N

N

Interactive Programming Environment for ML

Laurence Rideau, Laurent Théry

» To cite this version:

Laurence Rideau, Laurent Théry. Interactive Programming Environment for ML. RR-3139, INRIA.
1997. inria-00073550

HAL Id: inria-00073550
https://inria.hal.science/inria-00073550
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073550
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

| nteractive Programming Environment for ML

Laurence Rideau and Laurent Théry

N° 3139
March 1997

THEME 2

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Interactive Programming Environment for ML

Laurence Rideau and Laurent Théry

Théme 2 — Génie logiciel
et calcul symbolique
Projet CROAP

Rapport de recherche n° 3139 — March 1997 — 27 pages

Abstract: This paper presents our experiment in building a programming environment for
ML. The approach is based on reusability. From existing compilers we derive some tools
that assist users in developing ML programs. ML being a strongly typed language, its
typechecking algorithm plays a central role. So we present some tools that show how to
make use of type information in a programming environment.

Key-words: ML, functional programming, programming environment, typechecking

(Résumé : tsup)

Unité de recherche INRIA Sophia Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA ANTIPOLIS Cedex (France)
Tééphone: 049365 77 77 — Télécopie: 04 93 65 77 65

Environnement de Programmation Interactif pour ML

Résumé : Ce papier présente le résultat de nos expériences sur la construction d’un en-
vironnement de programmation pour le langage fonctionnel ML. Notre approche se fonde
sur la réutilisabilité. Nous dérivons de compilateurs déja existants des outils qui assistent
I’utilisateur dans le développement de programmes ML. ML étant un langage fortement typé,
son algorithme de typage y joue un réle important. Ainsi nous proposons différents outils qui
montrent comment les informations de typage peuvent étre utilisées dans un environnement
de programmation.

Mots-clé : ML, langage fonctionnel, environnement de programmation, inférence de type

Interactive Programming Environment for ML 3

1 Introduction

This paper presents our experiment in building a programming environment for ML. Our ini-
tial motivation was to understand to what extent a programming environment could benefit
from some of the characteristics of ML, such as strong typing and modular organization. We
have tested our ideas on two different implementations of ML: SML/NJ [1] and CamlLight
[14]. This ensures that what is presented here is independent of a particular implementation
of ML.

Even though we were experimenting, our concern was (and still is) to obtain a real
programming environment for ML and not for a subset of it. This decision has had an
important impact on the design. When dealing with a subset of the language it is possible
to build tools like a parser or typechecker from scratch, while for the full language this is
unrealistic. For this reason, we based our approach on software reuse, linking an existing
programming environment generator Centaur [3] to an existing ML compiler. Note that it
is possible only if the compiler is designed in such a way that it is easy to modify. Following
the terminology of SML, we call such a compiler open. Obviously the two compilers we have
been using are open.

The paper is organized as follows. We first present the different tools we have developed
and we show how they integrate into the environment. Then we concentrate on how these
tools work and what the implementation problems are. For homogeneity, the examples that
illustrate these two sections use CamlLight syntax.

2 Presentation

Figure 1 presents a screen dump of the environment that we obtain. It is composed of four
different windows. The upper left window is an editor that contains an incomplete program.
The program is the result of the editor reading the file test.ml. As this file happens to be
syntactically incorrect, the program is displayed with holes. The holes are represented by
SYNTAXERROR keywords annotated with the piece of text that has been rejected. Furthermore
while typechecking the program (even though it was incomplete), an error and a warning
have occurred. The messages are displayed in the upper right window. Selecting the first
message has highlighted the identifier t11 that has caused the error. The lower left window
is another editor, which contains a more substantial program. Associated to it, the lower
right window gives the explanation of the type of the function tags_ml. The three dots in
the explanation denote a reference to a part of the program. Selecting the first three dots
of the explanation has highlighted the application of open_in to filename.

Now that we have given an overview of the kind of environment we are aiming at. We
present the different tools we have developed, splitting them in two categories. Syntactic
tools take into account only syntactic properties of ML programs, while semantic tools use
some semantic aspects, mainly type information.

