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Abstract: This paper presents a theoretical and experimental study on two different meth-
ods to evaluate the sign of a determinant with integer entries. The first one is a method
based on the Gram-Schmidt orthogonalisation process which has been proposed by Clark-
son. We review the analysis of Clarkson and propose a variant of his method. The second
method is an extension to n x n determinants of the ABDPY method which works only for
2 x 2 and 3 x 3 determinants. Both methods compute the signs of a n x n determinant
whose entries are integers on b bits, by using an exact arithmetic on only b + O(n) bits.
Furthermore, both methods are adaptive, dealing quickly with easy cases and resorting to
the full-length computation only for null determinants.
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Evaluation exacte du signe d’un déterminant

Résumé : Ce document présente deux méthodes différentes pour calculer le signe d’un
déterminant dont les entrées sont des entiers. La premiére de ces méthodes est basée sur le
processus d’orthogonalisation de Gram-Schmidt et a été initialement proposée par Clarkson.
Nous avons revisité ’analyse donnée par Clarkson et proposé une variante de sa méthode.
La seconde méthode étend aux déterminants de dimension quelconque la méthode ABDPY
proposée par Avnain et al. pour les déterminants de dimension deux et trois. Dans les deux
cas, le signe d’un déterminant de dimension n formé d’ entiers codés sur b-bits, est obtenu en
utilisant une arithmétique exacte sur seulement b + O(n)-bits. De plus, les deux méthodes
sont adaptatives c’est & dire d’autant plus rapide que la valeur du déterminant est éloignée
de zéro.

Mots-clé : Géométrie algorithmique, arithmétique exacte, précision, algorithmes robustes



Ezact Evaluation of Signs of Determinants 3

1 Introduction

Geometric algorithms are known to be highly sensitive to numerical inaccuracy. Those
algorithms generally rely on building discrete combinatorial structures whose actual state
depend on the outcomes of some numerical tests. In this context, roundoff errors leads
quickly to fatal inconsistencies and failure of the programs. Robustness has now become
one of the major issue in the field of computational geometry (for a discussion, see [CT 96,
chap. 10]).

Some attempts have been made to design geometric algorithms such that robust imple-
mentations can be obtained using only the inaccurate but fast arithmetic provided by floating
point processors (see for examples [SI89, ST194, Mil89, LM90, Hof89, HHKS88, For92]). Such
solutions, although very useful in some domains like solid modeling and CSG applications,
are difficult to design and known only for a few geometric problems. Another approach is to
turn to exact arithmetic which makes robustness a non issue. The use of exact arithmetic
has been recently advocated by Fortune and Van Wyk [FV93], Yap [Yap93, YD95], Burni-
kel and coll. [BKM*95], and many others. However, as reported for example by Karasick
and coll. [KLN91], naive implementation of exact arithmetic can be quite slow and many
works are now devoted to speed up the paradigm of exact geometric computing. Fortu-
nately exact geometric computing does not imply computing everything exactly. Most of
the numerical tests arising in geometric algorithm amount to determine only the sign of a
determinant or of a polynomial expression. Thus arithmetic filters based on a fast floating
point evaluation of the expression and of a bound on the error allow very often to make
safe decision. This approach is used for example in the LN package by Fortune and Van
Wyk [FV93] and has been shown experimentally to provide a substantial speed-up. Devillers
and Preparata investigate the theoretical behavior of some filters [DP96]. In degenerate or
near degenerate cases, however, exact arithmetic has to be carried out in full. Burnikel and
coll. [BKM*95] and Yap [Yap93] provide powerful software to perform exact arithmetic on
algebraic numbers. But numerical tests arising in geometric algorithms are not arbitrary.
In fact, most geometric algorithms rely on a few number of geometric predicates such as
which-side or orientation test, in-circle or in-sphere tests, all of which amount to compute the
sign of a determinant. Thus designing a specialized implementation for evaluating exactly
the sign of a determinant can in many cases avoid to pay the price of a general purpose
multi-precision package. Clarkson [Cla92| propose an efficient method to compute the sign
of a determinant whose entries are integers. The so called ABDPY method, due to Avnaim
and coll. [ABD*94], is an alternative solution for 2 x 2 and 3 x 3 determinants. Using an un-
common multiple-term arithmetic, Shewchuck [She96] designs an adaptive implementation
for low-dimensional geometric predicates on floating point entries.

In this paper, we propose a theoretical and experimental study on the exact evaluation
of the sign of a determinant with integer entries. Mainly, we revisit the method of Clarkson
and extend the ABDPY method to higher dimensions.

Clarkson’s method is based on the Gram-Schmidt orthogonalization process. We pro-
pose a variant of this algorithm, hereafter called the reorthogonalization method, which is
somewhat simpler to analyze. This variant allows to compute the sign of an n x n deter-
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4 H. Bronnimann and M. Yvinec

minant whose entries are b-bit integers, that is, integers whose absolute values are smaller
than 2°, using an exact arithmetic on b+ [2.62(n — 1) 4+ 0.5logn] bits, and with a worst
case complexity of O(bn® + n®logn).

The lattice method extends the ABDPY method to higher dimensions. In fact, the lattice
method borrows both from the ABDPY method and from Clarkson’s method. Like the
ABDPY method, it mostly consists in locating one of the column vectors of the determinant
with respect to a region that approximates the hyperplane spanned by the others column
vectors. When the endpoint of this vector is found to lie within the approximating region,
the algorithm resorts to an iterative doubling technique which was suggested to us by the
study of Clarkson’s method. For a n x n determinant with b-bit integer entries the lattice
method requires an exact arithmetic on b +n — 2 + [logn] bits and, though its worst case
complexity is exponential, its behavior is O(bn®) in most cases.

The efficiency of both methods comes mostly from the small number of extra bits they
require. Indeed, in most practical cases, the exact arithmetic required will stay within
the 53 bits of precision available in the mantissa of standard IEEE doubles. Then all
numerical computations entailed by the evaluation of the sign of a determinant can be
performed exactly using the floating point processor of any computer conforming to the
IEEE standard. Another factor of efficiency of those methods is their adaptability. Both
are iterative methods and the number of iterations performed depends on the actual value
of the determinant. This number is quite small in easy cases where the determinant is far
from zero.

The next two sections respectively present the reorthogonalization and the lattice me-
thod. Experimental evidence of their efficiency is given in the last section.

