing the first parallel version no implementation of threads was available.
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the heap. If there is no task in the problem heap the process goes to sleep and wakes up by
a signal when new tasks come into the problem heap.

The garbage collection of MAMMUT is based on the principle of reference counting.
Each object has a counter for the number of pointers pointing to it. If that counter is equal
to zero the memory of the object can be deallocated. This method enables an unique data
representation. Besides saving much memory this technique speeds up recognizing equal
data, because equality can be decided by one pointer comparison. However, the frequently
executed operation of changing and reading out the reference counter must be protected
by a lock, which may be time consuming on some machines. This is the reason why the
prototype parallel version for the Sun Sparc multiprocessor architecture gives no significant
speedup [16]. Therefore, it is planned to develop a parallel mostly copying algorithm. The
mostly copying garbage collection developed by Bartlett [4, 5] (see also [1]) is a variant of
the classical stop-and-copy algorithm, where all accessible objects on the heap are copied
into a new space. The advantages of this strategy are that it results in memory compaction
and its running time is proportional to the amount of accessible memory. However, at the
beginning an initial set of pointers to objects in the heap (the root set) must be known.
Using the mostly copying strategy only a set of all possible pointers (the program stack and
the registers) must be known, not the exact roots.

It is planned to demonstrate the first official shared-memory port for Sparc and Power
Challenge at the CeBIT in Hannover in the middle of March. These parallel ports of MuPAD
1.3 will then be available on the MuPAD ftp mirrors around the world.

1.3 An example: polynomial factorization

Factorization of polynomials plays a central role in computer algebra, and in particular with
coeflicients in a finite field, since the factorization of polynomials with integer coefficients —
either with the algorithm of Zassenhaus or that of Lenstra-Lenstra-Lovacz — begins with
a factorization over a finite field [9]. For factoring polynomials of large degree n over finite
fields, the best algorithm is currently that of Shoup [19], since it saves a factor of about
O(+/n) in both time and space with respect to Berlekamp’s big prime algorithm [9].

One of the key operations in Shoup’s algorithm is polynomial multiplication: indeed, the
first step of the algorithm — computing z mod f where f is the input polynomial, which
requires O(logp) multiplications of polynomials of the size of f — takes a constant part
of the total time. More precisely, computing z? mod f requires logp squarings and about
%logp multiplications for an average p. Therefore we will focus on the squaring operation.
The following MuPAD function computes the square of a polynomial ¢ — with any kind of
coeflicients — using a parallel for-loop.

square := proc(a) local d,i,x,n;

begin
d:=degree(a); x:=op(a,[2,1]);
poly(_plus((for n from O to 2%d parallel
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n seq. | Ipr. 2pr. 4pr. 8pr. 16 pr. 32pr.
500 | 60s | 124s 121s  9ls 73s 49s 34s
1000 | 672s | 851s 534s 445s  297s  191s 141s

Figure 2: Time needed for squaring a polynomial of degree n with coefficients of n bits.

private i,s;
s:=(if n mod 2=0 then coeff(a,n/2)"2 else 0 end_if);
for i from max(0,n-d) to min(d,iquo(n-1,2)) do
s:=s+2*coeff(a,i)*coeff(a,n-1)
end_for;
s*x"n
end_for)),op(a,2..3))
end_proc:

Each parallel task computes one term s, z” of a?; the parallel for loop returns the sequence
of these terms, which is then transformed into a sum using _plus, and into a polynomial
with poly.

Figure 2 shows the time needed for squaring a dense polynomial of degree n over a finite
field F, with p a prime of n bits, for n = 500 and n = 1000, on the Origin 2000 (32 processors
R10000) of the Centre Charles Hermite. The timings for 1 to 32 processors were obtained
with the prototype parallel version of MuPAD for Silicon Graphics machines, whereas the
timings in the seq. column correspond to the standard sequential version, available on all
MuPAD ftp sites.

