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Abstract: The simulation of transitional gas flow near rarefied regimes requires new
models which can describe kinetic effects but which are less complex than the original
Boltzmann equation. The strategy introduced by Levermore [1] rewrites the Boltzmann
equations as a system of moment equations, with a new closure procedure. We recall here
the mathematical properties of this Levermore’s moment systems. Boundary conditions
derived from the kinetic theory are proposed. Based on these properties, we present an
original first-order kinetic scheme with explicit flux splitting and implicit source terms. A
14-moments system model is tested to simulate one-dimensional gas flows (Couette flow and
normal shock wave) near the transitional regime.
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Analyse numérique des systéemes aux moments de
Levermore.

Résumé : La simulation des écoulements dans ’atmospheére en régime transitionnel né-
cessite de nouveaux modeles décrivant les effets cinétiques mais moins complexes que les
équations de Boltzmann. La stratégie de Levermore [1] utilise un systéme d’équations aux
moments issus des équations de Boltzmann, fermé par un nouveau modéle exponentiel de
fonction de distribution. Nous rappelons ici, les propriétés mathématiques de ce systéme
aux moments de Levermore. Des conditions aux limites dérivées de la théorie cinétique
sont proposées. Ces propriétés nous ont amenés a proposer un schéma cinétique construit a
I’aide d’une décomposition de flux explicite et d’un terme source implicite. Le systeme aux
14 moments est testé sur différentes applications numériques d’écoulements monodimensio-
nels (problémes de choc, écoulements de Couette), en régime transitionnel.
Remerciements : Ce travail a été financé en grande partie par le CEA-CESTA.

Mots-clé : Systémes aux moments, Boltzmann, conditions aux limites cinétiques, schéma
cinétique, entropie, Navier-Stokes



Numerical analysis of Levermore’s moment system. 3

1 Introduction

A gas may be modeled at either the macroscopic or the microscopic scale. We
consider the gas at the microscopic level, as a myriad of discrete particles charac-
terized by their velocity and position. The mathematical model at this level is
the Boltzmann equation, which describes the evolution of the velocity distribution
of these particles. This equation may be effectively solved numerically via Monte
Carlo methods. Unfortunately, this numerical solution requires a discretisation grid
whose step is at most of the order of a particle mean free path (average distance
covered by a particle between two collisions). For dense gases, this length is very
small compared to the macroscopic scale and the numerical solution of Boltzmann
equations becomes impossible. We must abandon this kinetic model in favor of fluid
dynamics. We regard then the gas as a continuous medium and the description is
modeled by the fluid variables (typically the mass density, the fluid velocity, and
the temperature) whose evolution will be governed either by Euler equations or by
Navier-Stokes equations. In the regime that lies between molecular flow and fluid
dynamics, the so-called transitional regime characterized by a Knudsen number (the
ratio of the mean free path to the macroscopic scale) of order 1072 to 1071, diffi-
culties appear. Because of the computational cost in both time and storage, Monte
Carlo methods are not practical but on the other hand fluid dynamics equations are
not sufficiently accurate in boundary layers or across shock fronts. The first strategy
used to describe such regimes, splits the gas flow in two regions: low density region,
in which Monte Carlo methods must be used and fluid region, in which the velocity
distribution of particle approaches the local equilibrium and then fluid equations can
be used. This strategy has been proposed at INRIA in [16] for coupling Boltzmann
and Euler equations and in [6] and [25] for coupling Boltzmann and Navier-Stokes.
Another strategy uses equations in moments obtained by a weighted velocity inte-
gration of the Boltzmann equations and close these equations by assuming a given
a-priori expansion of the unknown velocity distribution in terms of these moments.
The resulting moments system is then a combination of standard conservation laws
and of additional relaxation equations, function of the collision operator, and ge-
neralizing the usual constitutive laws of fluid dynamics. Such a strategy was used
by H.Grad [3], with thirteen moment equations and a velocity distribution mode-
led by generalized Hermite polynomials. However, the resulting closed system was
not always hyperbolic and velocity distribution model could be negative, which is
inconsistent with the underlying physical model.

Because the closed moment system must have a certain number of mathematical
and physical properties, D.Levermore [1] has proposed new models for the velocity
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4 P. Le Tallec, J.P. Perlal

distribution in the form : ezp(a.m(v)). This paper presents a numerical analysis of
these models and illustrate then by running some numerical applications.

After a brief discussion about kinetic theories, we will recall, in a second part, Le-
vermore’s ideas and discuss the mathematical properties of the resulting system.
Consistent boundary conditions are then proposed, based on the conditions satisfied
by the underlying kinetic model. Based on this mathematical analysis, we propose
in the third part a first-order kinetic numerical scheme in order to solve this system.
Numerical simulations of shock problems and Couette flows are finally presented to
validate the 14 moments model.

2 Kinetic theories

2.1 Boltzmann equation

Let us consider the case of a gas composed of identical monoatomic particles contai-
ned within a fixed spatial domain 2. This gas is described at the kinetic level by
the Boltzmann equation. This equation governs the evolution of the distribution
function f = f(z,v,t) over the particle phase space Q x IR by

(1) atf(£7 v, t) + Uazf(iv v, t) = Q(f7 f) (£7 v, t)'

The nonnegative distribution function f describes the local density of particles with
position z and velocity v. The operator Q(f, f)(z, v, t) which describes the collision
between the particles has the following properties:

First, this operator is assumed to have mass, velocity and energy, ¢(v) =1, v, %| |v]|?,

as conserved quantities, that is

[ e nswde=o.
vER?

