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Abstract: We consider the evaluation of the flow network reliability parameter. Because the exact
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Une méthode de Monte Carlo
pour le probleme de la fiabilité d’un réseau de transport
utilisant un échantillonnage préférentiel et stratifié

Résumé : Nous considérons le probléme de ’évaluation de la fiabilité d’un réseau de transport sto-
chastique. Le fait que I’évaluation exacte de ce parameétre soit de complexité temporelle exponentielle,
conduit & utiliser des simulations de Monte Carlo pour l’estimer. Dans ce papier, nous exploitons la
procédure de décomposition de I’espace d’états de Doulliez et Jamoulle pour construire une nouvelle
méthode de simulation, basée sur ’échantillonnage stratifié et ’échantillonnage préférentiel. Nous dé-
montrons ’appartenance de cette méthode & la famille des méthodes de réduction de la variance et
nous la comparons a une précédente méthode basée sur la méme procédure de décomposition. Nous
illustrons par un exemple 'intérét de notre méthode par rapport a une précédente méthode basée sur
la méme décomposition.

Mots-clé : Réseau de transport, st-flot maximal, simulation de Monte Carlo, reduction de la variance,
échantillonnage préférentiel et stratifié.
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1 Introduction

A basic mission of a flow network is the establishment of a flow between a source node s and a sink node
t that meets or exceeds a fixed demand d. In the stochastic case, the network components have random
capacities and the success of this mission is a random event. Systems that can be regarded as flow
networks are electric-power transmission, distribution systems, transportation networks and computer
networks. The probability of successful mission is a performance measure, often called the flow network
reliability measure.

Several papers have been devoted to its evaluation when nodes do not limit flow transmission and
when arcs capacities are discrete, multi-valued and statistically independent random variables [7, 10, 14,
15]. In this case, one of the methods to compute exactly the parameter under consideration is based on
the state space decomposition methodology of Doulliez and Jamoulle [7]. It starts by decomposing the
state space into non-overlapping operating set, failed set, and undetermined sets. Each undetermined
set is used as input of subsequent similar decomposition. The recursive process terminates when all
generated sets are classed operating or failed. The probability that the random vector state belongs to
any generated operating set is easy to compute and the flow network reliability parameter is the sum
of these probabilities.

When all arcs have only two possible capacities 1 or 0 and the demand is d = 1, the problem
becomes the source-terminal reliability problem [5], [6], [9] which is NP-hard [2]. Consequently, the
general case considered here is also an NP-hard problem. This implies that the computational time
will be prohibitive when the network size is large [8]. Then Monte Carlo approaches are alternatives
allowing, in a reasonable time, the evaluation of large networks.

For a fixed sample size K, the estimation of the flow network reliability parameter by the standard
estimator is the frequency of operating capacity vectors in the set of K independent trials drawn from
the whole state space of the random capacity vector. In order to obtain more efficient estimator with
the same sample size K, in [12], Fishman and Shaw stop the exact algorithm (using recursively the
decomposition procedure of Doulliez and Jamoulle) after a pre-fixed number of calls to the decomposition
procedure and exploit some resulting informations in the simulation context: the generated operating
and failed sets are used to deduce a lower bound and an upper bound on the reliability parameter, the
sampling is reduced to the union of the resulting undetermined subsets and the K trials are distributed
on these sets. Hence, each undetermined set constitutes a stratum and the method is called a stratified
sampling technique.

In this technique, the trials within each stratum is accomplished by the standard sampling technique.
The aim of our work is to show that if we use in each stratum the importance sampling method proposed
in [4], we obtain more accurate estimator. The used importance sampling technique allows to transform
the sampling in each stratum into the sampling in a smaller set, and this recursively, until it is not
possible to accomplish new decompositions. We then avoid the use of the standard sampling technique
during the simulation process. The paper is organized as follows. The following section introduces some
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4 Stéphane Bulteau, Mohamed El Khadiri

notations and the model definition. In section 3, we recall the standard estimator. In section 4, we
resume the exact algorithm of Doulliez and Jamoulle and we recall the stratified estimator proposed by
Fishman and Shaw [12]. We also present our stratified Monte Carlo technique. Section 5 is devoted to
numerical comparisons and Section 6 to some conclusions.

2 Notations and model definition

We resume in this section the model definition and some notations. For ease of explanation, additional
definitions and notation will be given in adequate sections.

