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Abstract: Millions of computers are now connected together by the Internet. At a fast
pace, applications are taking profit of these new capabilities, and become parallel and dis-
tributed, e.g. applets on the WWW or agent technology. As we live in a world with finite
resources, an important challenge is to be able to control computations in such an environ-
ment. For instance, a user might like to suspend a computation because another one seems
to be more promising. In this paper, we present a paradigm that allows the programmer
to monitor and control computations, whether parallel or distributed, by mastering their
resource consumption.
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De la finitude des ressources en calcul distribué

Résumé : Internet met en communication des millions d’ordinateurs : les logiciels
integrent donc, de plus en plus, des aspects liés au parallélisme et & la distribution : codons
(applets) sur la toile (Web) ou autres agents. Le monde réel ne possédant que des ressources
finies, nous proposons de controler les calculs pour en tirer le meilleur parti. Par exemple,
un utilisateur peut vouloir suspendre un certain calcul si un autre semble plus prometteur.
Dans ce rapport, nous proposons un nouveau paradigme autorisant les programmeurs &
controdler et diriger leurs calculs, qu’ils soient paralleles ou distribués, par la maitrise de la
consommation de ressources informatiques nécessaires pour leur accomplissement.

Mots-clé : Langage de programmation, parallélisme, distribution, machine abstraite
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1 Introduction

As we live in a world with finite resources, it is of paramount importance for the user
to be able to monitor and control computations. This task is all the more complex since
computations may be parallel, distributed, and most probably making use of code written by
others. This problem is particularly illustrated by the Internet as the user wishes to search
information over the WWW  exploits parallelism to improve efficiency, relies on distribution
to increase locality, but also wants to concentrate the computing power in the most promising
directions to reduce searching time.

There are two types of applications that we particularly wish to program. First, a user
that has initiated a computation over the Internet should be able to suspend the computation
in order to analyse the results he has already obtained. If these were unsatisfactory, he must
be able to resume the computation where it was suspended in order to collect the next results.
In this example, computations should be understood as possibly parallel and distributed over
the net. Second, service providers offer computing facilities to customers who subscribe to
their service by transferring electronic cash [24]; in return, service providers supply them
with a handle to submit jobs, create accounts that they debit according to the usage of the
facilities, and inform users of the exhaustion of their account. Again, jobs submitted by
customers may generate parallel and distributed computations which must be monitored by
the service provider.

Our goal is to provide the means by which everybody, customers and service providers,
can get the most one can out of a situation with bounded resources. We believe that
parallel computations can be driven by mastering their resource consumption. In this paper,
we present a new language, called Quantum, containing primitives to monitor and control
computations. The basic principle of the semantics of Quantum is to keep track of the
resources consumed by computations. Resources can be understood as processors cycles,
bandwidth and duration of communications, or even printer paper. We shall adopt more
a generic view by saying that computations need energy to be performed!. Although the
notion of energy is part of the semantics of Quantum, the programmer cannot create energy
ex nihilo, but can only transfer it between computations via some primitives of the language.
As a result, we were able to ensure a general principle for Quantum: given a finite amount
of energy, any computation is finite.

Besides its resource-oriented semantics, Quantum is designed to be parallel and multi-
user, and to be independent of the memory model (central, distributed, with or without
coherence). All these features make it particularly suitable for programming in a distributed
environment like the Internet. Furthermore, the language offers the mean to write programs
of the form “when this computation ends, do this”, which is an essential feature in distributed
computing.

This paper is organised of follows. We present the intuition of Quantum in Section 2
and define its semantics in Section 3. Section 4 contains several applications written in

1Other names found in the literature for a similar concept are fuel [13] or computron [29, p. 102-103].
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4 Luc Moreau € Christian Queinnec

Quantum. In Section 5, we focus on the implementation of the language. Finally, Section 6
discusses related work and is followed by a conclusion.

2 The Language Quantum: Rationale

In this section, we introduce the language Quantum, its constructs and their intuitive se-
mantics, and the considerations that lead to its design. The core of Quantum is an applied
call-by-value lambda-calculus with numbers, booleans, and lists; Figure 1 displays its syntax.

V o= flb] x| (Ae.M)

M == V | (M M) | (parallel M M) | (suicide)

f u= cons | car | cdr | call-with-group | within-group?
| channel | enqueue | dequeue | pause | awake

b == 0] 1] ... | true | false | nil

Figure 1: Syntax of Quantum

In Quantum, the construct parallel creates parallel evaluations. Intuitively, if an expres-
sion (parallel M; M) is evaluated in an environment p with a continuation &, then the
expressions M; and M, will be evaluated independently and in parallel, in the same lexical
environment p, and with the same continuation k. We opted for this model of parallelism
because it allows the definition of generators [17]. Besides, a computation has the ability to
terminate by evaluating the expression (suicide).

Our goal is to be able to allocate resources to computations, and to monitor and to
control their use as evaluations proceed. In our view, it is essential to be notified of the
termination of a computation so that, for instance, unconsumed resources can be transferred
to a more suitable computation. Similarly, we want to be informed of the exzhaustion of the
resources allocated to a computation, so that for instance more resources can be supplied.

In order to be notified the termination or energy exhaustion of a computation, we need
an entity that represents the computation. A group is an object that can be used to refer
to an active computation in a Quantum program. As a first-class object, a group has an
unlimited lifetime, but its useful lifetime is the duration of its associated computation.

So, a group is associated with a computation composed of several evaluations proceeding
in parallel; in turn, they can initiate subcomputations by creating subgroups. As a result, our
computation model is hierarchical. A group is said to sponsor [16, 23, 11] the computation
it is associated with. Reciprocally, every computation has a sponsoring group, and so does
every evaluation.

At creation time, a group is given an energy quota. More specifically, a computation
that evaluates the expression (call-with-group F' e ¢, ;) under the sponsorship of a group
g1, creates a new first-class group g» that is allocated an initial quota of energy e and

INRIA



On the Finiteness of Resources in Distributed Computing 5

whose parent is g;. Furthermore, it initiates a computation under the sponsorship of g
by applying F' to g2; hence, the user function F receives a handle on its sponsoring group.
As Quantum keeps track of resource consumption, the energy e allocated to g2 is deducted
from the energy of g;.