Second, it satisfies the local dissipation relation

(2) /UGRSQ(f)(L% t)log fdv <0,

which leads to the celebrated H-Theorem.

2.2 H-Theorem

Let us introduce the local entropy function,

3) n= [ H)(e

INRIA



Numerical analysis of Levermore’s moment system. 5

and the local entropy flux,

(4) = v.H(f)(z,v,t)dv,
vER?

with H(f) = flog f — f where f is the solution to the Boltzmann equation.
The total entropy is defined by

%:/ndx.
Q

After multiplication of the Boltzmann equation by log f(u, z,t), integration over the
particle phase space  x IR? and use of the local dissipation relation (2), we obtain
the entropy inequality

OH — / b.ndS < 0,
a0

satisfied for any given domain 2.
If we suppose now that there is no incoming entropy flux, we obtain the H-theorem,

0H <0,

proving entropy dissipation in any admissible evolution of a closed gas system.

2.3 Local equilibrium

At the equilibrium, the distribution f is invariant in space and time, and thus from
the Boltzmann equation, the collision term must satisfy Q(f) = 0. We then deduce
that the distribution function f is a Maxwellian

(5) f(ﬂ):MIP(m

where £ is the Boltzmann constant, m the particle mass (r = %), T the gas tempe-
rature, and u the gas average velocity.

m
)2 exp(— 5 (v - w)?),

2.4 BGK model

Because of the complicated form of the collision operator, Bhatnagar, Gross and
Krook have proposed a simple model for Q(f, f), which describes the relaxation of
f to the local equilibrium M by

(6 QU = (M) - 1)

with a relaxation time scale € proportional to the Knudsen number, and M(f) the
Maxwellian which has the same density, velocity and energy as f.

RR n°3124



6 P. Le Tallec, J.P. Perlal

3 Moment Closure and Levermore’s models

3.1 Moments system

In general, the derivation of moment equations begins with the choice of a finite
dimensional linear subspace &, of functions of v, with basis elements m;(v). Then,
the moment system is obtained by integrating Boltzmann equation over the vector

m(v) = (m;(v))iee,, yielding,
(7) O <mf >+div(<m@uvf >) =< m.Q(f) >,

where < g > denotes the integral of gdv over the velocity space. Since each equation
introduces a flux < m ® vf > which can only be evaluated by the next equation,
the system is not closed. Moment closures must be found such that the resulting
system respects physical symmetries (translation and rotation invariance), recovers
the proper fluid dynamical approximations and such that the resulting moment can
be realized by some non-negative distribution. These goals can be fulfilled if &,
satisfies the following conditions:

(I) span {1,v,v?} € &,.

(I) &, is invariant under the action of translations 7, and rotations 7, defined by

T,F =T, F(v)=F(v—u)et T,F = F(OTv).

For Levermore’s models, an additional property is required, using the convex cone
Em = {megm;/ _exp(—m(v))dv < oo},
IR

(III) &F has an nonempty interior in &,,.
Examples of such admissible spaces with maximal degree two are

En = span {1,v,v?%},
En = span {l,v,v R v}.

and for maximal degree four, we can use

En = span {1,v,v®v,v?.v,v').

3.2 Levermore’s models

Once an admissible &, has been defined, D.Levermore [1] closes the moment system
(7) by assuming that the distribution function f can be replaced by

(8) F(a, ) = exp(a.m(v)),

INRIA
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with m(v) € &, and

a=oz,t) € IR(]:W ={a;€IR,1<i< M, . exp(a.m(v))dv < +o0}.
veIR

The resulting system of moments
(9)  0¢ < mexp(a.m) >+ div(< m @ vexp(a.m) >) =< mQ)(exp(a.m)) >,

is the system proposed by Levermore. It contains m equations for m unknowns a.
We discuss now its properties.

Theorem 3.1 Model (8) is nonnegative by construction, and it corresponds to the
formal solution of the entropy constrained minimization problem:

JF) = Jexplam(v) = mind [ (Flog(f) = Ndu: [ mfdv fived in 1RV )

over the space X defined by
(10) X ={f € L*(IRY), flog(f) € L*(IR"), f > 0}.

Here, the «; are the Lagrange multipliers of the minimization constraints, fixing

Jmamfdv, and J(f) = [,cpae(flog(f) — f)dv is the usual entropy function of the
kinetic theory. -

Proof
As in Levermore, let us introduce the two operators J and £ defined by

I = [ (log(r) - e,

L(f) = /md mfdy,

and suppose the existence of a solution F' in X’ of the above minimization problem.
If the solution is sufficiently regular, it satisfies the first order optimality conditions

J'(F).g = a.L'(F).g,¥g € L*(IRY),
where @ = (o;)M, are the Lagrange multipliers associated to the constraints

L(f) = cte.