=
We will denote G = (V, A, C, s,t,d), the flow network where, V is the set of nodes, A = {e1,...,e.},
the set of arcs, s is the source node, ¢, the sink node and d, the demand required at node %.

e For each arc e; € A,

— C; denotes the random discrete capacity of arc e;,
— 0<c¢j1 <c¢jo<...<¢jn; <+oo are the n; possible values of the random variable C;,
— and Q; = {¢j1,...,¢jn; } is the state space of the random variable C;,

— pjn is the probability that C; has capacity c¢j, in ;.

- -
e C= (Cy,...,C,) denotes the random state vector of the network G. A value C= (c1,...,¢,) of
this vector is called a capacity vector.

a
%
e 0= ®Qj represents the network state space (the state space of random variable C).
=1

e v(ci,...,¢,) is the value of maximum s¢-flow when the arc e; has capacity ¢;, e; € A.

e We denote & the non-decreasing structure function of the network G defined for all capacity
%
vectors C' by

%
pd 1 ifv(C)>d
(0] = =
() { 0 otherwise.

e A set R C Q is rectangular if and only if there is a lower and an upper vector of capacities
a(R) = (a1(R),...,a4(R)) and B(R) = (B1(R),...,Ba(R)), respectively, in Q such that every
capacity vector 8= (c1,...,¢q) with a;(R) < ¢; < B;(R) for all arcs e, belongs to R and R
contains only those vectors [7].

e For any rectangular set R C ), we associate the following notations and definitions:

INRIA



A Monte Carlo Simulation for Flow Network Reliability Evaluation 5

— —
— C (R): the random vector having the same distribution as the conditional distribution of C
—
given that Ce R,

- G(R) = (V, A, c (R),s,t,d): the network that differs from G only by its random state vector
which is equal to 8 (R),
%
— B(R) = @(C (R)),
— — — —
- g(R) = E{B(R)} = E{&(C (R))} = Pr{®(C (R) =1} = E{&(C)| CE R}: the flow
network reliability of the network G(R).

e g(Q)=E {@(E))} =Pr {@(E)) = 1} is the considered reliability parameter of the flow network G

under consideration.

3 The standard Monte Carlo method

For a sample size K and a rectangular set R C (2, the estimation of the reliability parameter g(R),
of the network G(R), by the unbiased standard Monte Carlo estimator is the frequency of operating

H.
vectors in the set of K independent trials drawn from R using the distribution function of C (R). More
formally, this estimator is the sample mean,

B(K,R) = =3 8(C (R)), (1)

=

. ) —(1) —(K) ) N
based on K independent trials ®(C (R)),...,®(C (R)) of the random variable B(R) = ®(C (R)).

5
By the independence of the K trials and since ®(C (R)) is a Bernouilli random variable, the variance
of the above estimator is

. Var {®(C (R N
v (&€ () - 2 (e )} _ 9Ll o

For a given sample size K, an estimate of g(£2) by a standard estimator can be obtained from the
following function with the parameter R equal to 2. This function returns, for any rectangular subset

R of Q, an estimate of g(R) by a sample mean based on K independent trials of @(Z (R)).

Function StandardSampling(R, K)

RR n° 3122



6 Stéphane Bulteau, Mohamed El Khadiri

1. Initialization: Est := 0.

2. For each experiment k:=1,...,K do
2.1. For each link j € A accomplish a trial ¢; of Cj(R).
2.2. Compute v(c1,¢2,...,Cq).
2.3. Ifv(ei,e9,...,¢4) > d then Est := Est + 1.

3. Return(Est/K)

The Ford-Fulkerson flow-augmenting method can be used to compute v(cy, ¢z, . .., Cq), the maximum
st-flow corresponding to the capacity vector (ci,ca,...,¢q). A method to generate a trial of a discrete
random variable can be found for instance in [11].

The well known drawback of the standard Monte Carlo sampling is the large sample size K required
to obtain sufficiently small variance and reasonable relative error [9]. In the following section, we will
interest to the construction of Monte Carlo estimators based on the state space decomposition procedure
of Doulliez and Jamoulle. These estimators have smaller variances than the standard estimator, for a
fixed sample size K. This implies that they belong to the variance-reduction family, leading to more
accurate estimates than the standard one [13].

4 A Monte Carlo methods based on the decomposition procedure of
Doulliez and Jamoulle

Before we present Monte Carlo methods based on the decomposition of Doulliez and Jamoulle, we recall
briefly its exploitation for computing exactly the reliability parameter g(R), for any rectangular subset
R of 2. We also give a lemma that we consider as a start point for constructing stratified sampling
methods treated here.

