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Abstract: We consider the problem of evaluating the behavior of a communication
network face to the possible disruption of some of its components. We are interested
in the case when there is no available statistical information about the dependability
properties of the network components. Instead of working with reliability metrics in
a stochastic context, we analyze vulnerability measures in a deterministic framework.
This approach allows us to propose a solution to other classes of problems (not
easily handled in reliability theory). For instance, we can consider the problem
of evaluating the capacity of a network to resist to external attacks. We can also
address the problem of quantifying the network ability to satisfy some capacity
constraints in transporting information. In the paper, we propose a definition of
vulnerability allowing the numerical evaluation of these aspects of a communication
system. We show that it verifies some intuitively desirable properties, which is not
the case of previously proposed means of vulnerability analysis. Last, we discuss the
algorithmic issues related with the evaluation of the proposed metric.
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Evaluation de la vulnérabilité d’un réseau
par le vecteur de coupes minimales

Résumé : Nous considérons le probléeme de I’évaluation du comportement d’un
réseau de communication face & la défaillance possible de certains de ses composants.
Nous nous intéressons au cas ou nous ne disposons pas d’informations statistiques
sur les composants du réseau. Au lieu de travailler avec des mesures de fiabilité,
dans un contexte stochastique, nous étudions des mesures de vulnérabilité, dans un
contexte déterministe. Cette approche permet de proposer une solution & d’autres
types de problemes, difficilement traités dans la théorie de la fiabilité. Par exemple,
nous pouvons considérer le probléme de ’évaluation de la résistance du réseau face
a une aggression externe. On peut également évaluer ’habilité du réseau a satisfaire
certaines contraintes de capacité dans le transport de 'information. Dans ce papier,
nous proposons une définition de la vulnérabilité autorisant 1’évaluation numérique
de ces aspects d’un systéme de communication. Nous montrons qu’elle vérifie un
certain nombre de propriétés intuitivement souhaitables, ce qui n’était pas le cas
des mesures précédemment proposées. Finalement, nous discutons ’aspect algorith-
mique relatif & ’évaluation de la mesure proposée.

Mots-clé : réseau de communication, vulnérabilité, fiabilité, conception de réseau
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1 Introduction

The behavior of a communication network when some of its components fail is unam-
biguously handled by the so-called network reliability theory. The framework is a
stochastic one, in which the analyst builds a model around the concept of graph
and includes the available statistical information about the dependability proper-
ties of the components (nodes, channels) and possibly of the users (offered traffic).
This data together with the knowledge of the structure of the network leads to the
definition of many useful reliability metrics and to the development of algorithmic
solutions to the problem of how these metrics can be evaluated. More specifically, the
network can be, for instance, represented by an undirected multi-graph G = (V, €)
where V is the set of nodes and £ is the set of edges representing the bi-directional
communication channels. In the sequel, we will speak simply about graphs, but all
the results shown here are valid in case of more than one edge between the same
pair of nodes. With each edge i we can associate a probability r;, its (elementary)
reliability. This means that each line is either operational (state coded by 1) or
non operational (state coded by 0) and that the probability to find edge ¢ in the
operational state is r;. Furthermore, we assume, as usual, that the different random
variables “state of line 7” are independent and, for simplicity, that nodes are perfect.
The most widely studied reliability measure in such a context assumes that two
particular nodes s (the source) and ¢ (the terminal) are fixed and that we are inter-
ested in the communications between them. This leads to consider the event “there
is at least a path between s and ¢t having all its edges operational (an operational
path)”. The probability of this event is the reliability R,; of the system, called
source-to-terminal reliability. There are many available algorithms to compute this
metric (see [1, 2]). If we are concerned with the possible communications between
all pairs of nodes, then we deal with the all-terminal reliability R, which is the
probability that there is at least one operational path relying any pair of vertices.
An important problem with these metrics and with their extensions is that in almost
all the contexts of interest, their evaluations are NP-hard problems.

Assume now that statistical information about the behavior of the components
is not available. In this case, we see two alternatives to still perform an analysis
of the system. Ome can build possible scenarios by setting the set of elementary
reliabilities to different values and answer “what if” questions. This can give insight
into the properties of the studied system, for instance allowing the user to identify
weak points in the network topology. The other approach, which is the main subject
of this paper, is to obtain useful information from the topology of the network only,
by studying vulnerability metrics instead of reliability ones.

RR n° 3125



4 Stéphane Bulteau, Gerardo Rubino

Let us consider the communications between nodes s and ¢. Intuitively speaking,
a network is vulnerable with respect to source—terminal communications, if it is
“easy” to disconnect those nodes, that is, if the fact that a “few” components of
the network are down makes that there are no more operational paths between s
and t. The problem relies of course in the meaning to assign to the words “easy”
and “few”. Consider, for instance, the two examples in Figure 1. Network 1b

Figure 1: A first example

is a modification of 1la obtained by changing the position of lines ¢ and k. Due to
the bridge j in 1a, anyone will prefer network 1b, as far as communications between
s and t are considered. The problems are mainly two: first, how to quantify the
differences between the topologies in order, for instance, to compare two alternative
options; second, how to do with less trivial cases. This is the goal of the paper.

We will denote by V(G) a vulnerability measure of an undirected graph G. If we
consider only the communications between nodes s and ¢, we will speak about source-
to-terminal vulnerability, or 2-terminal vulnerability, and the associated measure
will be denoted by V;i(). In case of being concerned by communications between
any pair of nodes, the measure is the all-terminal vulnerability, denoted by V().

The contents of this work, which is an extension of a previous work presented in
[3], is the following. In next section, we discuss the main properties that a vulnera-
bility index should have. In Section 3, we briefly recall previous attempts to work
with the vulnerability concept. The problem here is that none of the metrics that
have been proposed in the literature satisfy the minimal set of properties discussed
in Section 2. Section 4 presents a new vulnerability measure and we show that it has
the properties listed in Section 2. In Section 5, we prove that the measure verifies
another property, which is particularly useful for the applications. In Section 6, it is
discussed how one can extend the metric in a natural way, to handle other problems

INRIA



FEvaluating network vulnerability with the mincuts frequency vector 5

involving supplementary data about the network. We give numerical examples in
Section 7 and the last section is devoted to some concluding remarks.