RR n°3124



8 P. Le Tallec, J.P. Perlal

This writes

/ g.(log(F)+ F/F — 1)dv = Q./ g.m(v)dv,Vg € LQ(IRd).
vEIR? veIR?

Thus, we get
F = exp(a.m(v)).

The solution F' is unique because of the strict convexity of the functional J(f) and
of the convexity of the set X.
3.3 Hyperbolicity

Let us note the moments by

the fluxes by

0 < vexp(a.m) >
do k

As(a) =< m @ vexp(a.m) >=
and the collision moments by
S(a) =< m.Q(exp(a.m)) > .

With this notation, the system (9) takes the form :
Find a(z,t) € IRM such as

(11) 0:Uy (a) + divAy(a) = S(a) .
If the solution a is locally smooth, we can develop (11) into
U,ozoz-atg + A,ozoz- V&= S(Q)

By construction, U ., is symmetric positive definite as the Hessian of the strictly
convex function U and A ,, is symmetric as the Hessian of A(a) =< vexp(a.m) >.
So the system (11) is symmetrisable and thus hyperbolic.

We also have the following property:

INRIA



Numerical analysis of Levermore’s moment system. 9

Theorem 3.2 (1) We can find a pair of entropy functions n(U,) and ®(U,), with
1 convezx, which verify the condition

(12) VUQU(UOZ) an AOZ = VUQQ(UO‘)
This pair is defined from the Legendre-Fenschel transformation of U:

(13) n(V) =inf(aV - U(a) = a(V).V. - U(a(V)),

(14) (V) = (aAa — A)(a(V)),

with a(V) the solution of (13), that is of Uy(a(V)) = V.

(1) Fach solution of (11) satisfies the following entropy inequality
(15) D (Uy) + div®(Us) < 0.

Proof (I) The Legendre-Fenschel transformation of U is convex by definition, and
by construction satisfies

Vu.nUa) = a(Us).

Similarly, a direct calculation of derivatives yields

da dAq da
VUQCI)(UQ) = Aa.aUa + Q.aUa — Aa.aUa.
Thus, we have
0A4(2(Ua))
(U,) = ————,
an (U ) aUa

from which we easily deduce the relation (12)

ann(Ua)' an AQ(UQ) = anq)(Ua)

(II) Let « be the solution of (11) and U, («) the corresponding moments. We multiply
system (11) by « on the left, and find

(16) 0t(a.Uy) — Uy.0ia + div(a.Ay) — An. Ve oo = a.5(0).

Moreover, since we have

Ua.atg = GQU.&,@ = dtU

and similarly

Au. Ve = VoA Ve a= divA,

RR n°3124



10 P. Le Tallec, J.P. Perlal

equation (16) reduces to the following form
O¢(a.Uy — U) + div(a.Ay — A) = a.5(a) .

The local dissipation relation for the collision operator Q(F)

< Q(F).LogF >< 0
could be written with /' = exp(a.m)

a.S(a) <0,
and implies the following conclusion
0m(Uy) + divd(U,) < 0.

Remark 3.3 From Theorem 3.1, the entropy function of (11)

n(Us) = aUy = U

is the minimum of all entropy functions J(f) = [, cpa flog(f) — fdv subject to the
constraint that the moments < mf > are fized. Indeed, the solution of the minimi-
zation problem (Th 3.1) has the form exp(a.m(v)).

Thus, the minimum of all entropy functions is equal to

Jesplam@) = [ am().expleme)do - [ eplam()de

By definition of U and U,, this wriles

3.4 Boundary Conditions

The weak form in space of system (11) is obtained by direct integration by part and
is given by

/ 6.0,Udz — / 0.6 A da
Q Q

_/ 6{ATn+ A;.@}d'y:/ $.Sadz, Vo € C'(Q),
a0 Q

INRIA



Numerical analysis of Levermore’s moment system. 11

where n is the inward unit normal vector to 9f0.
The incoming/outgoing half-fluxes are defined here by

A= / m @ vFdy.
v.n>0/v.n<0

The above system is a first order system in space.

In order to have consistent boundary conditions on the boundary 952 of the compu-
tational domain €, we have to characterize the incoming half-fluxes AT. At inflow,
this value is imposed from inflow boundary conditions specifing the incoming distri-
bution F.

For the full Boltzmann equation, the proper wall boundary condition specifies the
reflected (or incoming) “half” of the distribution function f* when the incident f~
(or outgoing) half is given. A classical wall boundary condition is the one in which a
certain fraction k(z) of the incident particles, depending on its position, is specularly
reflected, and the remaining particles are absorbed by the wall and re-emitted with
a Maxwellian (5) distribution associated to the temperature 7, and velocity u, of
the wall. This condition can be written

(17) [Tz 0) = k(2). [~ (2, Re) + (1= k(2).M(p, Ty, u,),
where R is the reflection operator defined by
Rv=v - 2(v.n)n.

The “density of the wall” is determined by the condition that the wall does not
collect particles,

(18) /Uemd n(f~ + fH)(z,v)dv = 0.

In (17), the specular reflection corresponds to k(z) = 1 and total accommodation
corresponds to k(z) = 0.