2 The reorthogonalization method

2.1 Overview.

The goal is to compute det(.A), where A is a matrix whose coefficients are b-bit integers. One
may use Gram-Schmidt reductions to compute an orthogonal matrix C whose determinant is
the same as that of A, and such that each column Cy of C is Ay +LC(Ay, ..., Ak_1), where LC
denotes any linear combination of its arguments. Computing the determinant of C can then
be done by standard Gaussian elimination. In practice, roundoff errors result in a matrix B
that approximates C. The sign of det(B) is correct if A is well-conditioned. It could be wrong,
however, if A is ill-conditioned. Clarkson’s idea amounts to preconditioning the matrix A
without introducing errors, before doing Gram-Schmidt reductions. The invariant enforced
by preconditioning is that each column By, of B obtained by reducing the preconditioned Ay
verifies 2B;2 > A,°.

Clarkson’s preconditioning applies a variant of Gram-Schmidt reductions in which the
vector subtracted from Ay is a linear combination of Ay, ..., Ax_1 (rather than C4,...,Cr_1
for standard Gram-Schmidt reductions). Thus, whatever the coefficients in this combina-
tions are, det(A) is not affected as long as the linear combination is computed exactly.

INRIA



Ezact Evaluation of Signs of Determinants 5

Figure 1: The process of reducing vector Ay is shown. At any time, Aj remains in the
bounding box, but its component along the orthogonal of (A1, ..., Ax_1) increases at each
step. The computed vector By, lies in the square box. At the first and second steps, the box
does not ensure that the sign of the determinant is known safely, but it becomes so after the
third reduction of Ay.

Furthermore, the norm of A, decreases in the process, so we may multiply it by a suitable
factor s > 2 without overflowing. Iterating for a given k until the invariant is satisfied leads
to a transformed matrix A’ whose determinant has been multiplied by a factor [[s > 0.
Therefore the sign of det(.A’) is the same as that of det(A).

The iterative preconditioning process is depicted in figure 1, and the code for precondi-
tioning and reducing is given below. It is roughly the same as that of [Cla92] (except that
we use standard Gram-Schmidt reductions for the By’s). Our variant is in the choice of s
that leads to a much simpler analysis. Notation fl (expr) means to evaluate an expression
within machine floating point precision. Lines 3-5 compute the Gram-Schmidt reductions,
lines 6—7 check if the invariant is satisfied, and if not, lines 10-13 compute the modified
Gram-Schmidt reductions and loop.

RR n°3140



6 H. Bronnimann and M. Yvinec

1. fork:=1ton
2. loop
3. Bl(ck) = Ag
4. for j:= k—1 downto 1
5. BO = (BYT - (n(4:)B)))
J
6. i fl(Ak- A <2f (B BY)
7. By := B,(cl), exit loop
8. Compute some integer s
9. A;ck) = s X Ag
10. for j:=k —1 downto 1
(3+1)
. i1 A
11. AP = AYTY ’Vﬂ( Ver )JAJ-
12. A = AW
13. end loop

When the determinant is null, some vector Cy, is null and the invariant 2||By||*> > || 4x||*
is never satisfied. In this case, the algorithms stops and concludes that the determinant
is null after a certain number of iterations have been performed (this number is given in
the complexity analysis below). Otherwise, let B’ be the floating point approximation of
C', obtained from A’ by Gram-Schmidt reductions. Since the preconditioning invariant is
satisfied, Clarkson shows that det(B’) is close to det(C’) and can be evaluated with relative
precision less than 1 (using standard Gaussian elimination [Cla92, FM67]). Hence the sign
of det(A) is computed exactly, and a good approximation ([]s)~! det(B’) of the value of
det(A) is available.

Needed arithmetic. To bound the number of bits needed by the algorithm, we first
obtain a bound on the error B’ — C’ and deduce a bound on the norms of the coefficients of
A" after several reduction steps.

To bound the error B’ — C’, we assume that the algorithm has conditioned Ay,..., Ay 1
(therefore the preconditioning invariant is valid for j < k), and has performed a number of
preconditioning steps on A;. When we exit the reduction of Ay, the invariant is satisfied for
j = k. In [Cla92], it is shown that this implies that ||B; — C;|| < §;||B;|| for all j < k, where
the 6;’s depend on j, n, and on the precision u of the floating point computations.Assuming
6n < 0.01 implies only loose limits on n as a function of u that are satisfied for all practical
values of n and u.

Having bounded the error B — C’, we must now bound the coefficients of A after several
reduction steps. Let A}, be the vector A after several preconditioning steps, and let S§ be

defined as E;:ll IC;11%. The norms of all the vectors Ag ) computed in line 11 satisfy

N2
HA§§’ < 0.55 52| A4 ||> +0.51 S¢ 1)

INRIA
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A similar statement is given in [Cla92], but we provide a short and self-contained proof of
(1) in the appendix. It holds assuming that 7, = 8 Z?:z 2.062(k~9)62 is smaller than 0.01.
Since the 0’s are very small, all the assumptions are satisfied for all practical values of n
and u. For instance, using doubles in the IEEE 754 standard, u is on the order of 2753 and
n must be less than 21.

It is now clear that, to control the growth of Ay after several reductions, we must choose
s carefully in terms of S§ and ||A}||- The value S§ is unknown to the algorithm, however,
and only an approximation S? of S¢ is known. Assuming that &, < 0.01, we can show (as
in done in [Cla92]) that |Sp — S| < 0.07S;.

Clarkson’s choice [Cla92] is given in terms of S? and ||By||, and yields a complicated
analysis. Instead, we pick (with a parameter A to be set later)

- [ﬂ( /1.zg+ﬁz”.

If s = 1, we must ensure that A} is indeed shrinking, otherwise the algorithm could
loop infinitely. But if s = 1, the square root is (conservatively) smaller than 1.51, hence

2
S < A||AL]1%, and we know that S¢ < 1.07S?. Plugging into (1) shows that HAS)H <

0.55(1 + A)||44|>. We now set A = 0.45 to obtain HAS)H < 0.9||AL|. Thus, if s = 1, A/
shrinks in norm by at least 10%.

Sb
If s > 2, we can say safely that 1.29 + W > (s — 0.51), and hence
k
: 2 1.07
2| AL 1% < ° 2l ge <1023 5¢ 2
S < (s—0.51)2-1.29 X k= k2 @
since s is greater than 2 and ) is set at 0.45 . Plugging this bound into (1) for j = 1, we

2
finally get that HAS) H < 6.14 S§, which bounds the next vector Aj.

From all this, we gather that ||A§€||2 < max (||Ak||2, 6.145,2) after any number of reduc-

tions of Ai. The key here is that S; depends only C;...,Ck_; and remains fixed during
the k-th reduction loop (no matter how many times we enter the loop).

To obtain a bound on how many bits are needed by the algorithm is now routine. If A
2

<

has b-bit integer coefficients, the maximum norm of a vector A; is /n2°. Then HAScj )

max (n22",6.14S55) holds for all k > n, for all j < k, and after any number of reductions of
Ay. By induction, we find that S < n6.14¥-222%. Hence b + [2.62(n — 1) + 0.5logn] bits

suffice to express all the vectors A, and Aij ) occurring in the algorithm.