Two comments can be made about these timings. Firstly, the one-processor parallel
version runs much slower than the sequential one, especially for n = 500 (the cost for the
lock operations may explain that). Secondly, the speed-up does not grow linearly with the
number of processors. This may be due to a cache phenomena, since the parallel squaring
function performs more concurrent memory accesses. Nevertheless, with 32 processors, a
factor of about 5 can be saved for squaring degree 1000 polynomials, whence one can expect
a similar speedup for polynomial factorization.

2 Macro-parallelism

Figure 3 explains the concepts of micro-parallelism and macro-parallelism in MuPAD. Each
cluster is made of several processors working on a shared memory (micro-parallelism). The
clusters can communicate by a kind of message-passing (macro-parallelism).

RR n~"3154



Micro-Parallelism
R BR...- R

Shared
Memory

Micro-Parallelism
R B....R

Shared
Memory

( Network

Macro-
) parallelism

R B..oo R
Shared
Memory

Micro-Parallelism

R B ....

50

Shared
Memory

Micro-Parallelism

Figure 3: Micro-parallelism and macro-parallelism.

2.1 Language constructs

Due to the fact that we have concentrated our efforts on the (shared-memory) parallel
version and other aspects of MuPAD there is no distributed (in the sense of message-passing)
MuPAD version available so far.

From the viewpoint of macro-parallelism MuPAD consists of a set of independent clusters
which are numbered from 1 to n. Each cluster in turn is formed of a number of running
MuPAD kernels and micro-parallelism is (or can be) used inside every cluster. The MuPAD
language provides to the user a special concept to program in this distributed environment.
However the current user interface is not very pleasant to use. The interface consists of net
variables as well as queues and pipes between different clusters.

The net variables are common to all clusters, so they can be considered as shared memory
between the different clusters (i.e. global variables):

global(a)
global(a, b)

In the first form the net variable a is read out. Here a is considered to be a variable name
so it is not evaluated. The result of the read operation is then evaluated. In the second
form the value of b is assigned to a. Here again a is not evaluated and b evaluates as usual.
During the evaluation of b, no other task can change the net variable a. Assigning a value
to a net variable is therefore an atomic operation.
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writequeue("a",1,5) writequee("a’,1,7)

. queue named "a"
of cluster 1
cluster
1

Figure 4: Queues
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Each cluster can have any number of queues, and a cluster can write in any queue (see

figure 4):
writequeue(a, i, value)

Here value is the expression which will be written to the queue a of the cluster i.
A cluster can only read the first element of its queue. There exists a blocking and a
non-blocking read action on a queue:

readqueue(a)
readqueue(a, Block)

Here a is the name of the queue the cluster will read from. If the queue is empty the function
call readqueune () will return a MuPAD object of type DOM_NULL. In the second case the
function call readqueue() will block until there is a value available in the queue.

There exists one special queue named "work" in every cluster. After the system is
initialized every cluster checks its queue with the name "work' periodically when it has
no work to do. If the queue contains an expression, this one is read and evaluated. An
exception is the cluster 1, which never checks its "work" queue, but communicates with the
user and gets tasks in this way.

With queues it is possible to send an expression to every cluster, but it is not guaranteed
that only one cluster writes in the queue of another cluster. So the cluster that reads from
its queue cannot be sure that the value is sent from a specific cluster it wants to receive
an expression from. So there exists another data structure named pipe, which is similar to
queues (see figure 5). For two clusters i and j there exists exactly one pipe of name a that
runs from cluster i to cluster j. A pipe a running from cluster i to cluster j and a pipe a
running from cluster j to cluster ¢ are two different pipes:

writepipe(a, j, value)

Here the expression value is written in the pipe a of cluster j. If this instruction is performed
by cluster i, it creates a pipe a which runs from cluster i to cluster j.

readpipe(a, i)
readpipe(a, i, Block)

With the first readpipe() call, a cluster reads an expression from the pipe a of cluster i.
The second call is the blocking variant of the function call readpipe().