We suppose now for simplicity that the boundary is perpendicular to the z direction.
In order to evaluate the incoming half-fluxes AT on the wall, we suppose that the
kinetic boundary conditions (17) are still valid in flux average, if we replace f, solution
of the full Boltzmann equation, by the Levermore’s model F. So, we find

foo Lm0 (@) = k(o) P (. Re) = (1 = k()M . Ty ) = 0

with
(19) / (F~ + F*)(z, v)vpdv = 0.
veIR?

RR n°3124
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With this choice, the boundary conditions imposed to system (11) consist in impo-
sing the incoming half flux AT, with A" imposed at inflow and the incoming fluxes
At evaluated by

o) At = [ [ R@F (@R + (1= k@) M, T 1,) m(v) © vy,

at any given wall, with density of M given by (19), that is (A} + (A, ).n = 0.

4 First-order numerical scheme for the unidimensional
system

We propose to take advantage of the kinetic structure of (11) to approach its exact
solution by a first-order kinetic scheme with source term. This scheme is written as
a time integration formula with explicit flux splitting and implicit source term. It
was introduced by B.Perthame [11] for the compressible Euler equations.

4.1 Description

We build a time approximation of (11) in the following way. Let At be a small time
step. We are given the moment U at time ¢ = nAt and we obtain numerically the
associated distribution

F*(z,v) = exp(a(z,t").m(v))

by solving the entropy minimization problem (Th 3.1) subject to the constraint that
(21) / m(v) F*(z, v)dv = U™,
IR4

Then, we solve the kinetic equation

(22) { f(z, 1% v) = F*(z,v)

with ¢ € [nAt, (n+ 1)At] and v = (vg, vy, v,), in two steps:
(1) The linear transport equation

O f +v:.0:f =0
f(‘r7tn7y) - Fn(x7g)

INRIA



Numerical analysis of Levermore’s moment system. 13

with solution )
(23) flz,t,v) = F"(z — vy (t — "), 0),

is first advanced from time " to time t*t!.
(2) The collision equation

{ 8tf:Q(f)($727t)

f(w7 tn?ﬂ) — f(‘r? tn+17 U)?
is then solved between " and "' by a first order implicit scheme in time, yielding
(24) J(a, 0" o) = f(a, 0" 0) + AQ(S) (a, 1" v).

By combination of the solutions (23) and (24), we obtain a consistent O(At?) ap-
proximation of the solution of (22) given by

(25) f”"'l(:L‘,g) =F"(z - vx(t”"'l —t"),0) + AtQ(f”"’l)(x,g).

Then, the quantities (moments of f7+1)

(26) UMt = / m(v). F"(z — v At,v)dv + At/ m(v).Q(f*h) (z,v)dy,

IR? IR?
are first-order (in At) approximations of the solution to (11). In order to write the
numerical scheme based on this approximation, we finally replace at each time step
the moments U} by their cell averages

1
27 ur. = — urd
27) L= ag J, Udde,

over the cells €; of a given mesh size Az = 2;,,/5 — z;_1/5. We have then to
compute the average of U"T! over the same cells, which amounts to average f"*!
over each cell after (25).

Lemma 4.1 Under the CFL condition
Az

’
maxr
(2

(28) At <

the scheme (21-27) is a conservalive scheme of the form

ah? ’

max

AT g velocily

with o = %, Ajt1/2 = A(U;,Ujya,0), a specifie flur function and v
to be specified later.

RR n°3124



14 P. Le Tallec, J.P. Perlal

Proof By definition, we have
U, :/ m(v).F(z,t,v)dy,
IR4
A, :/ ve.m(v).F(z,t,v)duy,
IR?

Sy = / m(v).Q(F)(z, t, v))dv.
IR4
Averaging (26) over the cell Q; yields

/
U;‘;IA / o 2/ v).F"(z — vy At, v)dvdz
' LTj—1/2
/
/ ol 2/ Q(f"(z,v))dvdz.
Tj—-1/2

Because F™(z — v(t — t"),v) is the exact solution of (22), the first integral can be

/ /
/ ol 2/ v). F" (z — vy At, v)dvdm_/ ok 2/ m v). F"(z,v)dvdz
IR

Tj—1/2 Tj_1/2
tn+1
/ vz m(v) F"™ (215 — v (t = "), v)dv
IR

— /IRd Uz (V) F"™ (25412 — vz (t — 17), v)du}dt.

The second term, by definition, is

/ J+1/2/ Q(f "t (x, v))dvdx_AxS”+1.

Tj—1/2

written

In general, this term depends only on U;;l. For example, for the so-called BGK
model (6), we have

sptt = ([ mmzh) - vz,
Altogether, we get
(30) Ut Aw = U Ax + AtAzS)H

tn+1
vg.m(v). " (x; — v (t — t"), v)dvdt
l [ o @ @ = el = 7,0

/ v (v) F" (212 — v (t — "), v)dvdt.
IR?

tn+1

INRIA



Numerical analysis of Levermore’s moment system. 15

Moreover, using the exponential decreasing of F'(a, v) in v, we assume that

v and € > 0, such as Yv, > v | Flo,v) <e.