2.2 Complexity.

It is also simple to bound the number of iterations. Indeed, each iteration in which s =1
decreases the norm of A} by 10% while keeping the determinant constant, and the other
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8 H. Bronnimann and M. Yvinec

iterations multiply the determinant by a value s > 2 while keeping the coefficients of A4
in the allowable range. Let t; be the number of iterations performed with s > 2. Since
22| det(A)| < |det(A")| < n™/22" ty cannot exceed (bn +n/2logn) if det(A) is non zero.
To bound the number t; of iterations with s = 1, note that

(H s) |det(A)] = |det(4")] < [T [145]| < 0.9 (H s) I 4,0

Thus |det(A)| < 0.9%n™/22%" and t; cannot exceed |log0.9|(bn + n/2logn) if det(A) is
non zero. Therefore, after at most t; + to = O(bn + nlogn) iterations, the algorithm is
over or can stop concluding that det(.A) is null. Each iteration performs O(n?) operations,
and the final Gaussian elimination performs O(n?®) operations. Hence the complexity of the
algorithm is O(bn® + n3logn).

In fact, the algorithm does not usually perform so many iterations. When reducing Ay,
the product Py = [[; ;< |C;|| is multiplied by a quantity which we denote by []s. Since
P¢ is either 0 or greater than 1 to start with, it must be zero or at least [[ s. The following
upper bound on P can be computed by the algorithm:

k—1
P =TT+ DB x (IBell” + &7l A% -

j=1

As soon as P < []s, we can rest assured that the first k& columns are linearly dependent
and that the determinant is 0. Since B’ is close in practice to C’, this is usually how the
loop is exited when the determinant is null.

3 The lattice method

3.1 Overview.

Here and in the following we assume that we want to evaluate the sign of the determi-
nant D = det(Uy, Us,...,U,) where Uy, Us, ..., U, are n-dimensional column vectors whose
coordinates are supposed to be b-bit integers.

The lattice method considers in a special way the last column and last row of determinant
D. We note 21, 22...2, the last components of the input vectors and uy,us,...,u, their
orthogonal projections on the subspace R"~! of R" spanned by the first (n — 1) coordinate
axis. Without loss of generality, 21, 22, . .., 2, are assumed to be non negative. We choose
the same point O for the origin of R* and R*~!, and we note with the same capital letter
U either a vector in R™ or the point O + U, and with the same small letter u either a vector
in R*~! or the point O + u.

Let H be the hyperplane passing through {O,U;,Us,...,U,—1}. The basic idea under-
lying the lattice method is that computing the sign of the n x n determinant D reduces to

INRIA



Ezact Evaluation of Signs of Determinants 9

compute the sign of a (n — 1) X (n — 1) determinant if the position of the point U,, with res-
pect to the hyperplane H is known. Indeed, assuming that vectors Uy, Us, ..., U,_; together
with E,,, the unit vector along the nth axis, span R*, we have U,, = LC(Uy,Us, ..., Up—1)+
aE, where, as before LC denotes any linear combination of its arguments. Then, D =
adet(uy,us,...,un_1) and the sign of @ only depends on the position of U,, with respect to
the hyperplane H.

Locating U,, with respect to H amounts in turn to evaluate the sign of D, and this might
look like going round in circles. In fact, the lattice method consists in a first phase to locate
the point U,, with respect to some region H of R" which contains H and which can be
considered as an approximation of H. If U, is found to be outside region H, the position
of U,, with respect to H is known and the problem is reduced by one dimension. Otherwise
(and this is where the lattice method mostly departs from ABDPY), the algorithm enters
a second phase in which the last column vector and therefore the numerical value of the
determinant are iteratively doubled, which amounts to iteratively refine the approximation
H of H.

Before being more precise on those two phases of the algorithm, let us describe region
H. We consider the lattice Ly formed by vectors in H that are linear combination of
{U1,Us,...,U,_1} with integer coefficients, and the lattice £ which is the projection of Ly

in R" 1. ) )
Ly = {Zwi,zi € N} , L= {Zliui,li € N} :
i=1

=1

The lattice £ induces a partition of R*~! into elementary cells each of which is a translated
copy of the origin cell :

n—1
Czul@uz@...@un_lz{Zoziui, OSai<1},

=1

where the @ symbol stands for a (half-closed) Minkowski sum. We note C(ly,...l,—1) the
lattice cell that is the translated of C by the vector Z:‘z_ll lyu;. The point ¢(ly,...l,—1) =
2?2_11 l;u; is called the reference point of the cell C(ly,...l,—1). Analogous definitions and
notations hold for the lattice £z whose elementary cells partition H : the cell Cy(l1, ... lh—1)
of Ly is the copy of the origin cell Cg = U; & Uy & ... ® U,,—; translated by the vector
C(ly,...ly1) = Zfz_ll I;U;. The elementary cell C(ly,...l,_1) of L is the orthogonal pro-
jection of the cell Cy(ly,...1,_1) of Lg.
To describe the region H, we consider the n-dimensional box (see figure 2)

n—1
B=u1 ®us®... 0 U1 D (Z%) E,.
=1

Box B has the origin cell C of lattice £ as orthogonal projection and contains the origin
cell Cy of Ly. Then, region H is defined as the union of all the boxes B(l1,...l,—1) which
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10 H. Bronnimann and M. Yvinec

Figure 2: The cell Cy and the box B

are copies of B translated by the vectors of lattice L. Since B contains the origin cell Cy,
B(ly,...l,—1) contains cell Cy(ly,...l1,—1) and H contains H.

Now, the overview of the algorithm is a follows.
First phase. The algorithm determines the position of point U, with respect to H.

- If point U, is found to be above or below H, the relative position of U,, with respect
to H is known and the algorithm ends up evaluating the sign of a (n — 1) x (n — 1)
determinant.

- Otherwise, U, lies within some box B(ki,...k,_1) of H and the algorithm com-
putes the vector R = U,, — 2?2_11 k;U; which satisfies both following conditions D =
det(Uy,Us,...,R) and R € B. Then, the algorithm enters the second phase.

Second phase. A variable number of the following iterations are performed. Iteration ¢
takes as input a vector R; of R™ and a determinant D; such that

D; = det(Uy,Us,...,R;) =2'D and R; € B. (3)

The input of the first iteration is Ry = R and Dy = D. The algorithm sets R’ = 2R;
and considers the determinant D;y1 = det(Uy,Us,...,R’) = 2D,. Point R’ is located with
respect to the union of boxes H.