The semantics enforces the following principle: any computation consumes energy from
its sponsoring group. Therefore, not only is a group perceived as a way of naming compu-
tations, but also it must be regarded as an energy tank for the computation. In addition,
two events may be signalled during the useful lifetime of a group: group termination and
energy exhaustion are asynchronously notified by applying the user functions (the notifiers)
¢; and ., respectively?. A group is said to be terminated, when it has no subgroup and
it does not sponsor any evaluation; i.e. no more activity can be performed in the group.
When group g» is terminated, the function ; is asynchronously called on g» to notify its
termination, and the energy surplus of g is transferred back to g1. Note that calling ¢y
is sponsored by gi, i.e. the parent of go. Similarly, when a computation sponsored by g
requires more energy than available in go, the function ¢, is asynchronously called on g5 to
notify its energy exhaustion, also under the sponsorship of g;, with transfer of the remaining
energy of g to g;.

Figure 2 displays the state transition diagram for groups. At creation time, a group
is in the running state, which means that the evaluations that it sponsors can proceed as
long as they do not require more energy than available. Asynchronous notifications are
represented by dotted edges. Once a computation requires more energy than available in
its sponsoring group, the state of its group changes to exhausted, and at the same time an
asynchronous notification ¢, is run. When all subgroups and all evaluations sponsored by a
group terminate, its state becomes terminated, while the asynchronous notifier ¢; is called.
Let us observe that the terminated state is a dead end in the state diagram; this guarantees
the stability of the termination property: once a computation terminates, it is not allowed
to restart (as the resource that it did not consume may have been reallocated).

Energy may be caused to flow between groups, independently of the group hierarchy,
under the control of the user program. Two primitives operate on groups: pause and awake.
Intuitively, the primitive pause forces a running group and its subgroups into the exhausted
state, and all the energy that was available in this hierarchy is transferred to the group that
sponsored the pause action. The construct (awake g ) “awakens” a group in the exhausted
state by transferring it to the running state, with an energy e which is deducted from the
group sponsoring the awake action. Let us observe the non-symmetric behaviours of pause
and awake: the former operates recursively on a group hierarchy, while the latter acts on a
group and not its descendants. However, we might wish to awake a hierarchy recursively, for
instance when we wish to resume a paused parallel search. In particular, we might wish to
resume the search with the energy distribution that existed when the hierarchy was paused.
Unfortunately, such information is no longer available because groups are memoryless. It is
therefore the programmer’s responsibility to leave some information at pausing-time about
the way a hierarchy should be awakened. Not only does pause transfer energy, but it does

2Subscript t denotes termination, whereas subscript e denotes exhaustion.
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awake
termination
notification p
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running terminated
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notification g awake
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N awake
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b
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e=0

Figure 2: State Transitions

also post a notification for each group in the tree. More precisely, pausing a group g with
a notifier ¢, forces into the exhausted state each group ¢’ in the hierarchy rooted by g;
moreover, for each ¢', an evaluation that applies ¢, on ¢’ is created under the sponsorship
of the parent of ¢’. Let us note that notifications are prevented to run as all groups in the
hierarchy have been dried out (except the notification on the root g, which is sponsored
by the parent of g and then might run). Once the root of the hierarchy is awakened, any
notification sponsored by the root will be activated, and may decide to awake the group it
is applied on, and step by step, energy may be redistributed among the hierarchy.

Our permanent concern when designing Quantum was to be able to compute in a dis-
tributed framework. Hence, we decided that Quantum would be independent of the memory
model: so, real shared memory, shared memory simulated over a distributed memory [19],
distributed causally coherent memory [25] are memory models that may be adopted with
Quantum. However, in the programs that we wrote in Quantum, we needed primitives to
synchronise computations and to exchange information between them. We observed that
asynchronous unbounded communication channels [15] offered the appropriate level of ab-
straction. The expression (channel) returns a new, initially empty channel. Evaluating
(enqueue ¢ V) adds a value V to the channel ¢, maintaining values in a FIFO order; this
primitive is asynchronous because it does not require to synchronise with a reading oper-
ation on the same channel. The construct (dequeue ¢) returns and removes the first value
contained in the channel ¢. If the channel is empty, evaluation is blocked until a value is
sent on the channel.

INRIA



On the Finiteness of Resources in Distributed Computing

M e Aq u= Vi | (M M) | (parallel M M) | (suicide)
Vs, € SValue = ¢ | z | (Az.M)
V € Value = c | L | fo | (consV V) | g | (cha)
cs€SConst == f | b
f. € PApp = (cons V) | (enqueue V) | (within-group? V)
(call-with-group V') | ((call-with-group V') V)
(((call-with-group V) V) V)
c € Const 2= ¢, | d | within-group?
b € BConst = {true,false, nil,0,1,...}
d e Void = {void}
f€FConst = {cons,car,cdr,call-with-group,
within-group?, channel,
enqueue, dequeue, pause, awake}
xz € Vars = {z,y,2...}
¢ € Notifier C Closure
¢ € Closure = (cl Az.M, p)
M€ Qconfig == (I,T,0) (Q-Configuration
I'e GMap : Group = GInfo (Group Mapping
i € GInfo 2= {9,€,8,Pe, Pt, N, g*) (Group Information
g € Group = {4}V {90,91,---}
t € Task x= (C,9)
C € CoSt x= Ev(M,p,k) | Ret(V,k) (Computational State
k € CCode x= (init) | (k fun V) | (Continuation code
(k arg M p) | (k rgroup)
s € GState == running | exhausted | terminated
T C Task (Set of Tasks)
g€ Queve == ) | (V) | q8q
o € QStore : Loc — Queue (Queue Store
a € Loc = {ag,a1,...} (Location
p € Env : Vars = Value
n € IN (Number of sponsored tasks
e€ Energy C 1IN
K : Task x GMap — Energy (Cost Function

Figure 3: State Space

(Syntactic Value
(Semantic Value
(Syntactic Constant
(Partial Application

(Basic Constant
(Void Constant
(Functional Constant

(User Variable)

(Group State)
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3 The Language Quantum: Semantics

In this section, we present the parallel semantics of Quantum, whereas we focus on its
distributed implementation in Section 5. The semantics is described by an abstract machine,
called the Q-machine. Figure 3 displays its state space, where we can see that the set of
terms Ag is the syntax given in Figure 1. Transition rules appear in Figures 4 to 10.