So, the CFL condition (28) ensures that the v-integration in the integrals (of F™)
written before, is limited to v, such as v, < v*%" i.e.,

v AL < vITAL < Az,

This means that ;143 — vy (t —1") (resp. z;_1/3 — v, (t —t")) remains almost always
in the cell neighboring x;/, (resp. z;_1/3). If we now define for k = j —1,7,5+ 1,

AZ’-I— = / vwm(U)Fn(wk,Q)dL
vz >0

AP = / ve.m(v).F™ (2, v)dv,
vy <0

we can write

tn+1

/IRd vem () ™ (24172 — va(t = 1), v)dudt = AL(AT + A7)

t’n,
and our numerical scheme writes finally

Aj
n+1 n n,+ n, n,+ 7, n+1

4.2 Stability and entropy condition.

Theorem 4.2 Under the assumplions and notation of Lemma 4.1, the numerical
scheme (21-27) is stable, or more precisely, all the moments Ug‘;l are associaled to
a positive distribution function.

Proof We will prove the conservation of the positiveness of the function f(z,v)
at each time step. First of all, F"(z,v) = exp(a.m(v)) is positive. Moreover,
™t is computed by combining the solution to the linear transport equation (23),
F™(z — v (t"T! — ¢"), v), which is positive by definition, and the collision equation
(24). The collision operator Q(f)(z,v) in the Boltzmann equation (or BGK equa-
tion) may be expressed as a summation of a term, proportional to f(z,t,v), which
describes the loss due to the collision and a gain term G( f) which is always positive,

QU (w,v) = =A)S+G(f), G(f) 20, A(f) = 0.

RR n°3124



16 P. Le Tallec, J.P. Perlal

Thus, (25) takes the form
[ (@,0) = F™(o = 0alt™ = 17),0) + AUASH) S G
or more precisely
J7H  0) (1 AAFH) = B (o = o (% = 1), 0) + GO,

The positiveness of f"T!(z,v) clearly appears on this expression. Consequently, we
have shown that each moment UZ‘JH is the average of a positive distribution function

n—I—l +1/2/ n—I—l d d _/ | L/$]+1/2 n—I—ld d
Vi = Ag /J ” v) [ (2, v)dvdr = m(g)-m . J" T dedy.

In particular, all moments of even degree are positive.
Let us conclude this section by the following theorem concerning the entropy in our
numerical scheme.

Theorem 4.3 Fach step of our numerical scheme is entropic for the entropy func-
tion n(Uy).

Proof As seen before, our numerical scheme could be splitted into three steps
e The construction of F"(z,v) by (21),
e The free transport step (23),
e The collision equation (24).

Let us define the entropy of (11)

| 1)@
IR

where H(f) = flogf — f forall f € X.
e The construction of F"(z,v) is clearly entropic because the model exp(a.m(v))

minimizes the entropy among all distribution functions generating the same moments
(Th 3.1). Then, this minimum defined by

n(Uy) =aly - U"

INRIA



Numerical analysis of Levermore’s moment system. 17

verifies
Vo, U < [ ()0,
IR?

with f™ is the cell averaged distribution obtained at the end of step n.
e Since

O (flogf — f) + v.0:(flogf — f) = (0if + v.0zf)logf =0,

we can prove that, during the free transport step between ¢” et ¢"**1 | H(f) satisfies

OH(f)(z,t,v) +v.0-H(f)(z,t,v) =0
(33)
H(f)(z,t"v) = H(F")(z,v) .

Then, after integration in time and in velocity, we have

/IRdH(f)( Ly )dv—/IRdH(F”)(a: v dv—/t

Now, we average over cells 2; (between z;_;/; and z;4/,), and setting

~n-|—1 1 Tij+1/2 _n+1
n] Z&Q? n Y

Lj—1/2

tn+1

/ v.0:H(f)(z,t, v)dvdt .
IR4

we obtain
~n-}—l / J+1/2/ tn-}—l , )dl)d$
Tj T Az T 1/ -
+1/2
/J / (z,v)dvdz
Ax T2
4172 tt
/ / / v.0,H(f)(z,t,v)dtdvdz.
Tj_1/2 4 Jn

Moreover, we have

t"+1

/
/ ol 2/ / v.0.H(f)(z,t,v)dtdvdx
IR¢ Jin

Tj—1/2
tn+1

N /tn /IRd v H(f) (@512t v)dudt — /

tn+1

[ o H () ot w)dudt
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And because H(f)(z,v,t) is the exact solution to (33) between ¢” and ¢"*!, we find

out
/.

tn+1

J.

Defining the numerical entropy flux at z;,,5 by

/IRd v.H(f)(%41/2,t,v)dvdt =

t"+1

/md 0 H(F™) (24172 — va(t — 7)) dudt |

tn+1

(34) T2 = AL / /IRd (Tj41/2 — ve(t —17))dvdt |

and at x;_y /5 by

(35) 172 = At/t /md“'H(Fn)(%—m—Uz(t—t”))dydt,

and because F"* = exp(a(z,1"),v) is the minimum function of the entropy 77 (Ua),
we write

/
(36) 77 (Ua) Aw/ o 2/ (z,v)dvdz.