The function topology enables the user or programmer to know the topology of the
distributed system: topology () returns the number of clusters in the system; topology(0)
returns the number of MuPAD kernels, i.e. the sum of the MuPAD kernels of individual
clusters; topology(n), where n is a positive integer between 1 and topology(), returns the
number of MuPAD kernels in cluster n; finally topology(Cluster) returns the index of the
current cluster.
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writepipe("a’, 1, 5) writepipe("a’, 1, 7)
pipe named "a" - " pipe named "a"
running from = - running from
cluster 2 to cluster 3to
cluster 1 cluster 1

cluster
1

Figure 5: Pipes

2.2 Implementation

To implement the macro-parallelism it is necessary to transfer every MuPAD object in an
efficient way. For this reason a binary encoding was chosen, following [3, 11]. Note that
every MuPAD procedure is a regular MuPAD object. So this work was done for every
MuPAD object. Internally a MuPAD object is represented by a directed acyclic graph (in
some very special cases it is a cyclic structure), so common subobjects sharing should be
also used. This is done in the obvious way. Every object is marked with a label. When
a subobject occurs more than once in a MuPAD object only the first occurrence will be
transferred to another cluster; if the subobject occurs a second time the label is sent as a
reference. Here we use similar techniques like MP [11] and OpenMath [21] but in contrast
to them it is also possible to send cyclic structures. As a result, we got an efficient encoding
from a MuPAD object to a well-defined byte stream of elementary C data types. So the
basics for implementing the concepts of queues and pipes in an efficient way are ready. Now
we can use a transport protocol like PVM [10], MPI [12] or MP to send MuPAD objects
between clusters. For the first prototype of a distributed MuPAD version which implements
exactly the language constructs of the macro-parallelism described in section 2.1, we have
chosen MPI because it is widely available. To integrate the transport layer of the distributed
version, the concept of dynamic modules [20] is used.
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It still remains the question how net variables could be implemented in an efficient way.
For this purpose, it is planned to use DIVA (The DIstributed VAriables Library®), which
is part of the A2 project of the SFB 376.

2.3 Future developments

Besides the work described in section 2.2, an asynchronous object oriented communication
protocol named IPP is developed and partly implemented. This protocol has inherited a
lot of ideas of PVM and the UNIX I/O concept. On the one hand a lot of ideas of PVM,
because PVM is a distributed system and MuPAD is also a distributed (computer algebra)
system. So the concept of dynamic host configuration and the creation of new processes
are undertaken. On the other hand the concept of file descriptors in an UNIX environment
is elegant. Once one has opened a file the interaction with a file, a network device or a
screen 1is similar from a programmer’s point of view. So we decided that this should be also
possible in IPP. The main communication object in IPP is the channel. A channel represents
a bidirectional communication connection. After one has opened a channel between two (or
more) processes, a process and a file, or between two sockets, there is no difference in using
this channel. One can send and receive data with simple function calls like get() and
put (). One special, MuPAD specific aspect of the protocol is that it can transfer the data
type S_Pointer which is the main MuPAD data type. Internally every MuPAD object is
represented by an S_Pointer. When the implementation of the protocol is finished, it could
be used to implement a better user interface to the macro-parallelism: for example to start a
specific MuPAD procedure on some of the available clusters or on some given cluster, adding
a cluster to the system, making the communication between clusters easier and so on. At
the moment PVM is used to implement IPP, because it is widely available and supports
process creation and dynamic system configuration.

3 Future Work

As already said in section 1, the first priority is to make available to the whole scientific
community a (shared-memory) parallel version of MuPAD version 1.3, and to put that
version on the MuPAD ftp servers.

Then a second objective will be to develop some nice applications and libraries for this pa-
rallel version. Good candidates are the algorithms presented at the first Pasco conference,
for example the modular algorithm for sparse multivariate polynomial interpolation [14],
parallel Buchberger algorithms [2], and more generally all algorithms on polynomials pre-
sented in Paul Wang’s overview [22]. At the University of Paderborn, Christopher Creutzig
is currently developing a general framework for constraint logic programming using parallel
instructions, which can be used in turn in a parallel computation of Grobner bases.

For the distributed version, we plan to have a first prototype version implementing the
macro-parallel language before the end of this year.

Shttp://www.uni-paderborn.de/sfb376/projects/a2/TP_A2 DIVA.html
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