In the sequel, we adopt Barendregt’s [2] definitions and conventions on the lambda-
calculus; in particular, n-ary functions should be understood as curried functions. We use the
notation f[z — V] to denote the function f’ such that f'(z) =V and f'(y) = f(y), Yy # =.

Ev{((M1 Ms),p,k) —cex Ev{(Mi,p,(x arg M, p))
Ev(\z.M,p,k) —cer Ret{{cl Az.M, p), k)
Ev{c,p,k) —cer Ret{c, k)
Ev(z,p,k) —cer Ret{p(z),k)
Ret(V, (k arg M, p)) —cer EV(M,p,(k fun V))
Ret(V, (k fun (cl Az.M,p))) —ecer EV(M,p[z — V], k)
Ret((cons Vi V32), (k fun car)) —cer Ret(Vi, k)
Ret{(cons V1 V), (k fun cdr)) —cer  Ret(Va, k)
Ret(V, (s fun f)) —cer  Ret(d(f,V),r)

Figure 4: CEK Transitions

—~
=%}
~

Unitary Cost Function £,
Ku({Ret{p:, (k fun (((call-with-group F) €) ¢¢))),g),I') =e+1
Ku({Ret(e, (k fun (awake g1))),g),I') =e+1 if g # g1,I'(g1).s # terminated
otherwise, K.((C,g),I') =1

Soundness Constraints on Cost Functions K
K({Ret{p:, (k fun (((call-with-group F) €) ¢¢))), 9),T) > e
K({Ret(e, (k fun (awake g1))), g),I") > e if g # g1,I'(g1).s # terminated
otherwise, K({C,g),I') >0

Figure 5: Cost Function

INRIA



On the Finiteness of Resources in Distributed Computing 9

{(C,9)} U TT,0)

= {{(Ci,9) } U T,T'ge:=g.e—K],0) ifC —=cer C1 (%) (sequential)
({ (Ev((parallel My My, p,x),g) } U T,T, o)

- ({ (EV(M1,p, K’)ag) } u { (EV(Mz,p, K‘)’g) } uT, (Sequentia'l)

Ig.e:=g.e—K][gn:=gn+1],0) (%) (parallel)

{({ (Ev((suicide), p,k),9) } U T,T,0)

— (T\T[g.e:=g.e—K]lgn:=gn—1],0) (%) (suicide)
{{ {Ret(void, (init)),g) } U T,T,0)

— (T,T[g.e:=g.e— K][gn:=gn—1],0) () (int)

Convention: (%) =T'(g).e > K

Figure 6: Sequential and Parallel Evaluations

A configuration of the Q-machine, represented as M in Figure 3, is a triple composed
of a set of tasks, a set of groups and their associated information, and a set of channels
and their contents. A task, represented by a pair (C,g), is an entity, sponsored by group
g, that embodies a computational state C. In Quantum, tasks are anonymous and are not
first-class values; instead, groups are reified as first-class objects as a mean to monitor and
control computations. The function T' associates each group g with a parent group, its
current energy, its state, the two notifers ¢, and ¢;, and the number of tasks and the set of
subgroups that it sponsors. The hierarchy root is the initial group, and by convention, the
parent of the initial group is represented by L,.

Notifiers are closures with a signature Group — FEnergy — Void, which receive the
group that is notified the event and its remaining energy. As notifications are asynchronous,
they are not expected to return values, hence the void value returned. Channels are first-class
values represented by (ch a), with a a location pointing to a queue in the queue store o.

The computational state of a task is a CEK-configuration [8] represented as Ev(M, p, &)
or Ret(V, k), respectively representing the evaluation of a term M in the environment p with
a continuation k, and the return of a value V to a continuation k. The continuation & is
encoded by a data-structure, called continuation code.

Figure 4 displays the transition rules for the sequential purely functional subset of the
language; for more detail, we refer the reader to [8].

As previously mentioned, the intension of Quantum is to measure the resources used by
computations. In order to be generic, we decided to associate the semantics with a cost
function K, giving each transition its cost in terms of energy.

Warning. Let us observe that the cost of a transition is a function of the task involved
in the transition and of the function I'. For the sake of concision, we do not represent this
dependency explicitly. We use the symbol K to denote the value of the cost function for the

RR n~°3147



10 Luc Moreau € Christian Queinnec

task involved in the transition and a given I'. For instance, in rule (sequential), the task
involved in the transition is (C, g); therefore, the symbol K stands for K({C, g),T).

Rule (sequential) of Figure 6 states that if there exists a task (C,g) sponsored by a
group g, such that a CEK-transition reduces C' to C1, then after transition the task becomes
(C1, g); the energy of g is decremented by the cost of the transition; the other tasks remain
unchanged. Rule (sequential), as most other rules, assumes that the energy associated
with g is greater than the cost of the transition, which is represented by the side-condition
noted ().

We use the following notations for accessing and modifying components of the tuple
associated with a group g. If I'(9) = (gp,e, s, e, ¥t, 1, 9*), then I'(g).p = gp, I'(g).e =
e, I'(9).s = s, I'(g).n = n, I'(9).g* = g*. Updates are written as follows: I'[g.e := e;]
denotes I'[g — (9p;€1,8, e, ¥t, 1M, 9*)], [[g.s := s1] denotes I'[g — (gp, e, 51, Pe, V1,1, 9)].
Sometimes, we even combine both conventions so that I'[g.n := g.n — 1] should be read as
F[g - <gp7 €,5,Pe, Pt, N — 17 g*>]

As many cost models are conceivable, we decided to parameterise the semantics by the
cost model. Figure 5 gives the definition of a cost function X,, charging a unitary cost for
every transition, in addition to the quantity of energy transferred. Other definitions are
acceptable as long as they satisfy the soundness constraints of Figure 5, which preserve the
following principles: first, transferring some energy costs this amount of energy at least;
second, every computation step has a cost.