Tj—1/2

tn+1

We can conclude that the entropy satisfies in the free transport step the numerical
conservation law

(37) 77?“ 'n?(Uoz) + U(q)?+1/2 - (I)?—1/2) =0.
e The solution (24) of the collision equation is
7 @) = [ (@, 0) + ALQ™M(S) (2, v).

After multiplication by log(f™*!(z,v)) (which is legitimate because f"*!(z,v) > 0),
we get,

[T dog(fr4) (2,0) = [ dog(f7H) (2, 0)
(38) +ALLog (f*1).Q" (/) (, v).

Moreover, the concavity of the logarithm function implies

(39) log(f) < log(g) + §<f —_g) ¥f.g € IRV
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Using (39) with 71 and f**t1, and after the integration of (38) over the velocity
space, we obtain

G aog () — £ (o, 0)de <
[ dog () = ) (e o)det [ Atlog(r).Q" (1) e, o)
IR4 R4

Because Q(f) is assumed to satisfy the local dissipation relation

/ Q(f)dog f(x, v, t)du < 0,
IR4

we obtain over each cell j,

) <
Finally, since H(f) is a concave function, replacing f™*1 by its space average also
decreases the entropy, which proves the decreasing of the entropy 7 in the third part

of the scheme.

4.3 Local construction of F(z,v,t") = exp(a.m(v))

The first step of our numerical scheme is the evaluation of F' = exp(a.m) with known
moments U2 =< m,.F >. As we said before, there is no explicit relation between
F(z,v,t") and U} for admissible spaces &,, of maximal degree four or more.

To compute «, let us introduce the function

J(B) =< exp(Bm) > ~ Y UL,

with gradient
0J
9P

This function is strictly convex because the Hessian matrix

=< m;exp(f.m) > -U..

0*J
(W) N Lemd mim;jexp(f.m)dv

is definite positive. Indeed, for every w € IRM we have

MTJWMZ/ dmeTwexp(ﬁ-m)dQZ/ (w!m)?exp(B.m)dv > 0,
vEIR veIR
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with equality if and only if w = 0.
Therefore the equation that we have to solve
oJ
B

has at most a solution which will then be the unique minimizer of J(3) over IRM. In

0

other words, the calculation of F with known moments reduces to the e-minimization
problem
P, : Find a € IRM such as J(a) = min J(j)
- BeIRM

which we achieve numerically by a Newton algorithm.

Remark 4.4 The positiveness of the moments U, of even degree produced by the
kinetic scheme is a necessary condilion to the existence of a solulion to P,.

4.4 Discretization of the velocity space

In order to evaluate the half-fluxes
AL~ :/ vpm(v) Fa(z, t), v)do,
vz >0/vz <0
in our numerical scheme and the Hessian matrix
Jaale) = [ m(0)m(e)" Fla(e, 1), ),
IR¢

for the local construction of F(z,v,t") = exp(a.m(v)) in the minimization problem
P, by the Newton method, numerical integration rules must be used. Indeed, for
most of Levermore’s models (typically model constructed with exponential of poly-
nomials of degrees greater than 4), these integrals are impossible to evaluate expli-
citly. The first integration rule chosen was the trapezoidal rule. Because F(z,v,t")
decreases to zero if v goes to infinity, we can construct an interval I, € IR such as

[ l@Fegld<e, ce R
[lull> 1o

where g(v) is a polynomial. Then, a trapezoidal rule can be constructed over this
finite interval I,. However, in three dimensions, because of the computational cost,
we have abandoned the trapezoidal rule in favor of more efficient Gaussian formula.
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4.4.1 Weights and integration points for the 3D Gaussian rule

We can assume that in most interesting transitional regimes the distribution function
F(z,u,t") is close to the Maxwellian equilibrium function M (z, ¢, v) (5). Therefore,
we may choose a numerical integration rule which will be exact for the moments
relative to a Maxwellian. In other words, we choose weights P; and nodes v; such
that

n

[ m() Mt 2)de = Y P M, 1, ,).
IR :

=1
In order to calculate these weights and integration points, we use the following
strategy: First, using the symmetry of the Maxwellian and the symmetry of the
domain of integration, we change Cartesian components into spherical components,

vy = V2RTr cosf cos ¢ + uy,

vy = V2RTrsinfcos ¢ + u,,
v, = V2RTrsin¢ + u,.

Then, the 3-dimensional integrals split into produts of the following one-dimensional
integrals,

™

T 2 2 T g k2 T Ritk241 . k3
/ "t 2e™ dr, / cos™ fsin““6d4, / cos™ TR psin M .
o _ _n

s

2

The h-points integration formula is given by A.H.Stroud et Don Secrest [13] for the
first integral. This rule is exact for polynomials that are of degree smaller than
2h-1. After change of variable s2 = sin # and s3 = sin ¢, the second and the third
integral are reduced to weighted polynomial integration over the integral [-1,4-1] to be
computed by Tschebyschefl and Legendre quadrature rules respectively. Altogether,
the integration rule is for all function F(a(z,t),v),

h  hy ha
(40) /IRd m(v)F(a(z,t),v)dv = E Z ZPZ-jlm(gm)F(a(:c, t),vi)-

i=1j5=11[=1

Here, the weights and integration points are deduced from the weights Py and nodes
r;,8in 0; ,sin ¢; corresponding to the 3 quadrature formulas, by

Piji = P.et" PP(2RT)*/?,
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Uz it = V2RTr; cos 8} cos ¢y + ug,
Uy il = V2RTr;sin 0; cos ¢; + u,
Uzl = V 2RTr;sin ¢; + u,.