2 Desirable properties for a vulnerability measure

A first point of this paper is the claim that a vulnerability measure should satisfy a
minimum number of properties to be really meaningful. We list here what we think
the most important ones are:

(i)

(i)

(iii)

Ordering. First, we must be able to use it to compare two different topologies,
that is, the set of vulnerability values must be ordered.

Monotonicity. Second, the measure must have the following monotonicity
property: if we denote by G + e the network obtained by adding the edge e to
G, and if V() is the vulnerability measure, we should have

V(G +e) <V(G).

This follows from the underlying idea of what we want to represent, that
is, the “resistance” of the topology when some of the components fail, its
“robustness” or its “weakness”, etc. Under these English words there is the
idea that, given the fact that we are interested in the network support to allow
communications between pair of nodes, deleting edges makes the system more
“yulnerable”, that is, worse than before.

Globality. Third, the measure must be global enough. What we mean is
that, for instance, it must allow us to distinguish between the two networks
in Figure 2 (and it should say that 2a is less vulnerable than 2b, because of
the monotonicity property). In other words, even if both networks in Figure 2
have a similar “weakness” around the edge adjacent to the only node with
degree one, we can naturally desire that the first one, due to its higher density,
be less vulnerable than the second.

Formally, let z be an articulation point of G, that is, when we delete z and its
adjacent edges, the resulting graph denoted by G — z has at least 2 connected
components G; and Go. Assume that a new graph G’ is defined by replacing
G1 by G} in G. We want that

if V(G!) > V(Gy), then V(G') > V(G).

RR n° 3125



6 Stéphane Bulteau, Gerardo Rubino

o
(a) (b)

Figure 2: A second example

If we are more specific about the fact that we speak about 2-terminal or all-
terminal vulnerability, then we can be more precise. For the all-terminal case,
if Van(G1) > Van(Gi1), then we want that Vo (G') > Van(G). In the 2-terminal
case, we must take into account where the two fixed nodes s and t are. If s
and t belong to Go, then we want that V(G') = V(G) whatever happens with
G1. And if s € G; and t € Gy, then if V; 5(G}) > V; 4(G1) then we want that
Vs,t(gl) > Vs,t(g)-

Let us observe that, probably, other variants of (iii) can be defined using dif-
ferent particular subgraphs, but we will limit ourselves in the paper to bicon-
nected components (or, more precisely, to union of biconnected components
as G, above).

This set of properties seems to be minimal. A supplementary point is that it is
clearly useful to be able to consider both the source-to-terminal case and the all-
terminal one, as it is done in reliability theory. From this point of view, we consider
that the following property is necessary in the 2-terminal case:

(iv) Given two graphs G; and G, and a pair of nodes marked in each, s1,¢; in Gy,
S9,t9 in Go, let us define the series graph G, as the graph obtained by identi-
fying, say, nodes ¢; and sy, and the parallel graph G, obtained by identifying,
say, nodes s; and sz, and nodes t; and t2. We then want that

Vsl,tz (gs) 2 Vsl,tl (gl) a‘nd Vsl,tz (gs) Z I/Sz,tg (g2),

and that

Vs,t(gp) < ‘/t?l,t1 (gl) and Vs,t(gp) < Vsz,tz (g2)

Even if other possibilities exist that can be justified as these, we will show in
next section that no previous proposal to measure the vulnerability of a network

INRIA



FEvaluating network vulnerability with the mincuts frequency vector 7

satisfy (i) to (iii). All other proposals verify (i), since they all use integers or reals
as vulnerability metrics. The problems are with the remaining, and from our point
of view, important properties. It must also be added that most previous effort was
concentrated on the all-terminal case only.

The goal of our research was to find a way of measuring vulnerability satisfying
the given minimal set of properties. The result is described in Section 4. Not only
the proposed index verifies properties (i) to (iv), but it has also other interesting
supplementary characteristics (see Section 5 and Section 6). It can also handle both
the source-to-terminal and the all-terminal cases, or the general K-terminal case,
where K is any subset of nodes. In the paper, we study the metric in the two main
cases Vi 1() and Vun().

3 Previous work on the vulnerability concept

As we have seen in the introduction, the underlying idea under the concept of “vul-
nerability” is connectivity. For this reason, let us recall here the definition of mincut
which will be central in the following. An s,t-cut is a set of edges, denoted by
(X, X), where X is a subset of nodes containing either s or ¢ but not both and X is
its complement: it is defined as the subset of edges having one extremity in X and
the other one in X. An s,t-mincut is an s,¢-cut not containing (strictly) any other
s,t-cut. A (min)cut is an s,¢-(min)cut for some pair s, t.

For any subset of nodes V' C V, let us denote &y = {(u,v) € & s.t. u,v € V'}.
The pair (V', €yr) defines the graph induced by V' in G. A key result about mincuts
is the following: if I' = (X, Y) is an s,t-cut in G, then I' is an s, t-mincut of G if and
only if both (X,€x) and (X, &x) are connected.

From the vulnerability point of view, perhaps the most natural idea is to use the
edge connectivity ¢ of the underlying graph as a measure, also called the breadth of
the graph, that is, the minimum cardinality of an edge disconnecting set. It is in fact
an invulnerability metric, since we prefer high values rather than low ones (to have a
measure of vulnerability, we can use, for instance, 1/¢). The problem with c is that
it is not global enough: it insists too much on a local weakness of the network. For
instance, with this definition, network la in Figure 1 and a series with extremities
s and t would have the same vulnerability with respect to communications between
s and ¢t (¢ =1 in both cases), and, nevertheless, we intuitively “feel” that they are
not equivalent from the “vulnerability” point of view, and thus, we should want to
differentiate them. In fact, we want that the measure says that network 1b is better
than la also in the all-terminal case. In Figure 2, we also have the same value ¢ = 1
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8 Stéphane Bulteau, Gerardo Rubino

when considering the all-terminal case, and network 2a appears more “robust” than
network 2b.