In Figure 6, the rule for the construct (parallel M; M,) creates two tasks to evaluate
M; and M- with the same environment p and continuation k, resulting in an additional
task in the current group. The construct (suicide) removes the current task from its spon-
soring group; the Q-machine behaves similarly when a void value is returned to the initial
continuation.

Rules dealing with channels, which appear in Figure 7, are straightforward. The con-
struct (channel) returns a new channel (ch a) with a newly allocated location a bound to
an empty queue in the queue store. The primitive enqueue adds a value V at the end of
the queue associated with the channel, while dequeue takes the first element of the queue.
Note that the transition (dequeue) is allowed to be fired only if the queue is not empty; as a
result, a task is not allowed to progress when trying to dequeue an element from an empty
channel. For the sake of simplicity, we have decided not to associate a cost with such a
“blocked” task. This could be easily overcome by adding a rule for the empty queue case
which would charge its cost to the sponsoring group.

Figure 8 displays rules related to groups. Groups are created by evaluating (call-with-group
F e ¢, i), which results in the application of the partial application
(((call-with-group F') €) ¢¢) on ;. Then, rule (make group) creates a new group g; in
a running state, whose parent is the sponsoring group g, with an energy e, with one spon-
sored task applying the closure F' on g;,. Following the soundness constraints of Figure 5,
the sponsoring group g is deducted of the transition cost, which includes the energy e given
to g1: rule (make group) guarantees that no energy is generated during group creation.

INRIA



On the Finiteness of Resources in Distributed Computing 11

{{ {(Ret((channel),k),g) } U T,T,0)
= ({ (Ret((ch a),k),g) } U T,T[g.e:=g.e —K],cla = (}]) (channel)
with a € DOM (o) (%)
{{ {Ret(V, (k fun (enqueue {ch a}))),g) } U T,T, o)
—  ({ (Ret{void,k),g) } U T,T'[g.e:=g.e — K],ola:=0c(a) § (V)]) (%) (enqueue)
{{ (Ret({ch a), (k fun dequeue)),g) } U T,T',0)
= ({(Ret{(V,k),9) } U T, I'[g.e:=g.e—K],ola:=¢q]) ifo(la)=(V)§q (x) (dequeue)

Convention: (x) =T'(g).e > K

Figure 7: Channels Related Operations

({ (Ret{pt, (k fun (((call-with-group F) €) ¢¢))),g9) } U T,T',0)

—  ({ (Ret(g1, ((k rgroup) fun F)),g1) } U T,T'1,0) (%) (make group)
with I'y = I['[g.e := g.e — K][g.n := g.n — 1][g.g" := g.9" U{g1}][g1 — (9, €, running, @c, p¢,1,0)],
91 ¢ DOM(T")

({ (Ret(V, (k rgroup)),g) } U T,T',0)
—  ({ (Ret(V,k),91) } U T,T[g.e:=g.e — K][g.n:=g.n —1][g1.n := g1.n + 1],0) (return group)
with g1 =T(g).p (%)
({ (Ret(g1, (x fun within-group?)),9) } U T,T',0)

—  {{ (Ret(g1, (k fun (within-group?’ g))),9) } U T,T'[g.e:=g.e —K],0) (%) (within-group 1)
({ (Ret(ga, (x fun (within-group?’ g1))),9) } U T,T',0)
—  ({ (Ret(g2 = g91,K),9) } U T,T'[g.e:=g.e—K],0) (within-group 2)

if(g2=91vgr=1g) (%)
—  {{ (Ret(g2, (k fun (within-group?’ T'(g1).p))),g) } U T,T[g.e :=g.e—K],0) (within-group 3)
if g2 # 91, 91 # Lg (%)

Convention: (x) =I'(g).e > K

Figure 8: Groups Related Operations
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12 Luc Moreau € Christian Queinnec

({(C,9)} U T,T,0)
—  ({ (Ret(g, (((init) arg e,0) fun ¢¢)),g1) } U { (C,g) } U T,T'1,0) (ezhaustion)
if I'(g) = (91, €, running, e, p¢,n,9%), 91 # Ly, e < K({(C,g)), I'(g91).s = running
with I'y =T'[g.s := exhausted][g.e := 0][g1.€ := g1.e + €][g1.n := g1.n + 1]
(T,{ (9 — {91, €, running, e, p¢,n,g*)) } U I',0)
—  {{ (Ret{g, (((init) arg e,®) fun ¢¢)),q1) } U T,T'1,0) (termination)
if g1 # Lg, T'(91) = (92,€1,$,Pe1,Pt1,71,97), n =0, ¢* =0, I'(g1).s = running
with I'y = F[g - (91507terminateda(pe:‘pt,n,g*ﬂ[gl = (gQael +e€,8,¢@e1,pt1,m1 + 1, (gI \ {g})>]

Figure 9: Asynchronous Notifications

({ (Ret(nil, (x fun (pause ¢p))),9) } U T,T,0)
—  ({ (Ret(void,k),g) } U T,T'[g.e:=g.e—K],0) (%) (pause group 1)
({ (Ret((cons g1 g%), (x fun (pause vp))),9) } U T,T,0)
= ({ (Ret((g” § T'(g1)-9), (s fun (pause p))),9) } U {t1 } U T,T1,0)
if g # g1, I'(g1).s # terminated (%) (pause group 2)
with ¢; = (Ret(g1, (((init) arg e, ) fun ¢;)), g2)
with I'y =I'[g.e := g.e + € — K][g1.€ := 0][g1.s := exhausted][g2.n := g2.n + 1]
with g2 = T'(g1).p,e =T(g1).e
—  ({ (Ret((g"* § I'(91)-97),(k fun (pause pp))),g9) } U T,T[g.e:=g.e —K],0) (pause group 3)
if (9 =91 VI'(g1).s = terminated) (%)
({ (Ret(e, (k fun (awake g1))),9) } U T,T,0)
—  ({ (Ret(void,x),g) } U T,T'[g.e:=g.e — K][g1.€ := g1.€ + €][g1.5 := running], o) (awake group I)
if g+# g1, I'(g1).s # terminated (%)
—  ({ (Ret(void,x),g) } U T,T'[g.e :=g.e—K],0) (awake group 2)
if (g =g1VTI(g1).s = terminated) (x)

Convention: (x) =T'(g).e > K

Figure 10: Pause and Awake Operations on Groups

INRIA
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Let us notice that F' is applied on g;, with a continuation (k rgroup) indicating that the
evaluation is performed under the sponsorship of a group. When a value is returned to the
continuation code rgroup as in (return group), the task leaves the sponsorship of its group:
the task that was sponsored by g now becomes sponsored by its parent g;; the numbers of
tasks sponsored by g and g; are updated accordingly.