RR n~°3139

4 L. Rideau and L. Théry

[#] *test.ml
[File Displav
Details 11

| O0—=10
| hd = tl == 1 + length til;
Change
< ImaeEe > SYNTAXERROR; ORISR EE) DEEDREERE
i = Errors =) 0 Display &electicns

vpe T1ist == Nil rror: The identifier tll is unbound.
Replace 211 List of "a = b Show all ‘Warning: the program contains
Query Esplace ; metavariable(s),
T T — Show next

Goto Meta =
Ins Meta =
Ins Meta >
Named Meta

et rec map = Show prev
function

| £, 0==0
| £, thd = th —= f hdzmap (f, th;

Display Edit 8Selecticns Editing-Tools
Details 11 L i fil
et tags_ml filename parser =
T TP et ic - opendindfilename in
= S lexer__init_mem ic;
= =3 let lexbuf = lexing__create_lexer_channel ic in
Copy Cut let tags = ref [0 in
thange try while true do tagsi=parser lexbuf @ 'tags done
< Insert > it = AT =
G | End_of_file —> close_in ic; output_tags filename 'tags

| Failure "parser” —>
prerr_string filename;
prerr_string " error line "; v Edit Selections Editing-Tools
prerr_int !exer__current_line; —The fu:st argu.ment has the type gf filen.ame

prerr_endline " (synta®)" This function has the type string —> |r_|_|:ha!1nel
| Failure "lexer” —> From .. we getthat the type of filename is string

S = . So we get string

prerr_str!ng Ellenarr!e, i —The second argument has the type of parser
prerr_string "error line "; From .. we get that parser is a function
prerr_int !exer__current_line; ~The first argument has the type of lexbuf
prerr_endline " (lexical)”; From .. we get that the type of lexbuf is §

S0 we get §

From .. we get that the type variable § refines to lexing_lexbuf
50 we get lexing_lexbuf
—The type of the result is ¥

This function has the type y list —> y list —> vy list
From .. we get that the type variable y refines to 7 list
S0 we get 7 list
This function has the type string —> tag list -> unit

From .. we get that the type variable 1 refines to tag

50 we get tag list
So we get lexing_lexbuf —> tag list
—The type of the result is unit
S0 we get string —> (lexing_lexbuf —> tag li

Replace 211
Juery Eeplace
GoLo Meta <
Goto Meta =
Ins Meta <
Ins Meta >
Namsd Meta
Pra Comment

Post Comment
Find 8trg =
Find Next
Find sStrg <
Find Prev
Goto Line

et parse_file filename =

if check_suffix ffilename ".mli"
else

if check_suffix filename ".ml" the
else prerr_endline ("don’t know wh

rites to TAGS file

let aflag = ref false

and files = ref {0 : string list)
and tagfile = ref "TAGS" in
parse
-

) —> unit

Figure 1: A screen dump

INRIA

Interactive Programming Environment for ML 5

2.1 Syntactic tools

Syntactic tools provide the basic functionalities of the structured editor such as pretty prin-
ting, selection, and editing.

2.1.1 Pretty Printing

The recipes to increase legibility of ML programs are the usual ones. First, a special care
must be taken for the layout, so that indentation and line breaking are as meaningful as
possible. In that respect we try to follow the style advocated in books such as [18] and [21].
Second, tokens in programs belong to different syntactic categories, so it is important to
visually distinguish them using fonts or colors. Here is an example of the black and white
postscript generated by our pretty printer:

(*Definition of the map function *)

let rec map =
function

I £0 - []
| f, (nd :: tl) - f hd:map (f, tl);;
Note that comments are in typewriter style while patterns are in italic.

There are two main differences between the Centaur approach and the usual pretty
printing provided by editors such as Emacs [4]. In Centaur, the layout is based on the
abstract syntax tree representation of programs. Given a source file, it is first parsed to
produce a syntax tree. Then using a set of rules, the layout of the tree is computed. So the
pretty printing is automatic and is performed independently of the initial source layout. The
second difference is that fonts and colors are selected using an exact syntactic criterion and
not an approximation such as regular expressions, which are used in the Emacs highlighting
mode.

2.1.2 Structured Selection

One of the benefits of having a close connection between the program and its tree repre-
sentation is that we get for free the structured selection, i.e., a selection that follows the
structure. It means that simply by selecting the token if of a conditional expression it is
possible to highlight the whole expression. Our experiments have shown that having such a
selection is essential: it provides a natural and precise way to show and designate locations
in programs.