When considering the parameter ¢ as a measure, it is interesting to relate it to
the reliability framework. Assume that every line has the same elementary reliability
r. The network reliability (either source-to-terminal or all-terminal, or even more
general reliability metrics) is then a polynomial in r. Writing » = 1 — ¢ (since the
usual situation is € = 0), and using a Taylor expansion, R can be written

R=1—n.®+ 0

where n. is the number of mincuts of (minimal) size ¢ (see for instance [1]). This
expression can be very accurate when used to approximate the reliability of a network
composed of highly reliable components (see [2]). It suggests that the number of
mincuts could also be a possible relevant or useful parameter in our context. We
can observe that it is also rather local; in the two graphs given in Figure 2, we have
ne =1 (and ¢ = 1 as well). One of the objectives of our proposal is to avoid this.

An interesting idea is to use this comparison with reliability to calibrate or to
validate a vulnerability metric proposal. That is, to try to obtain that the more
reliable a network is, the less vulnerable it is. But it is not that easy, because of
the so-called crossing reliabilities problem [4]. Let us consider two networks G; and
Go with the same number of nodes and edges. Assume that all the lines have the
same elementary reliability 7 and let us denote by R;(r) and Ra(r) the respective
network reliabilities. For some values 7/, 7" of r, it is possible to have R;(r') < Ra(r’)
and Ry(r") > Ry(r"). The consequence is that in order to use the reliability as a
reference, a value of r must be fixed. The natural choice is to consider r close to one.
In that case, we are in the situation discussed before, where the relevant parameters
are ¢ and n., and, as we have shown, this is not good enough for our purposes.

Other attempts to capture the vulnerability concept have been proposed, based
on the distance between nodes. For example, looking at the communication between
every pair of nodes, Bollobds [5] suggests to use the diameter, that is, the maximum
length of shortest paths between any two nodes. The diameter is not rich enough.
For instance, in a series of m edges between two nodes z, y, the diameter is m,
and it is also equal to m if we put, say, k paths in parallel between z and y, each
with, for instance m edges. Even adding “vertical” edges between these parallel
paths does not change the diameter of the graph. Consider now a graph G with an
articulation point = such that by deleting z, we obtain three connected components,
G1, G2 and G3 with diameters d;, dy and d3 respectively, such that d; < min(ds, ds).
If you replace G; by any graph with diameter d < min(dy, d3), you obtain the same
vulnerability (even if d > d; or d < dy).

INRIA



FEvaluating network vulnerability with the mincuts frequency vector 9

Having observed that the diameter, as a vulnerability measure, is poor in many
cases, Boesch and al. [6] analyze the line-persistence, defined as the minimum num-
ber of edges that must be removed in order to increase the diameter or to disconnect
the network. As an invulnerability index, this parameter does not verify the pro-
perty of monotonicity. The line-persistence of the complete graph with n nodes, K,
is equal to 1, whereas the line-persistence of K,, — e is n — 2.

More complex metrics have also been built starting from this type of parameters,
with the objective of improving the accuracy. Following this line, Soi and Aggarwal
[7] proposed to identify a set of graph parameters that could be a priori relevant
to the vulnerability concept, and to divide them into two classes, C; and Cy. For
each parameter p, they decide if the vulnerability metric should be increasing or
decreasing when p increases. In the first case, p € C; and p € Cy in the second.
Then, some simple function of the selected parameters is chosen, such that it is non
decreasing on variables in C; and non increasing on variables in Cy. For instance, a
simplified version of their metric is

v = E + M

where N is the number of nodes, M is the number of edges and d is the diameter.

This type of approach can be of practical interest, but its inherent complexity
makes difficult to obtain a function satisfying the set of suggested properties. For
instance, let us show that property (iii) can be violated. Let us consider the two
graphs a and b on Figure 3, with v, = 3 + g = vp. In each graph, the grey nodes
are articulation points leading to two connected components. In both cases, there
is a biconnected component composed by only one edge. The vulnerabilities of the
other components are respectively v, = 1+ % <2+ % = v;. Then, this measure
does not verify the property (iii), that is, it is not global enough. Let us illustrate

oo
(a) (b)

Figure 3:

another type of bad behavior of a function such as v(). Consider a star with n + 1

RR n° 3125



10 Stéphane Bulteau, Gerardo Rubino

nodes (and thus, n edges). The index d/c+ N/M gives vs(n) = 3+ 1/n. If we look
at a ring with n nodes (and thus, n edges as well) we obtain v.(n) = 1+ [n/2].
According to this index, for n small, the ring is better (for instance, v4(3) = 10/3
and v,(3) = 2) while for n > 6, the less vulnerable topology of both is the star. This
dependence on the parameter n seems not a very desirable property.

When a network becomes disconnected it could be desirable to capture the extent
of disruption by measuring the size and number of the remaining connected compo-
nents. A system which has been split into many small parts may represent a more
severe disruption than one which has been split into a few large parts. Several para-
meters have been studied for combining the sizes of the disconnecting sets with the
characteristics of the resulting components [8]. For instance, in [9] (see also [10]),
the author proposes as a measure of invulnerability of G the number INV (G) defined
by

Tl
I‘cutofg#w(g F)—l

where G — T is the graph obtained from G by deleting all the edges of I" and, #CC()
denotes the number of connected components. Observe that #CC(G —T') < |T|+1,
which implies that INV(G) > 1. This metric is also rather local. In the examples of
Figure 2, we obtain the value 1 in both graphs. We can observe that if we consider the
source-terminal vulnerability, the interest is not in the number of created connected
components but in the fact that s and ¢ are connected or not. So, the analogous
measure for the source-terminal vulnerability is simply the edge connectivity c.
Last, let us also mention, for completeness, a different approach followed in [11].
The authors propose to define the degree of influence of edge e on the vulnerability

of a network by
> glsitie)

s,teEV
s#t

where g(s,t;e) is the maximum of the values that the different max flows take on
edge e. If f(s,t) is the value of a maximal flow between s and ¢, a normalized version

of this metric is
Z g s, t e)

s tEV

INV(G) =

Observe that this index is not defined for the graph but for its edges. Later in
the paper, we will see that our metric can also handle weighted graphs, and this

INRIA



FEvaluating network vulnerability with the mincuts frequency vector 11

suggests, as a possible research direction, the possible use of the approach of [11] in
such a context.