The predicate within-group? returns true if it is being applied under the sponsorship of
the group received in argument, or under the sponsorship of a subgroup of its argument.
Such a predicate is implemented by a simple recursion on the parent chain.

Rules controlling asynchronous notifications appear in Figure 9. If the energy required
by a task is greater than the energy available in its sponsoring group g, rule (ezhaustion)
changes the state of g to exhausted, and creates a new task applying the notifier ¢, on
g and the remaining energy e. Let us observe that the notification is executed under the
sponsorship of the parent group g1, and that the energy e is transferred to g;.

Asynchronous termination detection follows a similar pattern: if a group g does not
sponsor any task and has no subgroup, a notifier ¢, is applied on g and the remaining energy
e under the sponsorship of the parent group g;; the remaining energy is also transferred to g; .

As notifications are executed under the sponsorship of the parent of the group terminating
or being exhausted, care should be taken not to apply these rules to the root of the hierarchy;,
which is expressed by the condition g; # L,.

A notifier is defined as a user function. Evaluating a call to a notifier is a notification.
Posting a notification is creating a task that performs a notification. So far, every com-
putation transition is given a cost. On the contrary, rules (ezhaution) and (termination),
which post notifications, do not decrease total energy. At the price of complexity, the se-
mantics could be extended so that a cost can be associated with notification posting. More
judiciously, posting notifications could be charged by a new cost model, where posting is
prepaid at group-creation or group-awakening time.

Notification rules transfer energy from the notified group to its parent, avoiding energy
loss. Notifications allow the user program to observe semantically-caused energy transfers
between groups. Even though the user code is given access to the amount of energy trans-
ferred, energy accounting remains strictly under control of the semantics, which guarantees
the safeness of the approach.

The semantics of pause and awake is displayed in Figure 10. The primitive pause requires
two arguments: a notification function ¢, and a list of groups to be paused. For each group
g1 of the list, rule (pause group 2) sets the state of g; to exhausted, transfers its remaining
energy e to the group g sponsoring the pause action, creates a task applying the notifier ¢,
on g; and e under the sponsorship of gs the parent of g;, and adds the subgroups of g; to
the list of groups remaining to be processed.

Special care is taken in rule (pause group 8) to avoid pausing the current group or to
avoid setting a terminated group to the exhausted state. In rule (pause group 1), we see that
the primitive pause returns a void value as it is used for its side-effect on group energies.

The primitive awake takes the group to be awakened and the energy to be transferred
in arguments. Assuming the sponsoring group g has enough energy, rule (awake group 1)
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14 Luc Moreau € Christian Queinnec

decrements its energy, increments the energy of the awakened group g1, and sets it to the
state running. Again care is taken to avoid awakening a terminated group. Let us observe
again that the user specifies the amount of energy to be transferred but accounting is strictly
performed at the semantic level.

evalx(M,e) =V if {T,T,0),
such that Final({T,T,0)),
with ({(EV<M3®5RO);QO»}aFOaUO) —* <T7Faa)
and V € o().

Lo = {90 - (Lgaeaﬂoeoa‘pto’la()}
oo = {ao— ()}
ko = ((init) fun (enqueue {ch ay)))
Final((T,T,0)) = AT . T',¢"), (T,T,0) = (T'",T',¢")
Yeo =Pto = (cl Ag.Xe.void, ()

Figure 11: Evaluation Relation

Figure 11 displays the evaluation relation of the language. Evaluation starts with an
initial configuration, composed of the initial group gg, a queue store containing a location
ap aimed at receiving all values generated by the computation, and an initial task; this task
evaluates the program in an empty environment, and with a continuation accumulating the
results obtained in location ag. The evaluation relation associates a program with all the
possible final results that can be accumulated in «y.

Let us note that the evaluation relation is parameterised by a cost function K and by
the initial energy quota e given to the @-machine. The initial group has no parent, receives
the initial energy quota, sponsors the initial task; the notification functions are arbitrary
because they are never called, as seen in rules (ezhaustion) and (termination).

We establish the soundness of the semantics with respect to energy by the next two
propositions.

Proposition 1 For any cost function satisfying the constraints of Figure 5, total energy
decreases as evaluation (notification posting excluded) proceeds. O

Corollary 2 For any cost function satisfying the constraints of Figure 5, and for a finite
positive initial energy, any computation is finite. O

4 Examples
In this Section, we present examples written in Scheme extended with our primitives. Even

though Quantum substantially differs from an idealised Scheme language, it is expressive
enough to model first-class mutable boxes and first-class continuations.
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Figure 12 displays the code for mutable boxes in Quantum, where a mutable box is
represented by a channel. Functions deref and setref! maintain the invariant that the
channel contains one and only one value, by first dequeuing the current value, and then
enqueuing another one. Simultaneous accesses to a same box are protected by the atomicity
of the primitive dequeue.

(define (makeref V)
(let ((¢ (channel)))
(enqueue ¢ V)
c))
(define (deref c)
(with-enough-energy
(let ((v (dequeue c)))
(enqueue ¢ v)
v)))
(define (setref! c v)
(with-enough-energy
(let ((old (dequeue c)))
(enqueue ¢ v)

old)))

Figure 12: First-Class mutable boxes

However, a program could run out of energy after having read a value and before having
stored the new one into the channel: this would leave the box in a inconsistent state,
unusable by other tasks. Therefore, we must be sure that an exhaustion notification cannot
occur between these two operations. This kind of “energy-critical section” is implemented
by creating a group which receives the amount of energy minimal-energy required to perform
both operations (Figure 13).