5 The 14-moments closure

The linear space £ = {1, v, v@u, v, v*} is the smallest admissible space generating
a closure system which recovers formally the correct Navier-Stokes approximation
by asymptotic expansion. The dimension of &4 is (d+1)(d+4)/2 in general, that is
fourteen when d=3. The model takes the form

(41) P =Fa) = cap(@l® + alvi + oD viv; + alvtv; + W)

where ¢, j = 1, .., 3 and where (k) denotes the degree of function m(v). The resulting
system is then given by

Oy < FY > + g, < vF™ > =0,

Oy <vF" >4 v, <v@uF™ > =0,

O <v@uF" >4y, <veueui™> =<uveueQ(FM) >,
0; < v2wFY > 4, < vl @uFH > =< viv Q(F) >,
9y < vF™ > 4+ g, < vioF > =< vt Q(F'") > .

In order to write each equation in term of macroscopic quantities, we recall some
definitions. As well known, the zeroth moment is the density

plz,t) =< F'* > |

The velocity can be defined by

1
u(z,t) = — <oFY > .
p

Let us introduce now the intrinsic velocity ¢(z,v,t) = v — u(z, t). Clearly,

(42) < cFYM >=0.
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Second, third, and fourth c-moments are respectively

(43) <c@cF' >=—g,

which defines the Cauchy stress tensor g,

(44) Q=<c@c@cF" >,
and
(45) R=<c@c@c@cF" >,

These moments define the pressure

1 2 14 1
(46) p=o<c F'*>= —Etr(g),
the viscous stress tensor,

1
:pI:d—l—g:—<62F14>—<g®gF14> .

(47) y

and the heat flux,
(48) q=< c*cF'" > .

1=

By contraction of (45), we introduce the auxiliary moments
(49) R=<cc®cF" >,

(50) r=<ctPt >

and we define
(51) s=< el > |

With this notation, the moments in the 14-moments closure write

<mFM>=U,={ pudu—g
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pu
pUR U —0
(pu®u®u)sym _30®—sym+g
<v@mFY >=A4,={ pu u®u—t7‘( g)u®u— ((gg)@g)sym—gUQ

and

~—

—~~
>

~—

n
Il
[ [ [ < <

t 'S w
%
EREEE
1919 (19
3

RS

where =; are the moments of the collision operator
i =< mi(0)Q(F') >

5.1 Approximation of the collision operator

The classical approximation of the collision operator in the Boltzmann equation is
the BGK relaxation operator,

(52) Q(Ftty = 1L

(M(F14)($7 v, t) - F14(a7 U))

which gives the correct Navier-Stokes viscosity p when M (F%) and F'* have the
same first moments. The associated heat conduction is given by k = d;—zRu which
corresponds to a gas with Prandtl number

d+2 Ru

Pr=—=1.
2 K

For most gases, we have Pr < 1. Thus, this approximation will generally not give the
correct Navier-Stokes heat conduction. To obtain the right conduction, Levermore
has introduced a generalized BGK collision operator of the form

pRT
L

Q) = (M(‘TVUJ)_FM(O‘?’U))
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(d+2) pR*T  pRT ! 14
+( o )(gm,v)—F (v))

63 =P MG 00 - Gl o) + GG o) - o, 0)

where
G(o,v) = exp(ag + of.v; + af;.v;v;)
is the quadratic Gaussian closure [1] obtained from the 10 first moments of F!4. In

this case, the collision operator can be calculated easily after computing the fourteen
moments of the Maxwellian M and the Gaussian G, and we find

0
0
RT
= (pLd + o)
== T RT
p—2(pM+ g).u— Py
B = B~
RT 2 2 RT 2 2
P2 (aplul* + dwou — oo+ 62-) - B (dgutr - Zo: 0 — 90
I = p= = p BT p= = p

6 Numerical tests

We test below the 14-moments model in a physical configuration close to the tran-
sition regime, and our results are compared with those of a Monte Carlo simulation

performed by G.A.Bird [20].

6.1 The shock wave

The first simulation considers a one-dimensional steady shock wave. This shock
wave involves the transition from a upstream supersonic flow (subscripts (1)) to a
downstream subsonic flow (subscripts (d)). The shock Mach number (Mach) is
defined by the ratio of the speed of the upstream gas to the speed of sound in this
gas, Mach = U,/c ,where ¢* = yRT, with v = 5/3.

The gas is Argon with Prandtl number equal to 2/3. This gas is initialized in the
two regions with the following Rankine-Hugoniot conservation relations

2
Ugg 1

T, =29 ___
9 yMach? R
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AMach? Mach? 4+ 3
= ULy = ——————UT
Pd Mach? + 3 Py d AMach? g
(Mach?® + 3)(5Mach? — 1)
T, = T,.
16 Mach?