2.1.3 Detail Level

Even if it is good practice in ML to build its program as a set of small and modular pieces,
activities such as browsing existing libraries make it always necessary to comprehend big
chunks of code. Once again having the tree linked to the layout provides a natural elision
mechanism. Using the depth in the tree, it is possible to replace expressions that are too
deep in the program by an elision symbol such as “...”. Here is the same program as section

RR n°3139

6 L. Rideau and L. Théry

2.1.1 but with a lower detail level:
(*Definition of the map function *)
let rec map =
function
0 - ..
I f, (hd =t - ..
In the special case of ML, it has been necessary to refine the simple criterion of depth. For
example, cascading if constructs gives nested conditionals in the tree structure. Elision
computation has then to be rebalanced so that each branch of the conditional has the same
detail level. It is also often more pertinent to show the pattern part of a matching with
more detail than its body. The user can then only expand the cases he or she is interested
in.

2.1.4 Guided Editing

Editing in a structured editor takes advantage of the connection with the abstract syntax tree
to propose a menu with relevant tree constructions, i.e., constructions that are syntactically
compatible with the selected place. The notion of incomplete programs is captured by a
special syntax node to represent place holders in the program. So constructing a program is
just a progressive refinement of the program, replacing place holders by expressions which
may also contain other place holders. For example, let us suppose that we want to edit an
expression place holder to get a condition whose test is a conjunction, we start with the
place holder!:
< Exp >

We then select the item if of the menu showing us all the constructions in the syntactic
category Exp, so we get:

if < Bool > then < Exp > else < Exp >

The menu now displays the constructions of the category Bool. To get a conjunction, we
select the item and:

if < Bool > & < Bool > then < Exp > else < Exp >

If the previous example is a top-down construction, it is also possible to construct programs
bottom-up. For example, given an expression, the menu offers two possibilities allowing to
encapsulate this expression in a conditional: selecting the first item on the expression

a+b

gives
if < Bool > then a+b else < Exp >

1Place holders are surrounded with brackets and the boldface indicates the expression that is currently
edited.

INRIA

Interactive Programming Environment for ML 7

while selecting the other gives
if < Bool > then < Exp > else atb .

More generally the menu should also provide for any kind of structured transformations. An
example of such a transformation is the rewriting of a conditional into a matching. Given
the conditional expression

if a<b then b-a else a-b

triggering the transformation produces:
match a<b with true -> b-a | false -> a-b.

The guided editing provided by Centaur accommodates these three kinds of editing. Even
though menus are customizable, special care has to be taken to provide pertinent default
menus. More details will be given in the implementation section.

2.1.5 Direct Editing

Structured editing should not rule out direct character based editing. They correspond to
two complementary ways of constructing programs. In the Centaur system, structured edi-
ting is the default but direct editing is available as a special mode. When entering the direct
editing mode, the user can freely modify the character string of the selected expression. Exi-
ting the mode, the modified string is parsed and its abstract syntax representation replaces
the subtree that was selected.

2.2 Semantic tools

The syntactic tools we have presented are very basic and they are a simple incarnation of
generic tools provided by the Centaur system. Semantic tools are more specific to ML.

2.2.1 Type Information

ML is a strongly typed language. It means, in particular, that it is possible to associate a
type with every expression of a well typed program. Knowing the type of an expression is a
valuable information. It can be used as extra information to understand a piece of code but
also as debugging information to understand why an expression is badly typed. ML uses
type inference along with polymorphic types so discovering the type of an expression is not a
straightforward operation. A tool to inspect types is then a natural need in a programming
environment. How should this tool be integrated into the environment? A first attempt
is to see the tool as a function that takes a subexpression of the program and returns its
type. So for example, every time an expression is selected in the editor, its type appears
in a dedicated type window. However, displaying only the type of the current expression is
rarely sufficient as one often needs to see simultaneously the types of different expressions.

RR n°3139

8 L. Rideau and L. Théry

This is particularly true when polymorphic types are used intensively, it is then crucial to
see which type variables are shared between expressions.

A second attempt is to use the program and the type constraint constructor to show
types. Because ML uses polymorphic types, it contains a special constructor to constrain
the type of an expression to a ‘smaller’ type than the one that would have been inferred. It
is possible to use this constructor to hold the type of the expression, then inspecting types
simply modifies the program. For example, given the following program:

let rec even x f g = (match (f x) with
0 -> true
[_ -> odd (g x) f g)
and odd x f g = (match (f x) with
0 -> false
| 1 -> true
| _ -> even (g x) f g);;

and selecting the third occurrences of £ and g we get:

let rec even x f g = (match (f x) with
0 -> true
[_ -> odd (g x) (f:’a->int) (g:’a->’a))
and odd x f g = (match (f x) with
0 -> false
| 1 -> true
| _ ->even (g x) £ g)3;;

The main drawback of this solution is code pollution, so after inspecting types a clean-up
phase is necessary. A consequence of this pollution is that while inspecting types, the layout
of the program is changing because of the insertion of types. In practice, the perturbation
of the layout becomes quickly annoying.