Let us notice that such a group does not prevent the program to be paused from outside.
However, if such a pausing action occurs, it can only be caused by the user’s program. It is
his role to ensure that a paused group does not leave objects likes boxes in an inconsistent
state.

First-class continuations were rejected in the design of Quantum because they could be
used to resume terminated computations; such a feature would be in contradiction with
the stability of the termination property. However, Figure 14 shows that call/cc [30] can
be programmed in Quantum. A first-class continuation is represented by a communication
channel; invoking a continuation on a value sends the value on the communication channel.
In addition, call/cc creates a parallel task which acts as a server: it dequeues any value sent
on the channel, spawns a task to continue the rest of evaluation, and repeats the process
with the next value to be dequeued. The unlimited nature of the extent of the continuation
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(define-syntax with-enough-energy
(syntax-rules ()
((with-enough-energy form ...)
(call-with-group (lambda (g)
form ...)
minimal-energy
refill-handler
ignore-handler))))
(define (refill-handler g e)
(awake g (+ e 1)))
(define (ignore-handler g e)
(suicide))

Figure 13: Energy-critical Section

is modelled in Quantum by the presence of such a server, which must be given energy as
long as the continuation remains invokable.

Non-local block exits are a restricted form of continuation, which can only be called in
the dynamic extent of the construct that created them. In Figure 14, call/ep, which stands
for call-with-ezit-procedure, is derived from the code of call/cc. Here, we create a group and
when we detect its termination, we send a distinguished value in the channel to shutdown
the server. Furthermore, the predicate within-group? is used to detect that a continuation
is applied in the dynamic extent of the call/ep construct.

In traditional computing, we have no tool to tell us whether a computation is running or
what is the amount of work done by a given task. Such tools usually exist at the operating-
system level, but deal with “processes” and not with tasks, and they do not take into account
tasks executed on remote hosts. Figure 15 displays the code of a probe, which updates the
content of a box with the amount of energy already consumed by a computation generated
by a thunk. When the computation ends, the box is updated with a pair indicating the total
consumption of the thunk.

In Figure 16, the primitive pause is used with three different intentions. The function
suspend temporarily pauses a group hierarchy. The hierarchy will be resumed by awakening
its root, which will awake its subgroups step by step using the notifiers left by pause. Note
that the condition in the notifier prevents to awake the root of the hierarchy immediately
after the root has received the notification.

On the contrary, the function kill pauses a hierarchy without leaving any opportunity to
resume it, unless the programmer has explicitly kept handles on the groups that belong to
the hierarchy, and explicitly awakes them.

Last, adjust-energy pauses and immediately resumes a hierarchy with a quota of energy
which is proportional to the one it had before. The energy transfer that occurs during this
operation is worth noticing: the group calling adjust-energy will be credited of the energy of

INRIA



On the Finiteness of Resources in Distributed Computing

17

(define (call/cc f)
(let ((c (channel)))
(parallel
(let loop ((v (dequeue c)))
(parallel v (loop (dequeue c))))
(f (lambda (v)
(enqueuve ¢ v)
(suicide))))))
(define (call/ep f)
(let ((¢ (channel))
(end (cons 12)))
(parallel
(let loop ((v (dequeue c)))
(if (eq? v end)
(suicide)
(parallel v (loop (dequeue c)))))
(call-with-group (lambda (g)
(f (lambda (v)
(if (within-group? g)
(begin
(enqueue ¢ v)
(suicide))
. (error)))))

refill-handler
(lambda (g)
(enqueue ¢ end))))))

Figure 14: First-Class Continuations

hierarchy before adjustment, while the energy of the hierarchy after adjustment is deducted
from the parent of the root. In order to guarantee that awake is executed after pause, we

introduce an explicit synchronisation by the channel go.

Figures 17 and 18 display the code of a service provider, making use of Wright and
Duba’s pattern-matching macro [35]. A communication channel subscription-channel is
publicly advertised as the entry point to the service provider. A user is allowed to subscribe
to the service by giving its name (possibly authenticated by a specialised protocol) some
electronic cash, and a channel to which the service provider answers. The service provider
creates a new communication channel that is returned to the user and that will be used
as an access point to resources offered by the service provider. This access point is served
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(define (probe box thunk unit)
(call-with-group

(lambda (g) (thunk))

unit

(lambda (g e)
(setref! bozx (+ unit (deref boz)))
(awake g (+ unit e)))

(lambda (g e)
(setref! box (cons ’has-consumed

(= (deref boz) ¢))))))

Figure 15: Probe

(define (suspend group)
(pause (lambda (g e)
(if (not (eq? g group))
(awake g e)))
(list group)))
(define (kill group)
(pause (lambda (g e)
(suicide))
(list group)))
(define (adjust-energy group coefficient)
(let ((go (channel)))
(pause (lambda (g e)
(if (eg? g group)
(dequeue go))
(awake g (* e coefficient)))
(list group))
(enqueue go #t)))

Figure 16: Pause and Awake of Computations

by a request-server, whose operations are sponsored by a group that has received an initial
amount of energy corresponding to the electronic cash transmitted at subscription time.
The user can submit jobs to the request-server, which in turn creates a new group to
sponsor the evaluation of job and returns it to the user. This group can be used by the user
to pause, kill, or restart a computation. Let us observe that the user is never given a handle
either on the group initially created with his electronic cash, or on the group sponsoring
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the administration program. Thanks to lexical scoping, these groups can be hidden, and
security is insured because nobody will be able to pause and steal energy from such groups.

When the account of a user is exhausted, a message is sent to the user, who gets the
opportunity to transfer more electronic cash to his account via a message ’pay. This re-
quest is sent on the publicly advertised channel, subscription-channel, and might need some
authentication protocol.

The service providers may also offer a demonstration account which will be usable for
a fixed quota of energy energy-quota-for-free-demo and which may offer restricted facilities
only. This program can be extended by offering the possibility to close an account and to
refund the electronic cash corresponding to the remaining energy.

5 Implementation Hints

This section describes the main lines of a possible implementation. First, it presents a
solution in a non-distributed setting then extends that implementation to cover distributed
aspects.

5.1 Single Space Model

The parallel model is rather simple. Although tasks are not first-class values, they do exist
within the implementation. They are created with parallel and are terminated by suicide.
As usual, a scheduler manages the set of all tasks.