- If R' is found above or below H the relative position of R’ and H is known and the
algorithm ends up getting the sign of D, which is also the sign of D, from the sign
ofa (n —1) x (n — 1) determinant.

- Otherwise R’ belongs to a box B(ky, ... k,_1) of H. The algorithm computes the vector
Riv1 = R'=Y"" ! k;U; which verifies D, 4y = det(Uy, Us, ..., Riy1) = 272D and Ryyy
B, and proceeds to the next iteration with D;;1 and Ryyq.

The algorithm ends up evaluating the sign of a (n — 1) X (n — 1) determinant as soon
as one of the points R’ = 2R; is located outside H. If the determinant D is null, this
will never happen but the algorithm can stop and be sure than D is zero after at most
bn + [(2 + 1)logn] iterations. Indeed, at each iteration the value of the determinant is

INRIA



Ezact Evaluation of Signs of Determinants 11

multiplied by a factor 2. Thus, D; = 2D which is more than 2¢ if D is not zero. On the
other end, each entry of determinant D; is at most 2° except those of the last column (the
components of R;) which are at most n2° because R; belongs to box B. Thus D(t) is less
than ny/n"2"". Therefore, when 2! > n,/n"2"" which means that the number of performed
iteration reaches bn + [(% + 1)logn|, the algorithm can stop and conclude that D is null.

3.2 Further details.

In this subsection, we give the details of the differents operations performed during the two
phases of the algorithm, in order to be able to bound the precision of the required arithmetic
and the complexity of the whole algorithm in the next subsections.

The algorithm first computes the sign of the (n — 1) minors of D relatives to the nth
row and discards the easy cases in which all those minors are null (in which case D is zero)
or have alternate signs in which case the sign of D is known (recall that the components
z; are assumed to be positive). Thus at least one of those minors is non null and, per-
mutating the vectors {Uy,Us,...,Up_1} if necessary, we may wlog assume that the minor
do = det(u1,u2,...,un_1) is non null.

First phase
The first phase of the algorithm is just like the location phase of the first iteration in the
original ABDPY algorithm. To find out the position of U,, with respect to H, the algorithm
aims at finding the cell of £ that contains the point u,, in order to compare the coordinate
zn with the z-range of the box of H projecting on this cell. To find the reference point ¢,
of the cell of £ containing point w,,, the algorithm performs a dichotomic march in lattice £
visiting a subset of the (n — 2)-faces of lattice £ that are intersected by the segment Ou.,.
For each visited (n — 2)-face f of £, the z-range of the face fg of Ly that projects on f is
tested. If this range has no intersection with the z-range [0, z,,] of points of segments OU,,,
the relative position of U,, with respect to H is known and the march is stopped. If this case
does not happen, the march yields the reference point ¢, of the cell of £ containing point u.,,
and the algorithm computes the vector R = U,, — C', where C,, is the point of H projecting
on ¢,.

More precisely, the following steps are performed

Step 1. The first step finds out which one of the 27! cells of £ incident to the origin
is intersected by the segment Ou,,. This cell can be identified by computing the sign of the
n — 1 following (n — 1) x (n — 1)-determinants

di :det(ul,...,ui_l,un,uiﬂ,...,un_l), 1= 1,...,n— 1.

It is always possible to find a permutation o of {1,...,n—1} and n—1 values ¢; € {0,1}
such that the vectors v; = (1 — 2¢,(;))u; verify :

d6 = det(vl,w,...,vn,l) >0

d; = det(vl,...,vi_l,un,viﬂ,...,vn_l)20, i=17...,n—1.

RR n~°3140



12 H. Bronnimann and M. Yvinec

If we consider now that the lattice £ is generated by {v1,v2,...,vn—_1}, the cell incident to
the origin that is intersected by segment Ou,, is the elementary cell ' = v; B vo P ... B V,_1
whose reference point is the origin. Denoting by ¢, (resp. ¢,) the reference point of the cell
that contains u,, when we take {u;} (resp. {v;}) as basis vectors of £, we observe that

Cu =Cy — Z €. (4)

We shall in fact compute ¢,, and then obtain ¢, using (4).
Step 2 Next, the algorithm has to find which facet of the origin cell C’ is intersected by
the ray originating from O in the direction of u,,. Here and in the following, we note

n—1
w = Z V4 (5)
i=1
the vertex of C' opposite to O, and
wj=w—v;, j=1,...,n—1, (6)
the vertices of C’ adjacent to w. For ¢ = 1,...,n — 1, we note h; the (n — 2)-hyperplane of

R"~! going through {O,v1,...,v;_1,Vit1,---,Vn_1}. The facets of C’ incident to the origin
are each included in one of the hyperplane h; while the facets of C’' incident to w are each
included in one of the translated hyperplanes h;(1) = v; +h;. Each (n— 3)-face of C’ incident
to w (there are (n —1)(n —2)/2 such faces) is included in the affine hull k; ; of a set of points
of the form {w,w—v; with !l € {1,...,n—1}, [ #i,5}. Thus the facets of C’ intersected by
the ray supporting u is determined by the sign of the following (n—1) x (n—1)-determinants :

e;,; = det(un,w,...,w—v;,...) =det(uy,, w,,...,—v;,...)
—_—— N—_——
1#i,5 I#£1,5

Each of those determinants allows to eliminate one of the (n — 1) facets of C’ incident to w.
Therefore at most (n — 2) determinants like e; ; have to be considered during Step 2 .
Step 3 In the following, we assume that the facet of C’ intersected by the ray originating
from O in the direction of u,, is the facet included in the hyperplane h; + v; and we note
simply h(m) the hyperplane h; + mwv; translated from h; by the vector mwv;. (Note that
there is no loss of generality in this assumption since it can always be achieved through a
permutation of vectors {v1,va,...,v,_1}.) In this step, we search the unique integer k such
that h(2%) is intersected by Owu,, while h(2F*1) is not (see Figure 3). In addition, for each
h(2!) intersected by Ou,, the algorithm computes and stores in a stack (to be used in Step
4) the reference point ¢(2) of the cell containing the intersection point Ou, N h(2'). (Recall
that cells are defined as semi-open sets including the facets incidents to their reference point
but not the facets incident to the opposite vertex.) Furthermore, the algorithm compares
the z-range [0, z,,] of segment Ou,, with the z range of the face in lattice Ly that projects
on the (n — 2)-face of £ containing the intersection point Ou,, Nh(2!). If both ranges do not
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overlap, the position of U,, with respect to H is known and the march is stopped. Otherwise

the algorithm computes the z-coordinate of the point C(2') of H projecting on ¢(2!) and

probes the next hyperplane h(2!%1). More precisely the following actions are performed.
Substep 3.1 This substep deals with hyperplane hA(1).