Finally the solution we propose is to have a type window as presented in the first solution
but to use it to display not a single type but a stack of types. Every time an expression is
selected, its type is put on top of the stack. Moreover, types in the stack are linked back to
the expression in the program, so that selecting a type in the stack highlights the expression
that has the selected type. With this solution, the code is left unchanged and the types of
different locations can be inspected simultaneously.

2.2.2 Type errors

Typecheckers provided by compilers only accept complete programs. So the typechecking
phase is usually done once the program has been completely written. In our environment we
manipulate incomplete programs, i.e., programs with place holders. It is natural to extend
the typechecker so that it accepts incomplete programs. It is then possible to interact with
the typechecker at any stage of the program construction leading to earlier detection of bad
design decisions.

INRIA

Interactive Programming Environment for ML 9

A second important characteristic of typecheckers is that all type errors of the whole
program are to be reported. Not all compilers have this characteristic. For example the
native CamlLight typechecker stops at the first error encountered. The main reason seems
to be that a first type error could provoke other errors resulting in a large number of error
messages. Our opinion is that it is arguable. First, examples such as the SML compiler
show that there are techniques to restrain the influence of a type error. Second, handling
a large number of error messages is only a problem in a poor programming environment.
In a graphical environment, message browsers are adequate tools to handle a large quantity
of error messages. Of course, this characteristic is a must when dealing with incomplete
programs.

The last characteristic of typecheckers is the pertinence of its error messages. Elaborate
solutions have been proposed to improve pertinence such as [13]. Our approach has been
more pragmatic. In practice, compilers propose much simpler solutions. So we started from
these simple solutions and tried to understand how they could benefit from the possibility
of showing locations in the program. First of all, every error message needs to be associated
with the ezact location in the program where the error occurs. It appears also that some
classes of errors can benefit from the possibility of showing several locations simultaneously.
It is the case for applications where the type of the left part does not match the type of
the argument. There is a conflict between the type that is expected and the type that is
computed. To be more concrete, let us take a simple example with the following program

let rec £f x =

(£ (1,2,3))

and the proviso that f does not occur in the dotted part of the definition of £. While
typechecking this program, an error occurs at the second application of f telling that the
expected type is int * int x int — « while the type that is computed is int * int — «. Our
refinement improves this message by showing three locations:

let rec £ x=

@ [@29]

The first location is the place where the error occurs: the second application. The second
location is the expression that has constrained the expected type to differ from the computed
type. Here it is the pair (1,2) that forces f to accept a pair as first argument. The third
location is the equivalent of the second location but for the computed type. So here it is the

RR n~°3139

10 L. Rideau and L. Théry

triple (1,2,3). This extra information is clearly valuable as both occurrences of application
of £ could be arbitrary distant.

2.2.3 Type Explanation

Even with the type inspection and the message browser there are still cases where finding
the source of a type error is difficult. The typical situation is where the type that is inferred
differs for what we expect and we cannot figure out why. Because of polymorphism, type-
checking is very similar to prolog execution: during typechecking, the type of an expression
is progressively unified against other types. To understand the type of an expression it
is important to figure out which expressions in the program have contributed directly, or
indirectly, to the result.

This idea of type slicing has originally been proposed as a way to explain type inference
by Mitchell Wand in [20]. More recently, Dominic Duggan and Frederick Bent in [11] have
extended the technique to handle several kinds of typechecking including ML typechecking.
Another influential work in a related area has been the one described in [5]. In this paper,
Coscoy et al. investigate the possibility to generate a natural language explanation from a
mechanized proof done in Coq [8], a prover based on type theory. In that context, explaining
a proof becomes explaining why a program has a given type. We have tried to equip our
environment with a tool that follows these lines. Once a program has been typechecked, it
is possible to have an explanation for the type of any expression in the program. Let us
consider the following program

(*Definition of the map function *)
let rec map =
function

L0 - [
| f, (nd :: tl) - f hd:map (f, tl);;
Selecting the first occurrence of map and pressing the button Explanation updates the
window that is dedicated to explanation as follows:

From 1 we get that map is a function
— The type of the first argument is (typeof f) * (typeof tl)
From 2 we get that the type of { is (typeof hd) — 3
So we get ((typeof hd) — B3) * (typeof tl)
From 3 we get that the type of tl is (typeof hd) list
So we get ((typeof hd) —) * (typeof hd) list
— The type of the result is «
From 4 we get that the type variable « refines to 3 list
So we get (3 list
Altogether we have ((typeof hd) —) * (typeof hd) list — S list

Numbers represent hyperlinks that are connected to the program. Selecting one of these
numbers highlights the corresponding part of the program. To emulate this behavior in this

INRIA

Interactive Programming Environment for ML 11

presentation, we simply represent the correspond parts by boxes with the link number in
superscript.

let rec map =
function

| £, 1 =10
(hd::t1) ‘3 — |fhd |2 : |map (f;tl) i 5

The explanation is presented as structured text. Each section introduces the type of a
program expression which is then progressively refined. After each refinement, the type of
the expression is repeated. Note also that the keyword typeof is used to link type variable
to variable identifier in the text.

| £,

3 Implementation Issues

After having briefly described the different tools we have been developing, in this section
we describe more deeply some tools stressing the problems that we encountered while im-
plementing them.

3.1 Implementation of the user interface

As stated in the introduction, we develop an interactive programming environment on top
of an existing ML compiler. We use Centaur, the programming environment generator,
to derive most of the components of the environment such as editors, menus, pulldowns. If
most of the graphical components we use could easily be implemented with other technologies
such as Tcl/Tk [17] or Java/Awt [2], we rely heavily on structured editing. It means that
the editor which is displaying the program under construction is aware of the underlying
structure of ML programs. The editor does not consider a program just like a set of lines
but it keeps a close link between what is displayed and the representation of the program
as an abstract syntax tree.

3.2 Abstract Syntax and Parsing

Due to its distributed architecture, the Centaur system is open and can easily be connec-
ted to external components [10]. To communicate with external tools, Centaur provides a
simple communication protocol. This protocol allows structured data transfer and remote
operations.

Using these communication facilities, in our ML environment, parsing is performed by
an ML parser that has been extracted from the ML compiler. This parsing produces ML
abstract syntax trees that are then transferred to Centaur. On the ML side, we perform a

RR n~°3139

19 L. Rideau and L. Théry

postorder tree traversal, sending to Centaur tree building commands according to a dedicated
tree protocol defined in [9].

3.2.1 Overview of the Syntax Tree Protocol

In this section, we detail the protocol used to transfer an abstract syntax tree from ML to
the programming environment. It assumes that the two components know the formalism?
of the tree. The protocol design takes into account the potentially large size of the trees.
To avoid problems during the transfer, the data is split into atomic data. With the abstract
syntax tree protocol one has to send the tree node-by-node. The receiver re-builds the
corresponding tree progressively. In case of a connection failure, the subtrees already sent
need not to be re-sent. The data transfer can continue at any given subtree. The sender
traverses the tree so that the receiver can incrementally construct the tree. The receiver
manages a stack to store nodes needed for later constructions.

There are two types of nodes and, thus, two creation primitives: make-leaf and make-
node.

o make-leaf <formalism-name> <operator-name> <value>
o make-node <formalism-name> <operator-name> <number-of-sons>

Note that the number of sons is used by the receiver to pop from the local stack. The
formalism-name argument allows the transfer of multi-formalism trees. This formalism
must then be known by both the sender and the receiver.

Furthermore, the transferred trees may be incomplete (i.e., containing placeholders to
mark the location of the missing subtrees) or annotated (i.e., information is attached to the
nodes).

3.2.2 Entry Points

When doing structured editing, entry points in the parser are crucial: they are used to parse
sub-expressions. We don’t want that a local modification forces the reparsing of the whole
program. Unfortunately some compilers can compile only programs, the SML/NJ (resp.
the CamlLight) parser has one single entry, the one for the declarations (resp. two entries,
one for the declarations and one for the expressions).

To overcome this problem, we create a table that associates each entry point with two
strings and a path. The two strings are used to encapsulate the string to be parsed so
that the result is parsable at top level. For example, if we consider the entry point that
corresponds to the types of the ML language, its two associated strings are "let x = (y:"
and ")". Given a string that represents a type such as " (int*int)1list", the encapsulation
creates "let x = (y:(int*int) list)" that represents a top level declaration. The path
in the table is then used to extract the abstract syntax representation of the initial string
from the resulting parsed tree.