A task contains a reference to its sponsoring group and embodies the continuation of the
evaluation it represents; the continuation includes the marks left by groups when created.
Therefore, within-group? is easily implemented by inspecting the continuation.

Groups are hierarchically organised; a group knows (i) its parent group, (ii) its
exhaustion and termination notifiers, (%i) the evolving set of direct tasks that is, the tasks
that have this very group as sponsoring group, (iv) the evolving set of direct subgroups,
that is, the groups that have this group as parent group.

Each group is also associated with a tank of energy. The energy spent by a running task
is deducted from the tank of its sponsoring group. When a tank is exhausted, a notification
is posted to the parent group. The scheduler prevents the tasks of a group with an empty
tank to run.

When a group has no subgroup and looses its ultimate sponsored task, the group must
be terminated: it is removed from the subgroups of its parent group and its tank is poured
into the tank of its parent group. The group object may still be reachable from the user
program, but nevertheless has entered its non-useful lifetime.

Energy may flow independently of the hierarchy of groups using the pause and awake
operations. In order to awake a target group with a given amount of energy, we remove this
energy from the tank of the current group, and tranfer it into the tank of the target group.

Pausing a group g is the most complex operation since it recursively dries the tanks of
all the groups in the tree rooted at g. When pause empties the tank of a group ¢’, it posts
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(define subscription-channel (channel))
(define (service-provider subscription-channel)
(let loop ()
(let ((subscription (dequeue subscription-channel)))
(parallel (process-subscription subscription)
(loop)))))
(define (process-subscription subscription)
(match subscription
((’subscribe name ecash answer)
(let ((private-channel (channel))
(energy (ecash->energy ecash)))
(call-with-group (lambda (g)
(register name g private-channel)
(enqueue answer private-channel)
(request-server private-channel g))
energy
(lambda (g e)
(enqueue answer
"Account exhausted"))
ignore-handler)))

(Cpay name ecash)

(let ((group (get-group name)))
(awake group (ecash->energy ecash))))

((free-demo name answer)
(call-with-group (lambda (g)
(let ((private-channel (channel)))
(enqueue answer private-channel)
(request-server private-channel g)))
energy-quota-for-free-demo
(lambda (g e)
(enqueue answer
"Demo account exhausted"))
ignore-handler))
(else ’discard))
(suicide))

Figure 17: Service Provider (1)
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(define (request-server channel sponsoring-group)
(let ((message (dequeue channel)))
(parallel
(request-server channel sponsoring-group)
(begin
(match message
((’submit job answer)
(call-with-group (lambda (g)
(add-group! sponsoring-group g)
(enqueue answer ‘(created ,g))

(job))
1

refill-handler
(lambda (g e)
(remove-group! sponsoring-group g)
(enqueue answer ‘(done ,g)))))
((’pause group answer)
(if (member group (subgroups sponsoring-group))
(begin
(suspend group)
(enqueue answer ‘(paused ,group)))
(enqueue answer ‘(unknown ,group))))
(Ckill group answer)
(if (member group (subgroups sponsoring-group))
(begin
(remove-group! sponsoring-group group)
(Kill group)
(enqueue answer ‘(killed ,group)))
(enqueue answer ‘(unknown ,group))))
((restart group answer)
(if (member group (subgroups sponsoring-group))
(begin
(awake group 1)
(enqueue answer ‘(restarted ,group)))
(enqueue answer ‘(unknown ;group))))
(else ’discard))

(suicide)))))

Figure 18: Service Provider (2)
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a notification in the parent group of ¢’ mentioning the amount of stolen energy; the notifier
is the function given as first argument to pause; the notification is a task whose job is to
invoke the notifier with the robbed group and the stolen amount of energy.

The semantics rules are to be considered as atomic. Even though the awake function
is atomic, the pause function is not atomic as it is defined by a set of rules. The pause
function returns after the complete visit of a hierarchy of groups. This visit is performed
by one or more tasks that run concurrently with all other tasks. Note also that multiple
notifications for a same group may be simultaneously running if a group was paused or
awakened multiply. Notifiers are not run in mutual exclusion.

Let us note that the garbage collector should reclaim unreachable groups that are both
exhausted and without subgroups. Indeed, such groups cannot be awakened since they are
unreachable, and no task can be created under their sponsorship according to the semantics.

5.2 Distributed Space Model

Distribution introduces multiple disjoint spaces of values linked by remote pointers and
communicating by messages. Following the approach of [28], distribution is introduced by
the construct (placed-remote s f args ...) which creates a remote task on site s, applying
the function f on arguments args. The remote result(s) are returned to the continuation of
the placed-remote call, on the site that evaluated this expression. All sites have a scheduler
managing local tasks.

Sitel Site2 Sited
v < g elder 91 elder 93
- -
A
parent
95 elder 9’ '
—_— 9

Figure 19: Local Groups and Brotherhood

The previously exposed implementation may be easily extended to cover distribution
after introducing the notion of group brotherhood. A group stands for several tasks on
several sites. To cope with distribution, a group is split into a hierarchical family of local
groups ordered by a brotherhood relationship, each of them being local to a site. When
a group g (see Figure 19) is created by call-with-group on Sitel, it is known as the eldest
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local group of a family so far containing one brother only. When a task sponsored by g
creates a remote task on Site2, a younger local group g1 is created on Site2 with g as elder
brother. Symetrically, g adds g1 as younger brother. When a subgroup ¢’ is created by
call-with-group on Site2 under the sponsorship of g1, its parent will be g;.

To sum up, a local group belongs to a site and holds the following information: (%) its
elder brother, (i) its direct younger brothers, (%) its direct local tasks, i.e. the evolving
set of tasks that run under its sponsorship on the local site, (iv) its direct local subgroups,
i.e. its locally created subgroups.

A group is represented by at most one local group per site; local groups are implementa-
tion entities, but only eldest local groups are first-class values that incarnate the group they
stand for. Therefore, in addition to the information of a local group, an eldest local group
also knows: (i) its parent group, (i) its exhaustion and termination notifiers.