None of the metrics discussed before satisfies the properties (i) to (iii) presented
in Section 2. Moreover, they are relevant only when we consider all-terminal vulnera-
bility, with one exception: the edge-connectivity c¢. In the next section, we propose a
measure which satisfies all these properties and which can be used to quantify either
source-to-terminal vulnerability or all-terminal vulnerability. We also give analyti-
cal expressions to evaluate Vs and V,; in case of series and parallel configurations.
Moreover, the new measure satisfies also a coherence property which is discussed in
Section 5. Last, this measure allows to work with natural extensions obtained by
adding supplementary data to the model (costs, capacities, ... ) without losing the
previous listed properties. We discuss this in Section 6.

4 A new measure of vulnerability

One of the conclusions of the previous section is that the pair (¢, n.) has some nice
characteristics. Its main default is the locality, as discussed before. Our proposal
consists of taking into account not only the mincuts of minimal size ¢ and their
number 1., but all the mincuts in the graph. Let us denote by n; the number of
mincuts having i edges. Formally, we propose to use the vector (ng,ni,...) as the
measure of vulnerability; we set ng = 0 when the graph is connected, 1 otherwise.
The rest of the paper consists of the analysis of this metric. For simplicity, it is
convenient to see this vector as having an infinite number of components. Of course
only the first ones are non zero: if the graph has M edges, we necessarily have n; = 0
for alli > M.

Definition 4.1 The vulnerability of graph G is the infinite vector V(G) = (ng,n1,...)
where n; is the number of mincuts of cardinality i. Recall that the mincuts consi-
dered here are either s,t-cuts for fixzed s and t, or simply cuts, that is, x,y-cuts for
at least one pair of nodes z,y. We say that n; is the value at position i in V(G),
1=0,1,... If G is connected, ng = 0. If not, ng =1 and for all1>1, n; = 0.

The first point is to choose the ordering on the set of vectors. We want the edge-
connectivity c as large as possible, and for a given value ¢, the number n, of mincuts
of minimal size c as small as possible. This leads to propose the lexicographical order.
Consider two graphs G; and Go, and let us denote the respective vulnerabilities by
V(G1) = (no,n1,n2,...) and V(Ga) = (mg,mi,ma,...). The relation V(G1) <
V(G2) means that we have n; = m; for i = 0,1,... ,k — 1 (k > min(cy,co) if ¢; is

RR n ‘3125



12 Stéphane Bulteau, Gerardo Rubino

the edge-connectivity of G;) and ny < myg. The relation V(G1) < V(G3) means that
either V(G1) = V(G2) or V(G1) < V(Ga), etc. Resuming,

Definition 4.2 Let V(G1) = (no,n1,n2,...) and V(Ga) = (mo, m1,me,...) be the
vulnerabilities of two graphs G1 and Go. We have V(G1) < V(Gs) if there exists k > 0
such that ng < my and for all i < k (if any), n; = m;. We write V(G1) < V(G2) if
either V(G1) < V(Gz2) or V(G1) = V(G2), etc.

So, this measure verifies property (i). Let us now look at the other basic proper-
ties. We need here a supplementary definition, taken from the network reliability
area.

Definition 4.3 An edge e € G is s,t-relevant if and only if there exists at least one
s,t-mincut I' with e € I', that is, if and only if e belongs to some minimal s, t-path.
If not, e is s, t-irrelevant.

This is immediately related to our problem by means of the following result.
Theorem 4.4 An edge e € G is s, t-irrelevant if and only if V, (G —e) =V, 4(G).

Proof.

In the proof, we need to discuss about cuts in G and in G — e, two graphs having
the same node set. To ease the reading of the proof, we explicitly denote by (X, X)g
the cut defined by (X, X) in G, and by (X, X)g_. the cut defined by the same pair
of subset of nodes in G — e. We also denote by £y g the set of edges of G = (V,€)
having their extremities in V' C V. Thus, (X,€x¢) is the graph induced by X C V
in G.

(i) Assume first that e = {u, v} is an s, t-irrelevant edge in G. We will prove that
the set of s, t-mincuts of G and of G — e are identical.

Consider an s, t-mincut (X, X)g_. of G—e. Then either u,v € X oru,v € X. To
see this, recall first that graphs (X,€x,g—.) and (X, Exo- .) are connected. Now,
ifu € X and v € X (or if u € X and v € X), the set of edges (X, X)g . + €,
which is an s,¢-cut in G, is in fact an s,#-mincut in G since £xg_. = Ex,¢ and
&x g—e = €xg- But this is in contradiction with the fact that e is s, t-irrelevant in
G because e € (X, X)g- Now, since u,v € X or u,v € X, (X, X)g_e = (X, X)g and
(X,X)g is also an s,t-mincut in G.

Conversely, consider an s,t-mincut I' = (X, X)g. Since e = {u,v} is s,t-
irrelevant in G, e € T'; so, u,v € X or u,v € X, and T is also an s,¢-cut in G — e.