2The formalism defines the abstract syntax of the trees.

INRIA

Interactive Programming Environment for ML 13

3.2.3 Comments

The problem of comments is more delicate. Comments are useless for compilation, so they
are usually thrown away during the parsing phase. This might not seem crucial as it is
obvious that the comment mechanism can be replaced advantageously in an interactive
programming environment by some fancier literate programming techniques a la hypertext.
Nevertheless it seems rather unpleasant to get rid of this basic way to annotate programs.

Our solution takes advantage of the fact that most of the ML compilers need to keep
extra location information inside parsing trees in order to be able to give more precise error
messages. S0 during the lexical analysis we just record the list of comments with their
locations. Then using the location information in the parsed tree, it has been possible to
develop a good heuristic to hook comments back in the structured editor.

3.2.4 Syntax Error Recovery

A characteristic of parsers is that they generally stop at the first error encountered. Thanks
to the structure of ML programs (list of declarations), it is always possible, when parsing
a list of declarations, to continue the syntax analysis on the next declaration following
a syntax error. Using the tree protocol facilities, in case of syntactic error, we send to
the programming environment an incomplete syntax tree (with a placeholder marking the
location of the missing declaration), annotated with the erroneous text where the syntax
error has been detected.

With this technique, error recovery has a rough granularity, but the whole program is
analysed, and errors can be corrected by editing the erroneous text in the programming
environment.

3.2.5 Contextual information

In Centaur editing and prettyprinting are done in a context free manner. Unfortunately ML
has some constructs that make it necessary to handle contextual information. For example,
an infix or postfix declaration indicates that the parser should behave differently before
and after the declaration. Rather than extending the general mechanism of editing and
prettyprinting, we implement an intermediate solution where contextual informations are
kept at the level of the abstract syntax tree. Then any expression within a given syntax tree
is manipulated in the same context. For the implementation, this implies that the ML side
that takes care of the parsing and typechecking has to maintain an environment for every
program developed in the environment.

3.3 Pretty Printing

To describe the layout of programs, Centaur provides a pretty printing metalanguage called
PPML [12]. A PPML specification is composed of a set of rules. The left part of the rule
describes a pattern. The right part of the rule is a box description. The first element of a

RR n~°3139

14 L. Rideau and L. Théry

box, written between brackets, is the combinator. It explains how the different elements of
the box are to be displayed. An example of a rule is the following:

plus(sx,%y) — [<h 1> sx "4+" xy]

The pattern part of this rule is ‘plus (xx,*y)’, variable prefixed by a star represents arbitrary
term. The right part is composed of the box ‘[<h 1> *x "+" *y]’. The combinator of the
box is <h 1>. The box contains three elements: the recursive call on the first son, the
character "+", and the recursive call on the second son. When the rule is applied, the three
elements are then displayed in horizontal mode with an interword spacing of one unit.

Tt is possible to associate graphic attributes (i.e., color and font) to elements of box. Sym-
bolic names are used for attributes so that customization can be performed independently
of the PPML specification. It is also possible to modify the computation of the detail level
by matching the current level of the tree and changing the recursive calls. So for example,
a modified version of the previous rule could be

plus(*x,xy)!" — [<h 1> #x!"*1 in class = symbol: "+" xy!"+1]

In this case the character "+" will be displayed using graphical attributes of the class symbol
while the sons of plus are recursively called with a detail level boosted by one unit.

Finally the selection mechanism is automatically derived from the PPML specification.
It works as follows: when selecting a token of the pretty printer output, the rule that has
produced the token is recovered. Then the tree that is selected is the one that has matched
the left hand part of the rule. Applying this principle to the previous rule, selecting the "+"
token will select the whole plus tree.

In both ML implementations, there are more or less one hundred operators in the abstract
syntax. Pretty printing specifications are about one thousand lines, which correspond to two
hundred rules. To our knowledge, none of the compilers appear to have a pretty printer for
their abstract syntax, so it is difficult to evaluate the quality of the pretty printers we
have obtained. Still, we believe our specifications are rather compact if we keep in mind
that a specification describes not only the pretty printing but also the selection and the
computation of the detail level.