The key point of the distributed implementation is that brethren groups interact as
groups in parenthood relationship except that they use implementation-defined notifiers
instead of user-defined ones. When a younger local group runs out of energy, it asks its elder
brother for a refill. When a younger local group terminates, i.e. when it has no subgroups,
no younger brothers, and no tasks, it posts a notification (accompanied with its remaining
energy) to its elder brother which then removes it from its younger brothers. When an
eldest local group terminates, it reacts as previously described with respect to its parent
group. The difficult case is when an eldest local group runs out of energy, since it should
not post a notification to its parent unless all its younger brothers are also out of energy.
The solution is then to dry the tanks of the younger brothers (but not the subgroups) to the
benefit of the eldest brother. A group has no centralised tank but a collection of local tanks
connected by implementation-defined notifiers. These inner transfers of energy are invisible
to the user; they may use sophisticated techniques to ensure load balancing of energy inside
the connected tanks of a group®. It is only when this connected tank is empty that the
eldest local group is allowed to notify its parent of its exhaustion.

6 Discussion and Related Work

Our notion of group is at the intersection of two different ideas: Haynes and Friedman’s
engines and Kornfeld, Hewitt, and Osborne’s sponsors, which we develop below.

Haynes and Friedman [12, 13] introduce the engine facility to model timed preemption;
variants can also be found in [5, 6, 31]. Engines differ from our groups in a number of ways.
Engines are defined in a sequential framework and are used to simulate multiprogramming.
Since engines do not deal with parallelism, they do not offer control facilities like pause
and awake. Another major difference is that a given engine can be executed several times,
while a group can only be executed once. Using continuation terminology, engines are “mul-
tishot”, while groups are “single-shot” [4]. A group is a name and an energy tank for a
computation, but, unlike an engine, it does not embody its continuation. Our decision to

3The same schema may be used to provide each task with its own tank, hereby reducing communications
with groups.
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design “single-shot” groups is motivated as follows. The ability to restart several times a
same computation is an unrealistic feature for a distributed language because the computa-
tion may be composed of several tasks distributed over the net. Haynes and Friedman also
propose nested engines, i.e. engines that can create other engines. In their approach, nested
engines have the same temporal vision of the world, because each computation consumes
ticks, i.e. energy quanta, from parent engines (direct and indirect). On the contrary, groups
offer more a distributed vision of the world, because groups are tanks, from which local tasks
consume energy.

Kornfeld and Hewitt’s sponsors [16], Osborne’s enhanced version of them [22, 23, 11], and
subsequently Queinnec’s groups [28, 26], also allow the programmer to control hierarchies
of computations in a parallel setting. Osborne’s sponsors are entities that give attributes,
like priority, to tasks, which can inherit attributes from several sponsors. A combining
rule yields the effective attributes of a task, and then determines the resources allocated
to the task. If the group hierarchy changes, priorities should be recomputed, which can be
costly, especially in a distributed environment. With Quantum groups, scheduling of a task
is only decided by examining the energy available in its only sponsoring group, which is
local. Furthermore, priority is a difficult notion to grasp in a heterogeneous environment,
while total work accomplished is more intuitive. In particular, our cost model allows us to
program applications searching the best solution at a given amount of energy, i.e. at a given
cost. Queinnec’s Icsla language has a notion of group which substantially differs from the
one presented here. As Icsla is energy-less, pausing a group does not collect energy and can
be performed lazily. Also, Icsla does not have any of the notifications of Quantum. Let us
observe that termination notification is a generalisation of unwind-protect [32]. Hieb and
Dybvig [14] spawn operator returns a controller, which can be invoked to suspend or restart
part of a computation tree; their approach relies on a notion of partial continuation.

There is an analogy between Unix fork and the construct parallel: fork duplicates
processes, while they still share the same file system. However, Unix processes are organised
hierarchically as opposed to our parallel tasks. Similarly, tasks created by pcall [21] or
future [1, 7, 10, 11, 20] are ordered according to a “mandatory-speculative” relation. The
construct pcall offers a “fork and join” type of parallelism, which could be simulated by using
the queue store in Quantum[18, 28]. The flat model of independent computations provided
by parallel is convenient to create independent servers.

Unix-like operating systems offer a different model to control processes: a process is given
a unique identifier which can be used to send signals to it, e.g. kill. We believe that this
model of control does not provide the appropriate abstraction [23]. Indeed, we want to be
able to control computation, but we might not know the processes it is composed of, because
the code we execute was not written by us. By associating groups with computations, we
abstract from the details of execution. In addition, our model was designed for running in
a distributed framework, so that groups can control tasks over different machines.

Our semantic is sound because it prevents generating energy. Furthermore, our language
provides security by different means: (i) energy cannot be generated, but can only
be transferred between computations; all “accounting” operations remain under absolute
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control of the semantics; (%) groups are the only handle to control computations, and
lexical scoping guarantees that groups will be visible only where the programmer wishes
them to be, (%) there is no primitive that returns the group in which the user code is
running, which ensures that user code cannot control its sponsoring group, and hence it
cannot control tasks running in parallel with it, unless explicitly passed handles to their
sponsoring groups.

Our semantics measures the resources used by computations according to an independent
cost model; our approach generalises the “complexity” monad [9, 33]. As our semantics is
independent of the cost model, one might prefer to have more a realistic cost model, for
instance, taking into account memory occupancy (duration or size) or blocked dequeue
operations. In order to have a finer control on energy consumption, we noticed that the
system could be extended to let the user create and manage different budgets from which
energy can be consumed. An other interesting question is to decide how garbage collection
should be billed in a multi-user environment, like the service provider. At the moment,
garbage collection is part of the administration cost of the system and is indirectly billed
via the cost of allocators.

7 Conclusion

In this paper, we present the language Quantum, whose purpose is to monitor and control
computations in a parallel and distributed framework. Quantum provides a model to charge
distributed computations, and therefore can be used to program account administration
applications. Besides, it offers the end user the possibility to control hierarchies of compu-
tations, to do some load-balancing, and to introduce some energy-based priority between
parallel computations.

Quantum is the core of a consumption-oriented language which is particularly suitable
to program over the Internet. In the future, we plan to investigate a fault-tolerant version
of the language, which would be energy aware.
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