INRIA



FEvaluating network vulnerability with the mincuts frequency vector 13

We have to prove that I is an s, t-mincut in G — e. If this is not the case, it contains
some s,t-mincut IV in G — e, which is an s, ¢-mincut in G as well, as we have shown
below. But this implies that, since IV C T" also in G, T is not minimal in G, which is
in contradiction with our starting point.
In conclusion, when e is an s, t-irrelevant edge in G, then all the s, f-mincuts of
G are s,t-mincuts of G — e and reciprocally. This proves that Vs (G — e) = V5 1(G).
(ii) Assume now that V(G — e) = V;4(G). Let us denote, for fixed s,t,u, v,

MCg ={T'| T is an s, t-mincut in G separating u and v},

MCg ={T'| T is an s, t-mincut in G not separating v and v}.

Let us assume that e is s, t-relevant and show that the vulnerabilities of G and G —e
are different, which is in contradiction with the starting assumption.

Observe that there is a one-to-one correspondence between MCg and MCg_..
Indeed,

reMCg_.<=T+ec MCg. (1)

Since there is at least one s,¢t-mincut in G containing e, we can define k as the
min of the sizes of the s,t-mincuts in G containing e, which can be written
k= min |T|, k> 1.
TeMCg
If kK =1, then e is a bridge in G and, in that case, G — e is s, t-disconnected, leading
by definition to V(G —e) = (1,0,0,...) # V5+(G) = (0,0,...).

Consider now the case of k¥ > 2. Let us denote V(G) = (no,n1,...) and
Vst (G — €) = (mg,m1,...). We will show that for all ¢ < k — 1, n; = m;, and that
ng_1 7 myg_1. Observe that, by definition of k, if 7 < k, every s,¢-mincut T" of size i
in G necessarily belongs to MCg. We will then show that, for all i < k,

{T' € MCg such that |T'| =i} = {T € MCg_. such that |I'| = i}.

If T € MCg_e, with |T| = 4, then trivially T € MCyg, with |T'| = i.

Assume now that I' € MCg and || = i < k. We know that I is an s,¢-cut in
G — e, separating u and v.

To prove that necessarily I' € MCg_., assume that the contrary holds. That
means that I" is not minimal in G — e. Then, it contains some s, t-mincut I, with
II'| < 4, which separates u and v (otherwise, we would obtain that I C T' is an
s,t-mincut in G and I' is not minimal in G). So, we have I € MCg_.. But then,
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14 Stéphane Bulteau, Gerardo Rubino

from (1), I"4+e € MCg with [I"+e¢| < i < k, in contradiction with the definition of k.
So, necessarily I' € MCg_., which leads to the following one-to-one correspondence:

Vi <k, T €{I'e MCg such that |I'| =4} <= T € {I' € MCg_. such that |I"| = i}.
(2)

From (1), we have that, for all i < k — 1,

{T' € MCg_. such that |I'| =i}| = {I" € MCg such that [I'| =i + 1}| = 0.
(3)

From (2) and (3), we have that, for all i < k — 1,
m; = |{T" € MCg_. such that |I'| =i}| = |{T" € MCg such that [I"| = i}| = n;,

and
Mp—1 — Nk—1 = |{P’ € MCg_e such that |F’| =k— 1}|

Since there is at least one s, t-mincut of size k—1in MCg_., we have my_1—ng_1 > 0.
Then, we obtain, for all 1 < k — 1, n; = m;, and ng_1 < mg_1. |

We are now ready to state the first basic property of our measure.

Property 4.5 The measure is monotone: if we add an edge to the graph without
changing the set of nodes, the vulnerability does not increase. More specifically,

e if G is not (s,t—)connected, then if G + e is not (s,t—)connected neither,
V(G+e) =V(G)=(1,0,0,...), while if G+ e is (s,t—)connected, V(G +e) =
0,...) <V(G) =(1,0,0,...).

o If G is (s,t—)connected, then V(G + €) < Vou(G). In the source-to-terminal
case, if e is s, t-relevant in G+ e, then V(G +e) <V, 4(G) (and V,4(G +e) =
Vs,t(G) otherwise).

Moreover, when all edges in G are s,t-relevant and if there are no isolated
nodes, then for all e = {u,v} with u # v, e is s,t-relevant in G + e (and thus
Vsi(G +e) < Vi5(G)).

Proof.
(i) The first part of this proposition comes directly from the definition of the
vulnerability when the considered network G is not (s,t—)connected.

INRIA



FEvaluating network vulnerability with the mincuts frequency vector 15

(ii) Case of source-to-terminal vulnerability of a connected network. Assume
that e is s,t-relevant in G 4+ e. Then, we have seen in the last part of the proof
of Theorem 4.4 that V5¢(G +e) < V;4(G) (more specifically, the first difference
between the components of the respective vulnerability vectors happens at position

k= min |T].
TeMCg

(iii) Case of all-terminal vulnerability of a connected network. As in the case of
an s,t-relevant edge e = {u,v}, we can observe that there is a one-to-one corres-
pondence between the mincuts in G separating v and v and the mincuts in G — e
separating u© and v. Moreover, every mincut that does not contain e in G — e is a
mincut in G. As in Theorem 4.4, we have that the size of a mincut in G which is
not a mincut in G — e is greater or equal than k. The only difference lies in the fact
that any edge e is relevant, so, the inequality is always strict.

(iv) A result in [12] which says that a necessary and sufficient condition for a
graph G = (V, €) to have no s, t-irrelevant edge is that the graph G’ = (V,€ +{s,t})
obtained from G by adding an extra edge {s,¢} has no articulation point. It is then
clear that by adding an edge e, we do not create any articulation point in G’ + e.
|

An immediate consequence of Property 4.5 is stated in the following corollary.

Corollary 4.6 Let us consider the family of connected graphs sharing the same fized
set of nodes V (we do not allow here multiple edges). If |V| = n, with respect to
Vs, the most vulnerable is a series and the less vulnerable is the complete graph. In
case of Vau, the most vulnerable graph is a tree and the less vulnerable is again the
complete graph.