3.4 Guided Editing Menus

The simplest menu that is provided once the abstract syntax is entered in the Centaur
system is a hierarchical menu where the submenu of each syntactic category contains an
item for each constructor. Such a menu is far from being usable, it gives a too detailed
vision of the program construction.
A first operation is to regroup important constructs in a couple of pertinent items. An
?

example of such a phenomenon is the ‘let ...in ...’ constructor. It is represented in the
abstract syntax by an operator that takes three arguments:

— a boolean that tells if the constructor is recursive or not,

INRIA

Interactive Programming Environment for ML 15

— a list of bindings that associates values to local variables,
— an expression that delimits the scope of the previous bindings.

In Centaur, lists are explicit operators, so in the definition of the abstract syntax, the
operator ValBinding list represents the list of bindings. An element of this list must
belong to the syntactic category ValBinding whose only operator is valbinding which
takes two arguments a pattern and an expression. From this it follows that an operator
let has always a Valbinding list as its second argument, which has at least one element
whose head operator is valbinding. Also, the let constructor is heavily used in ML so it
makes sense to provide the user with two items: one for the recursive version and one for
the non recursive one. It is possible to incorporate these two remarks in two rules of the
menu:

let :
xx {Expression} ->
let(false(),ValBinding list(valbinding(*y,*z)),*t)
letrec :
xx {Expression} ->
let(true(),ValBinding list(valbinding(*y,*z)),*t)

Asin PPML, identifiers prefixed by a star represent arbitrary terms. The first rule associated
with the item let expresses that any term belonging to the syntactic category Expression
may be transformed in a non-recursive ‘let ...in ...’ construction.

A second operation is to introduce bottom-up rules. Top-down rules are interesting when
starting to build a program from scratch. Bottom-up rules are more suited for modifying
existing programs. If we come back to our previous example, creating a local variable on
top of an existing expression is a frequent operation. It can be obtained by refining the two
rules we have given previously.

let :
*xx {Expression} ->
let(false(),ValBinding list(valbinding(*y,*z)),*x)
letrec :
xx {Expression} ->
let(true() ,ValBinding list(valbinding(*y,*z)),*x)

We simply reuse the variable identifier of the lefthand side and make it appear in the body
of the let as its third argument.

A last operation is to add some useful transformations. In our example, it may be handy
to pass from a non-recursive local declaration to a recursive one. It can be done using two
new rules.

+rec :
let(false(),*y,*x) {Expression} -> let(true(),*y,*x)

RR n~°3139

16 L. Rideau and L. Théry

-rec :
let(true(),*y,*x) {Expression} -> let(false(),*y,*x)

The menu proposed in the Caml version contains 140 rules, among which 100 top-down
rules, 20 bottom-up rules, and 20 transformation rules. Although we concentrated our effort
in developing one general purpose menu for our environments, we are convinced that the
environment should provide not one, but several different kind of menus. For example, it is
obvious that our general purpose menu is far too complex for a beginner in ML.

3.5 Typechecking

Before entering into the details of the different tools that use type information, it is first
necessary to give a quick introduction on how the ML typechecker works. Our goal here is
not to present completely the algorithm (for this see [7], for example) but rather to introduce
enough material to make the following discussion fruitful.

The typechecking of a program is performed by a single traversal of the data structure
that represents the program. The central part of the algorithm is the unification algorithm
that makes the expected type of an expression equal to the type that has been effectively
computed. Take as an example the application that is composed of a function and an
argument. The typechecking of an application is done in seven steps.

1. The expected type of the function is a function type a — .

2. The type of the function is computed and gives the value ~.

The expected and computed types of the function are unified to ay — (.
The expected type of the argument is then a;.

The type of the argument is computed and gives the value as,.

S ok W

The expected and computed types of the argument are unified leading to a3. This
unification gives the type a3 — (2 to the function since the unification of ay may have
changed type variables contained in ;.

7. The return type of the application is 5.

Unification substitutes a type variable either to a type value or to another variable. This
last operation is called aliasing. Taking a simple example, suppose that we want to unify
ax (3 — v with int x 8 — 1. The result of unification is to substitute a with int, leaves
B unchanged and aliases v and 7. Usually type variables are represented by pointers, i.e.,
reference cells in ML, then unification simply updates pointers. Figure 2 shows a graphical
representation of unifying these two terms. Boxes represent type variables, instanciation is
represented by a thin arrow.

INRIA