3.1.1 We decide if h(1) is intersected by Ou,, by computing the sign of
f(1,1) =det(un —v1,v2, ..., Vp—1) = det(u, — w1,va,...,Vn_1)-

If h(1) is not intersected by w,, then the march is over : wu, is included in cell C’,
whose reference point ¢, is the origin O. Going to Step 6 the algorithm computes ¢,
using (4) and R =U,, — C,, where C,, is the point of Ly projecting on ¢,.

3.1.2 We set ¢(1) = v;.

3.1.3 The (n—2)-face in h(1) intersected by vector u,, is ¢(1)+C; where C{ = u2®...Bup_1.
We compute the z-coordinate of the point C(1) of Ly projecting on ¢(1) and the z-
coordinates of the other vertices of the (n — 2)-face of Ly projecting on ¢(1) + Cj. If
the z-coordinates of those vertices are all negative or all greater than z,, the position
of U,, with respect to H is known and the march is dropped. Otherwise Substep 3.2
is entered.

Substep 3.2. In this substep, we successively probes hyperplanes h(2), h(4) ... h(2}) .. ..
Assuming that, at a given stage, h(2!) has been found to intersect Ou,, and that points c(2')
and C(2') have been computed, the following elementary actions are performed

3.2.1 We decide if Ou,, intersects hyperplane h(2!*1) by computing the sign of
FH 1) = det(un — 2¢(2Y) — w1, V2, ...y Unet).

Notice that both 2¢(2') and 2¢(2!) — w; belong to hyperplane h(2!*1), (see Figure 3).
If u,, does not intersect h(2!*1), Step 3 is over, go to Step 4.

3.2.2 Otherwise we compute c(2'*1). Clearly ¢(2!*!) is one of the 2"~2 vertices of the
(n — 2)-face 2¢(2') + C| (see Figure 4) and we can be decide which one by computing
the sign of the (n — 1) X (n — 1) determinants

g(2, 5) = det(un, 2¢(2)) + wi,...,v,...), j=2,...,n—1.
N—_——

I#1,5

3.2.3 The algorithm computes the points C(2!*1) projecting on ¢(2!*1) and test the z-range
of the (n—2)-face in H projecting on ¢(2!~1)+CJ. If the nth coordinates of the vertices
of this face are all negative or all greater than z,, (recall that z, is assumed to be non
negative) the position of U,, with respect to H is known and the march is dropped.
Otherwise the algotithm loops back to Substep 3.2.1 to test the next hyperplane .
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h1)  h(2) h(4)
YA
c(2) +w c(2) + s
2 2¢(2)
: c(2) -
O T

Figure 3: Localization of u,,

:u" 20(2l71) + w1

2¢(2!71)

Figure 4: From ¢(2') to ¢(2!*1).
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Step 4 Assume now that u, intersects the hyperplane h(2*) but not the hyperplane
h(2%+1). Then the algorithm computes the integer m such that segment Ou, intersects
h(m) but not h(m + 1). The determination of m is a binary search. This search involves
k — 1 stages numbered k£ — 1,...,1. At each stage [, the algorithm computes an integer m;
such that segment Ou,, intersects hyperplane h(m;) but not h(m; +2'). The reference point
c(my) of the cell containing the intersection h(m;) Nu, is computed and the algorithm test
the z-range of the (n — 2)-face of Ly projecting on ¢(m;) + C;. More precisely, (assuming
that h(m;) and c¢(m;) are known) the following actions are performed at stage [ — 1 :

4.1 We decide whether Ou,, intersects h(m; + 2'~1) or not by computing the sign of the
determinant

f(my+2711) = det(un — c(my) — c(271) — w1, v9, ..., Vn1),

where the vector ¢(2!71) is popped out from the stack. Notice that both ¢(m;)+c(2!71)
and c(my) + c(2'71) +w; belong to h(m; +2!=1). If u,, does not intersect h(m; + 2!71)
we have m;_1 = m; and ¢(m;_1) = ¢(m;) and we can pass to stage [ — 2. Otherwise,
we have m;_; = m; + 2/~ and we compute ¢(m;_1) in the next substep.

4.2 Clearly c(m;_1) is one of the 2"~2 vertices of the (n — 2)-face c(m;) + ¢(2!71) + C} in
h(m;_1) and we can decide which one by computing the sign of the (n — 1) x (n — 1)
determinants

g(ml +2l713j) = det(unac(ml—l) +C(2171) +w17"'7vi7“‘)7 .7 =2,...,n—1
——

i#1,7

4.3 The intersection un, N h(m;—1) lies in the (n — 2)-face ¢(m;—1) + C;. We compute the
vertex C(m;_1) of Ly projecting on ¢(m;) and test the z-range of the (n — 2) face
of Ly projecting on c(m;) + C;. If the z-coordinates of the 2"2 vertices of this face
are all negative or all greater z,, the position of U,, with respect to H is known and
the march is dropped. Otherwise, go back to Substep 4.1 with [ — 2 or to Step 5 if
I-1=0.

Step 5 At this point we know that vector Ou,, intersect h(mg) in the cell ¢(mg) + C;
but does not intersect h(mg + 1). Thus the origin ¢, of the cell containing wu, is one of
the vertices of ¢(mg) + C{ and which one can be decided by computing the signs of the
(n—1) x (n — 1) determinants

f(mo,7) =det(u — c(mo) — w1, v1,...,01,...)y, j=2,...,n—1.
—_——
I#1,5

Step 6 At last ¢, is computed from ¢, using 4 and vector R = U,, — C,, is computed.
By construction, the projection r of R belongs to the origin cell C. If the z-coordinate of R
is negative or greater than Z:L:_f z; the position of U,, with respect to H is known and the
algorithm ends up. Otherwise, R belongs to box B.
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U2

Figure 5: Locating 2r; in lattice £

Second Phase

At each iteration of the second phase, the algorithm is given a point R:(r:,2:) in B and
has to locate the endpoint of R’ = 2R, with respect to H. For this purpose, the algorithm
determines the reference point c¢;41 of the cell of lattice £ containing the endpoint of the
projection 2r; of R'. Owing to the fact that r; belongs to the cell C whose reference point is
the origin, the reference point c;y; is necessarily one of the 2"~ vertices of C (see figure 5)
and finding which one amounts to determine the sign of the following (n — 1) x (n — 1)
determinants :

a; = ut, ..., w1, (2r —w), Uig1,. .. Un—1]., 1=1,...,n =1,

where w = Z:.”:_ll u;. Let Cyy1 be the lattice point of H that projects on ¢;y1. We compute
Rt+1 = 2Rt — Ct+1, i. e.