Then, the gas, at equilibrium has the following distribution function:

(v —uy/q(z))?
QJ%IE/d($)

pg/d(x)

Fg/d($7y, O) = M(.”E,Qa O) = (27TRT /d(.f))S/Q
g

exp(—

The one-dimensional domain {2 is discretized with 100 identical cells whose length
is equal to 0.01m. The shock wave is made stationary in the middle of the domain
Q, by imposing the values of the moments in the extreme cells of the domain €.
Results

The CFL number is equal to 1. The results at convergence are obtained as soon as

U5 = UZllz2 < 107

A wave with a shock Mach number of 1.2 in Argon at 273.K has been chosen as
first case. The results are obtained after 500 iterations. The results for the density
and temperature profiles are compared in Fig 1,2 with the predictions of a DSMC
simulation or of a Navier-Stokes solver. The normalized value is defined by

h—h
KN = 9
hg — hy

As expected, the three sets of results are in good agreement for this very weak wave.
The corresponding results for a shock Mach number of two are shown in fig 3,4. In
this case, 1293 iterations have been used to obtain convergence. The local Knudsen
number is in this case greater than 0.1, and then there should be clear errors in the
Navier-Stokes profiles, as confirmed by DSMC. The 14-moments model results are
closed here to the Boltzmann simulation.
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Figure 1,2 : Temperature and density profiles in argon with Mach = 1.2
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Figure 3,4 : Temperature and density profiles in argon with Mach = 2.
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6.2 Plan Couette flow

This second application is a one-dimensional steady flow. Plan Couette flow is the
flow between two plane parallel surfaces, one of which is at rest and the other is
moving. The surfaces, distant of 1 m., define a domain which we divide in 100
cells. Both boundary conditions are derived from the total accommodation kinetic
conditions. This is performed by setting k(z) = 0. and, temperature and velocity
values to wall values in the Maxwellian in (20). The gas (Argon) is initially at
equilibrium with the same temperature as the wall, equal to 273.K. Initial density
is equal t0 9.27¢ 6K g.m > and the mean free path is 0.00925 m. The VHS molecular
model is employed in order to evaluate th coefficient of viscosity. Prandtl number is
2/3. In the first case, the velocity of the moving surface is equal to 300m.s~% which
correspond to a small velocity gradient.

Results

The CFIl number is also equal to 1. We use the same convergence criterion as
in the shock problem, which is obtained after 15661 iterations. Velocity, density
and temperature profiles are shown in fig 5,7,9 and are compared to Monte Carlo
simulations in fig 6,8,10. Shear stress profiles are also compared too in fig 11 and 12.
DSMC results are noisy, where the 14 moments results are free of noise. Steady state
value of the pressure is 0.5497N.m? is closed to the 0.549N.m? found by G.A.Bird.
Velocity and temperature slips at each surface are compared with Bird’s results in
the following table.

\ | 14 MOMENTS | DSMC ||

Temperature slip T-Tw 2°K 14°K
Velocity slip © — ty, 6.2 m/s 5 m/s

We can also compare qualitatively our results to the Navier-stokes predictions. The
Navier-stokes equations, in the case of one dimensional, stationary flow reduce to
the following equations:

(54) (=0,

& e
& 7= () =0
b2 ().
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or
- k.
(58) q 2
From (54), we get first
PUz =
Thus,
(59) u=u(z)e,.
Because of (55), the pressure is constant:
(60) p(z) = po.
Thus, (56) reduces to
(61) Tez = TO-
Finally, the equation (57) yields
0 or Jdu
2 — | K — =0.
(62) 3$< (?30)+T08x 0

In our simulation, because the walls have the same temperature, we can consider
that g and s are constant. Then, (56) implies that u,(z) is affine and (62) gives
that T'(z) is a parabola.

Let us remark that our numerical results are closed to this prediction.
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Figure 5,6 : The velocity profile in the Couette flow at (Kn)=0.00925
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Figure 11,12: The shear stress profile in the Couette flow at (Kn)=0.00925

The jump in the shear stress profile near the wall, which is smaller than the
noise of the DSMC results, is probably due to a artificial non-zero value of the
normal velocity near the wall. This small normal velocity which comes from a
locally diffusion of the mass flux created by the kinetic scheme, depends only on the
mesh.(u, = .065m/s for Az = 0.005 and u, = .121m/s for Az = 0.01) A small
perturbation in the term pu,0,u, which gives the shear stress value, appears but
depends only on the mesh.

7 Conclusion

In this paper, we have recalled the mathematical properties of the moment closure
hierarchies proposed by Levermore. More precisely, we have presented an entropy
property of the resulting moments system and derived consistent boundary condi-
tions. Based on these properties and because the system is deduced from the full
Boltzmann equation, we have proposed a kinetic numerical scheme with implicit
source term, which is stable and preserves entropy properties.

The 14-moments equations have been written and solved with this scheme in two
flow configurations: a shock wave problem and a Couette flow.

These results, to our knowledge, are the first numerical results obtained with the
14-moments Levermore model with boundaries. They are compatible with the
Navier-Stokes solutions with slip boundary conditions and give results with very

RR n°3124



32

P. Le Tallec, J.P. Perlal

good agreement, and this with far less noise, with the classical DSMC solutions of

the Boltzmann equations.
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