The vulnerabilities of the “extremal” graphs with » nodes

Let us give explicitly here the vulnerabilities of the “extreme” graphs considered in
the previous lemma. Denote by G, a series with n nodes (then n — 1 edges), where s
and ¢ are the “extremities” of the series, and by G. the complete graph with n nodes
(then n(n —1)/2 edges). A careful analysis of the two topologies leads immediately
to the following expressions:

o V5i(Gs) = (0,n—1,0,0,...)

* Vii(G) = (0,0,..7%J00,... 08etY0,.. . ooder-d)o,...)
L4 all(gs):(oan_laoaoa"')
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16 Stéphane Bulteau, Gerardo Rubino

o Va(Ge)= (0,0,..m#%M,... alettib, ... elet=ap, )
with @ = [n/2] and ¢ = 1 + (n mod 2).

Series-parallel configurations

Now, let us turn to series-parallel configurations.

Property 4.7 Assume G is composed as shown in Figure 4. Then, we have V, 4(G) =
Vs.t(G1) + Vi,4(G2) and Vau(G) = Vau(Gr) + Vau(G2).

Proof. Every s,t-mincut in G is either an s, u-mincut in Gy or an u,¢t-mincut in
Go, and reciprocally. Then, if n; is the number of s,¢-mincuts in G with size 4, and
if n} (resp. n?) is the corresponding number of s,u-mincuts in G; (resp. in of u, t-
mincuts in Gs), we have n; = nzl + nz2 which ends the proof for V. The case of Vyy
is similar. |

@ G @ Go @

Figure 4: A series configuration

Observe that v in Figure 4 is an articulation point of G. From the previous
result about the vulnerability of a series, we deduce that the proposed measure
verify property (iii).

Let us denote by @ the convolution operator between two vectors: if u =
(uwo,u1,...) and v = (vo,v1,...), then w =u@ v = (wo, w1, ...) with

Wy = E Ujvy.
jt+k=n

Property 4.8 Assume G is composed as shown in Figure 5. Then, we have Vi 4(G)=
Vs,1(G1)QV5,1(G2). In the all-terminal case, we have Vou(G) = Vou(Gi e st) + Vau(Go @
st) + (Vs,4(G1) @ Vs,1(G2)) where “G; e st” denotes the graph obtained by contracting
the nodes s and t in one single node in G;. No edges are destroyed.
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FEvaluating network vulnerability with the mincuts frequency vector 17

Proof. Case source-to-terminal first. Every s,¢-mincut in G is the union of an
s,t-mincut in G; and an s,t-mincut in Go, and reciprocally. Then, with the same
notation as in the series case, we have

- 1.2
n; = E (S

jtk=i

Case of the all-terminal measure. Every mincut in G either separates s and ¢ or not.
In the first case, this cut is the union of an s,¢-mincut in G; and an s, t-mincut in
Go. In the second one, it is a mincut that contains only edges of G; or edges of Go,
because every path from a node of G; to a node of G contains s or ¢. Then, it is a
mincut in G; e st or in G e st. Reciprocally, the union of two s, f-mincuts, one in Gy
and the other in G, is a mincut in G and a mincut in G; e st or in Gy e st is also a
mincut in G. [ |

Gi

Ga

Figure 5: A parallel configuration

These properties allow to simplify the models (in a similar way as it is usually
done in network reliability theory). Moreover, with the property of coherence that
we will show in the next section, these properties make us possible to use series-
parallel reductions in order to evaluate the network vulnerability. We will give a
small example at the end of Section 5.

5 The property of coherence

In this section, we extend the framework to be able to set and prove the announced
coherence property. To do this, we need to switch to valued graphs. We will proceed
in two steps.

In the first step, we start from the following observation: if we consider a graph
G with only two nodes s and ¢, and a single edge between them, then we have
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18 Stéphane Bulteau, Gerardo Rubino

Vst (G) = Van(G) = (0,1,0,...). From this, for any graph G we define the value w(e)
of an edge e by w(e) = (0,1,0,...). Then, we also define the value of the cuts T" of
G by the vector w(I') = (ng,n1,...) where n; = 0 for all i # |I'| and nr| = 1. It

follows that
V(gG) = Z w(T).

all mincut T’

We can now prove the following result.

Theorem 5.1 For any mincut T,

ecl’

Proof. Let v = (0,1,0,...). It is immediately checked by recurrence on n, that

n
on = R
=1

verifies v, = (0,0,...,0,1,0,...) where the only 1 is at the nth position. Since for
all edge e we have w(e) = v, this proves the result. [ |

the vector sequence

We arrive now at the second step, which generalizes the previous setting. We
will define the vulnerability measure of valued graphs (G, val) where val is an infinite
vector of non-negative integers. First, we define the value of any cut by

val(T') = (X) val(e)
ecl
and then, the vulnerability vector by
V(G val)= > val(l).
all mincut I'

Observe that by considering general mincuts or s, #-mincuts in the previous sum, we
obtain the all-terminal measure, or the source-to-terminal one.

All what have been said before in this section can be summarized in the following
result.

Theorem 5.2 Given a graph G valued by the w’s (that is, w(e) = (0,1,0,...)), we
have

V(G) =V(G,w).
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FEvaluating network vulnerability with the mincuts frequency vector 19

Remark 5.3 From this theorem, the vulnerability of a graph G valued by the w’s
(that is, w(e) = (0,1,0,...)) verifies all the previous properties.

We are now ready to state the so-called coherence property.

Property 5.4 Let us consider a valued graph G where we denote G = (Vg, Eg, val),
and let w be an articulation point in G. If s and t belong to the same connected
component H = (Vy,Ex, val) (the other one will be denoted K = (Vi, Exc, val)), then
we have

Vs,4(G, val) = Vy 1(H, val).

Otherwise, we have
Vi,t(G, val) = Vi o(H, val) + Vi (K, val).