Tt+1 = 27'75 — Ct41 (7)
Zt41 = ta - Z(CH—I)- (8)

If z:41 is negative or greater than Z?:_ll 24, the position of R;;1 with respect to H is known.
Else R;11 € B, and the algorithm proceeds to iteration ¢ + 1.

3.3 Needed arithmetic.

To evaluate the sign of an n x n-determinant, the above algorithm performs different opera-
tions among which are the evaluations of signs of (n—1) x (n —1)-determinants. To evaluate
the signs of those determinants, the algorithm calls the (n — 1)-dimensional version of the
same algorithm which in turn involves evaluating signs of (n — 2) x (n — 2) determinants
and so on until dimension 2 is reached, where the original ABDPY method is used. We
here call nth level, the set of all the computations performed by the algorithm except those
involved in the evaluations of signs of (n — 1) x (n — 1) determinants. More generally, the
kth level is the set of all the computations performed by the algorithm to evaluate signs of
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k x k-determinants except those involved in the evaluations of signs of (k — 1) x (k — 1)-
determinants.

In the following, we first focus on the computations performed at the n-th level and then
consider the lower levels.

At the n-th level of computations, the input vectors {Uy, Us, ... U, } are all vectors with b-
bit integer entries. To be able to generalize our conclusions to lower levels, however, we shall
here assume a weaker hypothesis. Namely, we consider the L., norm of the input vectors
(the Lo norm ||U]|,, of a vector U is the maximum absolute value of any components of
U), and define the norm of determinant det(Uy,Us,...U,) as the sum Y ., [|U;]|,, of the
L, norm of its column vectors.

Lemma 3.1 If the norm of D is less than a constant S,, any of the (n — 1) x (n — 1)
determinants considered by the algorithm has a norm less than S, 1 = 25,. Furthermore
all the computations performed at the nth level require an zact integer arithmetic on no more
than [log S, + 1 bits.

To prove the lemma, we first consider in turn all the (n—1) x(n—1) determinants encountered
during the two phases of the algorithm and prove for each of them that their input vectors
can be computed exactly using no more than [log.S,] + 1 bits and that their norm is less
than 25,,. Then, we consider the other computations performed at the nth level.

The encountered (n—1) x (n—1) determinants. The claim is trivial for the determinants
d; encountered in Step 1 of the first phase. Then, we notice that the bound on the norm of
the input determinant implies that the Lo, norms of vectors w and w; defined by equation
5 and 6 are bounded by S,. Thus proposition of the lemma is also obviously true for the
determinants and e, ; encountered in Step 2.

Let us consider the determinants f(2!*!,1) encountered in Substeps 3.2.1. Those de-
terminants involve, in addition to (n — 2) of the input vectors, a vector of the form u,, —
2¢(2') — wy. At the time this vector is considered, segment Ou,, is known to intersect hy-
perplane h(2!) on a point p(2!) = Ou,, N h(2!) which belongs to the (n — 2)-face ¢(2!) +C] in
h(2"). Since p(2') belongs to Oun, |[p(2")|_, and |[un — p(2")||_ are bounded by [|Uy ||, - In
addition, ||p(2') — ¢(2")| . is bounded by 37" [|Us|. Thus, |lun — c(24)]|_ and |je(2Y)]|
are both bounded by S, :

le = <@
le@)]l

and the Lo, norm of ||un —2¢(2Y) —wy ||Oo does not exceed 35, :

IN

[un = p(2H] ., + P2 = c(2))]|, < Sn
2], + [l2(2") = e[|, < S,

IA

l|wn — 2¢(2) - leOO < |lun - c(QZ)HOo + ||c(21)||OO + [Jwi ]|y, < 35n.

Now, if segment Ou,, intersects the hyperplane h(2/*1), point 2¢(2!) 4+ w; is necesseraly one
of the vertices of the (n — 2)-face in that hyperplane intersected by Owu,,. Then the previous

RR n~°3140
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argument shows that ||un —2¢(2Y) — wy || _, does not exceed S.,. Therefore the algorithm can
compute the components of u,, — 20(21) — wj using the associative scheme :

un — 2¢(2") —wi = [[un —c(2)] — c(2)] — wi

If the components of this vector do not exceed S, in absolute value, the above scheme do
not require more than an exact integer arithmetic on [log S, ] + 1 bits, and the norm of the
F(21F1,1) is less than 2S,,. Otherwise, we can conclude that Ou,, does not intersect h(2!+!)
and there is no use to test the determinant f(2'*',1) nor to compute the components of
Uy — 2¢(28) — w;.

A similar argument apply to the determinant f(1,1) of Substep 3.1.1, to the determinants
f(my + 2!=1,1) encountered during Step 4.1 and to the determinants f(mg, j) encountered
in Step 5.

Let us consider the determinants g(2!*!, j) encountered in Substep 3.2.2. Point 2¢(2!) +
w; is necessarily one of the vertices of the (n — 2)-face in h(2'*!) intersected by vector Ou,,
which implies as above that its components do not exceed S, in absolute value. Thus the
norm of g(2!11, §) is less than 2S,, and computing vector 2¢(2!) + w; from ¢(2') and w; does
not require more than a [log S, ] + 1 bits. A similar argument apply to the vectors ¢(m;) +
c(2'71) + w; and to the determinants g(m; + 2!~!, j) encountered in Substep 4.2.

At last, let us consider the determinants a; encountered during the second phase of the
algorithm. Since r; belongs to the origin cell C of £, w is necessarily one of the vertices of
the cell containing point 27, and the ||2r* — w||__ is less than S,,. Thus vector 2r* —w can be
computed from r; and w using no more than [log S, ] + 1 bits and the norm of determinant
a; is less than 2S5, = S, _1.

The other computations performed at the nth level. These computations occurs in Sub-
steps 3.1.3, 3.2.3 and 4.3 when computing the z-components of vertices C'(2!) or C(m;), in
Substep 6 when computing ¢, from ¢, and vector R and, at last, in each iteration of the
second phase when computing C;y1 and Ryy.

Let us first focus on Substep 3.2.3. We consider the 2”2 vertices of Lz that project on
the vertices of the (n — 2)-face ¢(2!) +Cj. As underlined in the description of Substep 3.2.3,
if the z-coordinates of those vertices of Ly are all negative or all greater than z,, the march
is over and there is no need to compute C(2'). Otherwise, at least one of these vertices has
its z-coordinate in the range [0, z,[ which implies that the z-coordinate of any of them is
less than S,, in absolute value. Thus, in particular the z-coordinate of C(2!) is less than
S, and can be computed exactly as the z-coordinate of 2C(2!~1) + Z?:_; U, using no more
than [log S|+ 1 bits. A similar argument apply to the computations performed in Substep
3.1.3 and 4.3.

In Step 6, ¢, and ¢, are both vertices of a cell of lattice £ intersected by segment Ou.,,.
Thus ||c,||,, and ||c,||,, are less than S, and computing ¢, from ¢, using 4 do not require
more than [log S, | + 1 bits. Also, [|u, — ¢4, is bounded by S, and vector u — ¢, can be
computed on [log S, ]+ 1 bits. At last, as above, the z components of C,, and R =U,, — Cy
are not required unless both C,, and C, have z components less than S,, in which case they
can be computed exactly on [log S, ]+ 1 bits. Similar arguments apply for the computations
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of ry1 = 21 — ¢i41 and 2441 at each iteration of the second phase. This ends the proof of
Lemma, 3.1. O

We are now in position to analyse the arithmetic precision required by the lattice method.
An easy recurrence using the above lemma shows that if the norm of the n x n determinant D
is less than S,,, the computations performed at level k require an exact integer arithmetic on
[log Si.] + 1 bits with Sy = 2"~*S,,. For a n x n-determinant with b-bits integer entries, the
norm hypothesis is satisfied with S,, = n2b. Since the original ABDPY algorithm yields the
sign of a 2x 2 determinant with o'-bits integer entries using only a b’-bit arithmetic [ABD*95],
the whole algorithm requires only an exact integer arithmetic on n — 2 + [logn] + b bits.

3.4 Complexity.

Step 1, 2 and 5 involve altogether at most 3n—2 evaluations of sign of (n—1)x (n—1) determi-
nants. Now, the value m obtained in Step 4 is just the integer part of the coefficient of v; in

. . det(Un V2, ..., Vn —
the expression u,, = LC(vy,va,--.,v,_1). Therefore m is no more than ‘I dZt((Zl ’:22’ - 11))|| <
sV2y005Un—

n4/n" 2™ which means that the algorithm loops at most bn+[(% + 1) logn| times in Substep
3.2 and Step 4, computing in each loop n — 1 signs of (n —1) x (n — 1) determinants. During
the second phase, the algorithm performs at most O(bn + nlogn) iterations each of which
involves (n — 1) evaluation of signs of (n — 1) x (n — 1) determinants. Thus the algorithms
call for at most O(bn? +n?logn) evaluations of signs of (n — 1) X (n — 1) determinants. The
other computations at the n-th level take time O(n?). Therefore, the complexity t,, obeys a
recurrence equation of the form

tp = O(bn? +n?logn)t,_ 1 + O(n?),

which leads to an exponential complexity ¢, = O((b + logn)™~1(n!)?). But this bound is
very pessimistic: indeed, even if the determinant is null and requires a full-fledged first
phase followed by bn iterations in the second phase, the (n — 1) X (n — 1) encountered
determinants have no reason to be close to zero. Therefore they are very likely to be caught
by some floating point filter. As the different determinants arising in the loops of the first
phases or during iterations of the second phase differ only by a single column, the floating
point evaluations involved in filtering are reduced to a scalar product (using the minors
relative to the changing column). Thus in practice, evaluating the sign of each encountered
(n — 1) x (n — 1) determinant takes only O(n) time and the time required by the whole
algorithm should be close to O(bn® + n®logn) even for a null determinant. Of course, if the
determinant is not even close to zero, few iterations are performed and the algorithm is very
fast.

4 Experimental results

The reorthogonalization method and the lattice method have both been implemented in C.
The lattice method implementation is at present time available up to dimension five only
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Test Det3x3 Det4x4 Detbx5 Det6x6
b =50 b=49 b =47 b=46
Determinant R Q N R Q N R Q N R Q N
Gauss 9 9 9 13 13 12 23 21 22 36 35 34
Leda 339 | 334 | 337 || 1661 | 1648 | 1650 || 5503 | 5487 | 5250 || 9800 | 8600 | 8300
Reorth. 4 30 | 403 77 386 | 1100 149 604 | 2207 263 848 | 3354
Lattice 11 25 | 345 88 187 | 1232 352 635 | 2243 888 | 1491 | 4051
Filt.+Lat. 3 13 | 355 13 104 | 1171 13 288 | 2284 26 1060 | 4137
LN 3 53 53 4 295 296 na na na

Table 1: Timings in microseconds on a Sun Sparc5, 110MHz, running Solaris (na: not
available). R, Q, N stand respectively for random, quasi-null, and null determinants

but will be soon available in dimension 6 and higher. To be able to compare the efficiency
of those methods with respect to others we have also implemented a floating point Gaussian
elimination (which of course does not always yields the right sign) and an exact computation
of the determinant using the exact integer arithmetic provided by LEDA. In order to show
the practical efficiency of our methods and to get a fair comparison with the code produced
by LN [FV93] for computing signs of determinants, we have also implemented the lattice
method combined with a floating point filter (the results would have been quite similar for
the reorthogonalization method).

We have experimented on determinants of dimensions n from 2 to 6 with b-bit integers
entries, where b = 53 — (n — 2+ [logn]). (This is the precision bound allowed for the lattice
method and slightly over the bound allowed for reorthogonalization, but these bounds are
pessimistic and, in practice, the reorthogonalization method yields the correct sign up to
this precision on the entries). In each dimension, three types of determinants respectively
called random, null and quasi-null have been used. Random determinants have as entries
random signed integers numbers on b bits and their value is of the the order of 2°™. Null
determinants are formed by n — 1 column vectors of the form k;U; and a last column of the
form 2?2_11 [;U; where the components of vectors U; are random signed integers numbers on
[b/2] bits while the coefficients k; and [; are random signed integers numbers on |b/2]| bits.
Therefore null determinants have rank n — 1. Quasi-null determinants are obtained by a
small perturbation of null determinants adding to each entry a random sign integer on two
bits. Timing results appear in table 1.

The lattice and reorthogonalization methods show about the same performances, the
balance being slightly in favor of the lattice method in dimension 3 and 4 and in favor of
the reorthogonalization method in higher dimension. Both appear to be highly adaptive
method being very fast for random determinants (less than a factor 10 above the floating
point calculation) and also fast enough for quasi-null determinants which are not caught by
usual floating point filters. For null determinants, both method are still faster than the exact
computation of Leda and no more than 7 times slower than LN for 3 x 3 null determinants
and 4 times slower for 4 x 4 null determinants. At least for dimension n up to 6, the timing
results of the lattice and reorthogonalization methods agree with the predicted O(n?) law.
This is confirmed by tests performed on the reorthogonalization method up to dimension 15
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Figure 6: Timings as a function of the dimension, for the exact computation of signs of
n X n determinants. The timings are in microsecond. The solid curve corresponds to an
exact computation using a multi-precision package (here Leda). The three dotted curves
correspond to the reorthogonalzation method on respectively null, quasi-null and random
determinants.

and whose results are gathered in the graph of figure 6. Therefore it is clear that the
comparison between the computation using a multi-precision package (Leda or the code
generated by LN) and the lattice or reorthogonalization methods ends up sooner or later in
favor of the latter methods when the dimension increases.