For the all terminal vulnerability, this property is equivalent to the series property
and we have

Vall(ga Ua'l) = Vall(Ha Ual) =+ Vall(ICa Ual)'

Proof. If s and ¢ belong to the same connected component, then all the edges
in £k are s, t-irrelevant. Then, by deleting all edges in £k, we obtain V (G, val) =
Vs,t(#, val). In the other case, this is the result on the series graph, as in the case of
all-terminal vulnerability. |

Property 5.5 Let us consider a valued graph G denoted G = (Vg, &g, val). Let {u,v}
be a separating pair such that s and t belong to the same biconnected component
with respect to {u,v}, which is denoted H = (Vy,Ey,val). We denote by K =
(Vk, Ex, val) the complement of H in G. We have Vyy UV =V, Vy NV = {u, v},
EyUék = & and Ey NEc = 0. Define the reduced graph G" = (Vgr,Egr, valgr)
by replacing H in G by a single edge between u and v, with value valgr ({u,v}) =
Vu,o(H, val) (we have Vgr = Vi and Egr = Ec U {u,v}). Figure 6 illustrates the
transformation. We then have

Vi,1i(G, val) = Vi 1(G", valgr).

For the all terminal vulnerability, this property is equivalent to Property 4.8 and
we have
Vau(G, val) = Va(H e uv, val) + Vo (G™, valgr).

with valgr ({u,v}) = Vi o(H, val)
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20 Stéphane Bulteau, Gerardo Rubino

Figure 6: G and its reduced graph G"

Proof.

Let I" be an s, t-mincut in G which does not separate nodes u and v (so, all nodes
in Vy are in the same connected component). This means that I' is an s, t-mincut in
G", with the same value and not containing the edge {u,v}. Reciprocally, if T" is an
s, t-mincut in G" not containing {u, v}, then it is an s, #-mincut in G, not containing
any edge of H, and with the same value.

Let us denote by C the set of all s, t-mincuts of G separating u and v, by C, the
set of all s, t-mincuts of G" containing {u, v}, by Cy the set of all u, v-mincuts of H
and by Cx the set of all s, --mincuts of K separating nodes u and v. If ' € Cx then
'k U{u,v} € C,. Reciprocally, let us choose I', € C,. Then, for any I'yy € Cy we
have that (I'; — {u,v}) UT'y €C.

To prove the theorem, we only need to prove that

D val(h) = ) valgr(T).

rec I'rec,
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Observe that if ' € C, then I'N &y =Ty € Cy and ' N Ex = 'k € Cx. Then,

Yvar) = 3 (val(F;c) 0% val(rH)) where T' = Ty + T'x,

T'eC recC

= Z val(T'x) ® Z val(T'y)

T'xeCx I'yeCy

= Z valgr (') ®Vu,v(H)

T'x€eCx

— Z Valgr(rlc) ®Valgr({uav})

TxelCx

= > valg ()

T'rec,

which ends the proof. |

These theorems have a main consequence. They show that the definition is
coherent and supports hierarchical composition of networks. From the opposite point
of view, they make possible to use the decomposition into triconnected components,
leading to the evaluation of the vulnerability of smaller networks.

Remark 5.6 Observe also that this property (together with Theorem 5.2) implies
that the properties shown in Section 4 remain valid in the more general setting of
weighted graphs.

Let us illustrate these properties on the small example shown in Figure 7, which
has several triconnected components. On this example, we want to evaluate the
vulnerability between the two white points. To do this, we show in the center of
Figure 8 the reduced graph, where the three edges denoted by Vi, Vo and V3, are
associated with the three triconnected components also shown in the same Figure.
Then, by performing two series reductions, we obtain the network shown in Figure 9.
After five last simplifications (parallel, series, parallel, series, parallel), we arrive at
a single edge between the two marked nodes, weighted by the vulnerability of the
original graph. The obtained vulnerability vector is

(0,0,0,2,4,4,6,12,12,8,4,0,...).
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Figure 7: A biconnected graph with separation pairs, taken from [13]

Va= (0, 0,0, 2, 2, 2)

V1 =(0,0,2,2)

V3= (0,0, 0, 2, 2)

Figure 8: The vulnerability of three of the triconnected components of the graph of
Figure 7 and the reduced associated graph

0, 1,0, 2 2,2)

(0,0,2,2) (0,1,0,2,2)

Figure 9: The graph obtained after two series reductions
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6 Considering capacities or costs

In Section 4 we studied the vulnerability of a network with no data on edges. Ho-
wever, it is often important in some applications to be able to take into account
not only the structure of the network, but also supplementary information, such
as capacities, costs, etc. We show here that the preceding results can immediately
been extended to this more general context with almost no additional conceptual
nor computational cost.

We are given again an undirected valued graph (G, val) where val takes its values
in IN®°,

Resistance to external “clever attacks”

Let us consider the case of a military application, in which the user wants to evaluate
the resistance of a network face to possible attacks. For this, each edge has a
destruction cost associated with, assumed to be an integer. If j is the destruction cost
of edge e, we assign val(e) = (0,0,...,0,1,0,...) where the only 1 is at the (j+1)th
position. The sum and the convolution are as previously, then the framework on
weighted graphs can be applied without any change. We use here the fact that, since
the attack is assumed to be “clever”, the attacker can identify the weakest parts of
our network, trying to minimize the cost of the attack.

Support to flow transportation under capacity constraints

Another example is the case of a transport network where the value of each edge is
some measure of its capacity. Now, the value of a cut is the sum of the capacities of
its edges. The lower the value of a cut is, that is the lower the maximal flow is, the
more vulnerable the network is, since it is easier to diminish the max flow capacity.
In other words, we are in the case of a typical flow problem, but once again we
ask ourselves what happens with the capacity of the network to transport the flow
when some of the edges are no more there. This problem has been considered in
many papers, in a stochastic framework, assuming we know the reliability of each
component of the system. Here, we provide a tool which is able to compare different
architectures under the flow transportation point of view, in a deterministic context.