In fact, the lattice method could be very slow in some special cases, for instance when
two column vectors of the input determinant are colinear. This agrees with the worst-
case exponential behaviour, because in such cases most lower level determinants are null.
However a simple preprocessing allows to avoid these bad cases. This preprocessing consists
in first making sure that the first two column vectors are independant (by computing the
2 x 2 minors of these two columns) and then multiplying the input matrix both on the left
and on the right side by a n X n matrix M whose entries are either 1 or —1 and whose
determinant is not null. Such a preprocessing is very fast and only subtracts |—log2 n'| bits
from the allowed bit complexity of the entries.

Another caveat to be mentioned : any of the above method except Leda will fail in
dimension n sufficiently large (possibly less than 20) due to overflow of the range of exponents
in IEEE double precision. At last, we can also mention that these methods in dimension 6
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have been successfully used to detect the singular configurations of a parallel robot with six
degrees of freedom an application where lots of null and quasi-null determinants have to be
tested.

5 Conclusions

The need for computing the sign of determinants arises in many geometric tests, such as
orientation tests or in-sphere tests. In solid modeling, boundary representation require to
compute the intersection of surfaces, which involves computing the sign of multivariate
resultants, expressed as higher-dimensional determinants.

The reorthogonalization and the lattice method both appear to be practical methods to
correctly compute the sign of determinants with integer entries, for dimension up to at least
15. The lattice method extends the ABDPY method (which is limited to the dimension
3) to any dimension. It requires fewer extra bits than the reorthogonalization method and
offers equivalent performance. Furthermore, its special treatment of the last column makes
it especially suitable for computing in-sphere tests. Both methods allow for reasonably big
entries, are adaptive, and provide a dramatic increase of speed over standard multi-precision
methods. This provides an affordable way of performing exact geometric tests, which is a
decisive step towards robustness. However, some work still has to be done to provide good
floating point filters for these high-dimensional geometric predicates.
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A Proof of (1).

Throughout the proof, we will assume that the unit roundoff u is small and that n is not
too large. In [FM67], it is shown that a scalar product X - Y can be computed with error
1.01nul|z||||y|| and that a reduction factor (%) can be computed with error 1.01(2n+2)uH,
as long as nu < 0.01. For all purposes, we will assume that 3nu < 0.01 and that 6; < 0.01.

If j <1 < k, we know that Agcj) = Ag) + LC(A4;,...,A—1). But the vector C; is
orthogonal by construction to A;,..., A;_1 and hence A§j ) and Ag) have the same component
along C;. Moreover Agck) has component sCy along Cj. Thus for any j < k, decomposing

Ascj ) on the orthogonal basis C1, ...,y yields
k—1 0)
(4) _ Ay
Ak = Sck + l; (7[) Cl.

We reduce Ay exactly only when the preconditioning invariant is not satisfied, which implies
that ||Ci||> < O.53||A§C||2, accounting for the roundoff errors in checking that condition. This

Using the following bound (proven below) on the

bounds the first component of HAS; al

other components in the orthogonal basis Ci,...,Ck_1:
N
49) . 2
(7> ICil? < 282|400+ oslicur?, (9)
we find that .
12 2
HA§3> <0538 4,7 + 0555 + 3 25?HAEJ>H . (10)
I=j+1

We finish the proof of the lemma by using the bound (proven below)
k—1 ‘
HAgp H < 2,06 Ls)| ALl +0.71 " 2.067 |G- (11)
=l

Using the Cauchy-Schwartz inequality, we get

2
SR 006200 | [ qee )| < 2062470
Zl 2067c;)1 | < Zl 2.06 ZI IC™ | < Sog2—7 5k
j= = J=



Note that 0.71/(2.062 — 1) < 1. Hence, squaring (11) and using the classical inequality
(z +v)? < 2(z% + 9?), we finally obtain

2 « «
HAS) H < 2 x 2,062k (52||A;c||2 + S,;‘) .
Using this last bound in (10) yields
12
|49 < 08301+ m) SIALP +0.5(1 + 1.010)S;

where 7, = 82?22 2.062(k~1)§2. Finally, inequality (1) is implied by the assumption n <
0.01. The proof of (1) is thus complete, save for (9) and (11).

To prove (11), first observe that because A; — C; and C; are orthogonal, and because of
the preconditioning invariant, we have

4, = Gyl = 4,2 = C;* < (2.05 — (1 — §;)?)B;* < 1.07||B]%,

assuming that §; < 0.01. But then

A(j+1) _ AECHI) A < A(j+1) _ Agcj_*_l) C. A2j+1) _ Gt ||C||+
k Bj J — k C] J Cj B] J
A(J+1)
14; — Gl
J

< HA(J+1)H+HA(J+1)H 185 = Gl +MHA<]+1>H

- I B;]]

< (146 + \/1.07)HA§j+1) H < 2.05”A,j+1) H

However, by the definition of Agcj ),

) A(j+1) A(J+1) A(J+1)
AT - <—Ij3 A4 —fl
J ]

The first term is bounded by 2.05“1453 +) ‘ and the third by 0.5||4,||. The second involves
the error on the floating point computation of the reduction factor and can be bounded
by 0.01

< +

42 14,0+ 50450 (12)

Aij_"l)H for all practical values of n and u. Hence HASJ) is bounded above by

2.06HA§cj+1) H + 0.5||A;||- The preconditioning invariant implies that ||A;|| < +/2.01||C}]l.
Thus,
"

< 2.06”A§j+1) H +0.5]14;] < 2.06”A§j+1) H +0.71|1G]l.



Unrolling this recurrence equation with A" = sA!, we obtain (11).
To prove (9), remember that (%) = 1. Reducing (12) by C; yields
J

Agcj'f'l) Agcj-f-l)
Bj B ﬂ Bj

, and the third is less than 0.5||C}||. The second involves

Agj)

AGFD G+
C;

A
C; B,

1
IG5l G511 + IC511+ SIC;]

The first term is less than ¢;

Agcj+1)|

only the error on the floating point computation of the reduction factor and combined to
the first term can be bounded by 6,41 HAE] ) H Hence the norm of the component of Ag 1)
along C; is bounded by 6j+1|‘A§Cj+1)|‘ + 0.5]|C}||. Again, one obtains (9) by squaring and

using the classical inequality (z + y)? < 2(2? + 9?). O
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