From Remark 5.6, we have that the measure, applied to this class of weighted
graphs, verifies all the properties shown in the previous sections.
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7 Algorithmic issues and numerical examples

The generation of all cutsets in undirected graphs has been studied by many papers
[12, 14, 15, 16]. The most efficient of these approaches seems to be the technique
developed by Provan and Shier in [16]. It requires O(|€|) work per minimal cut
listed. This approach does not require the elimination of irrelevant edges as in
[12], for instance. The algorithm is based on a pivotal decomposition on a node
v and its pivot set I(S,v). A pivot node relative to the set S C V is any node
v € S which is a successor of a node in S. The associated pivot set is I(S,v) =
{u € S | every (u,t)-path in (S) contains v}. The main procedure, defined for two
subsets of nodes S and T, is the following:
Procedure LIST(S,T)

PIVOT(S,T,v,I(S,v)); _
if I(S,v) = 0 then output the cut (5, S5)
else

HEMET Havd) )

Then, LIST((, D) correctly lists all the s, t-mincuts, where the only successor of ) is
s.
The procedure PIVOT, relative to sets S and T, is based on the biconnected com-
ponents. It may be implemented as follows:

1. Construct the graph 7 = (V,,&,) whose vertex set V; consists of S together

with a vertex b; for each biconnected component B; of (S). The edge set &,
contains all pairs (v, b;) with v € B;. It is easy to see that 7 is a tree.

2. In the tree 7, identify the set M of those vertices v, which are successors of
nodes in S, that are maximally distant from #: that is, the nodes v for which
the set V(v) of vertices in S separated from ¢ by v contains no other successor
of S. (Note that if any pivot element v satisfying I(S,v) C T exists, then one
which lies in M must exist.)

3. For each v € M check whether V(v) C T. If this holds for some v, then return
v and I(S,v) = V(v); otherwise return I(S,v) = 0.

The algorithm has been used in order to evaluate the vulnerability of several

networks. For instance, it needs less than 10 seconds (of Sparc 4) on the graph
with 19 nodes and 34 edges, proposed in [17], represented on Figure 11. In a much
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more stressing case, consider the graph shown in Figure 10 having 32 nodes and 61
edges. Our implementation uses around 4 hours (always on a Sparc 4) to evaluate
its vulnerability (1,859,660 (s,t)-mincuts).

Figure 10: A stressing test-case

Let us point out again the interest in performing series-parallel simplifications.
For instance, in the case of the well known example shown in Figure 11, the series-
parallel reductions lead to the first graph in Figure 14. The algorithm runs =~ 35
times faster after performing the series-parallel reductions.

Figure 11: A version of the Arpanet topology

The algorithm runs = 35 times faster after performing the series-parallel reduc-
tions.

Comparing again with the reliability context

Consider the following sample of graphs taken from papers published in the network
reliability area. Assume that every line in the graphs has the same elementary
reliability equal to 0.9.

Table 13 shows the value of the reliability of the 7 previous networks with ele-
mentary reliability equal to 0.9 in each edge, and their vulnerability. If we class
them according to their reliability or to their vulnerability, we obtain exactly the
same order.
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G4 Gs Gs Gr

Figure 12: 7 networks from literature with edge reliability 0.9

Graphs reliability nT mng N3 Ng Ny Neg nr ng Nng nipg nNi11 "N12 N13
g1 0998062 | 0 O 1 11 73 235 397 347 145 23 0 0 0
Ga 0999971 | 0 O O 0 2 8 16 20 16 8 2 0 0
g3 0997917 | 0 0 2 0 9 2 3 10 8 16 4 0 0
Ga 0999795 | 0 0 0 2 O 6 0 0 0 0 0 0 0
Gs 0999793 | 0 0 0 2 O 8 0 4 0 0 0 0 0
Ge 0999980 | 0 0 0 0 2 0 0 8 6 0 0 0 0
g7 0998663 | 0 O 1 3 5 12 21 25 26 22 13 ) 0

Figure 13: Comparison between reliability and vulnerability of 7 networks
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Consider now the two networks G4 and G5 shown in Figure 12. Assume that we
assign elementary reliabilities of 0.9 to all the edges. Then, the source-to-terminal
reliability of the networks are equal to 0.9997948 for the first one, and to 0.9997928
for the second. So, the first one is (slightly) less reliable than the second. If the
elementary reliabilities are set to 0.99, then the difference between the system re-
liabilities is less than 107!, and, again, the first one is (very slightly) better than
the second. Both graphs have edge-connectivity (with respect to the pair s,t) equal
to 4, and both have exactly 2 s,¢-mincuts of size 4. Our vulnerability measure
gives (0,0,0,0,2,0,6,...) for the first graph and (0,0,0,0,2,0,8,...) for the se-
cond, which is consistent with the results obtained in the stochastic framework.
Again, we can see that parameters ¢ and n, are not enough to make a difference, as
discussed in Section 3.

In Figure 14 we illustrate the framework in which we consider destruction costs
(and the first interpretation). When all the costs are equal, we obtain that the first
network is less vulnerable than the second. When the cost of edge e is equal to 2,
we obtain that the first network becomes more vulnerable than the second.

Figure 14: Network in Figure 11 after series-parallel reductions, and a comparable
topology

The following table gives the values of the vulnerability vectors.

Graphs ng M1 N9 N3 N4 N5 Ng N7 Ng
Reduced ARPANET 0o 0 2 5 5 4 3 0 0
Comparable topology with cost(e)=1| 0 0 3 4 7 8 8 0 0
Comparable topology with cost(e)=2| 0 0 2 5 4 5 8 6 0
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8 Conclusions

We have studied the behavior of a communication network using vulnerability me-
trics in a deterministic framework. We have proposed a new measure, based on
minimal cuts. This measure verifies desirable properties, such as the monotonicity
property, and several properties of interest for its evaluation. Moreover, our ap-
proach has made it possible to take into account certain supplementary data on
network components. For example, we have considered the cases where edges are
valued by their resistance to an external attack, or by capacities. Our research ef-
fort is being done in this direction, to further explore the possibility of using the
same approach in richer models. Also, we think that more work is necessary in the
algorithmic aspects.
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