4.1 Basics

To evaluate g(R), the exact algorithm based on the decomposition of Doulliez and Jamoulle [1, 7],
starts by decomposing the set R into non-overlapping operating subset, failed subset and undetermined
rectangular subsets. Each undetermined set is used as input of subsequent similar decomposition. This
process terminates when all generated sets are classed operating or failed. The probability that the
random vector state belongs to any generated operating set is easy to compute and the flow network
reliability parameter is the sum of these probabilities [1, 7]. More formally, we have

T(R)

g(R) = Y Pr{cCe wi(R)} (3)

i=1

INRIA



A Monte Carlo Simulation for Flow Network Reliability Evaluation 7

where T(R) is the number of generated operating rectangular subsets and W;(R), 1 <1 < T(R), are
these sets.

In order to compute g(f2), it suffices to replace R by € in formula (3). Because the exact evaluation
is an NP-Hard problem and the decomposition procedure has polynomial time complexity [12], the
exponential complexity of the exact algorithm based on (3) results from the exponential growth of the
number of calls to the decomposition procedure, or equivalently the number of generated operating
rectangular subsets, as a function of the network size. However, if we are limited to M decompositions,
due to the execution time, we can deduce a lower and an upper bounds on the considered reliability
parameter and exploit them in the simulation context [4, 12].

The following lemma expresses the reliability g(R) (R C 2) as a function of bounds on this parameter
and the exact reliabilities associated to undetermined subsets of R resulting from a number M of
decompositions, when M is smaller than the total number of decompositions needed to compute exactly
g(€2). This will be useful in the construction of stratified simulation methods in the next subsections.

For the rest of this paper, we will need the following definitions and notation (valid for any rectan-
gular set R C Q and all methods):

e T'(R) is the number of calls to the decomposition procedure to compute g(R) by formula (3)
e For a fixed integer M < T'(2) and for any rectangular set R C (2,

— W(R): the subset of vectors classed operating in the M first decompositions for computing
g(R) by formula (3)

1(R) = { (R) € W(R)}: a lower bound on g(R)

(
(R): the subset of vectors classified failed in these decompositions

[
>y 9

(R): the number of undetermined rectangular subsets not yet decomposed
— S(R) = {U1(R),...,Upr) (R)}: the set of these undetermined subsets

h(R)
- u(r) = J UalR)
h=1

— m(R) =Pr{C (R) € Uh(R)} for h € {1,...,h(R)}
. h(R)
- gu(R)=1-— Pr{C (R) € } =1- Z’/Th ): an upper bound on g(R)

— If S(R) # 0 (h(R) #0), U(R) denotes the random variable defined in the set S(R) by

Pr{T(R)=Ux(R)} = Pr{C(R)€TL(R)| C (R) €U(R))
= m(R)/(gu(R) — g1(R)), for h e {1,...,h(R)}.

RR n° 3122
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Lemma 4.1 For the fized integer M < T'(2) and for any rectangular set R C Q, we have the following

transformation
h=h(R)

9(R) = gq(R) + Y mn(R)g(Un(R)). (4)
h=1

Proof.
As the sets W(R), F(R) and the undetermined sets U, (R), h € {1,...,h(R)}, form a partition of
R, the total expectation theorem gives

g(R) =E{B(R)} = E{B(R)|(C (R) e W(R)}Pr{C (R) e W(R)}
¢

+ E{B(R) | (C (R) € F(R)} Pr{C (R) € F(R)}
h=h(R) N R

+ 2 B{B®) | (C (B) €Un(R)}Pr{C (B) € Un(R)}.
h=1

Since W (R) is an operating set and F'(R) is a failed set, we have
—
E{B(R) | (C (R) e W(R)} =1

and
E{B(R) | (C (R) € F(R)} =0.

We then obtain

4.2 The previous stratified Monte Carlo method based on the decomposition pro-
cedure of Doulliez & Jamoulle

If we replace R by Q in equality (5), we obtain

INRIA
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Instead of drawing the K trials from Q using the distribution function of E)=E> (Q), as in the
standard procedure presented in section 3, equality (6) leads the authors in [12] to draw the K samples

from the subset
h=h()

uQ) = J Un.
h=1

Moreover, they propose to distribute the K trials on the undetermined sets. Hence, each of them
constitutes a stratum and the method is called a stratified sampling one. The number K} of trials

= —

drawn from each Uy () is fixed proportional to the probability that C belongs to U, (Q2) given that C

belongs to U(€2). The reader can see [12] for a discussion about the rules to distribute the K trials.
More formally, they suggest to use the following unbiased estimator

B h=h(Q) R
F=ag@)+ Y ma(Q)®(Kp, Un(2)) (7)
h=1

where

Ky = KPr{U(9)=Un(Q)}
= Km(@)/(90() — a(®), for h=1,...,h(%).
and ®(Kp, Up(Q)) is the standard unbiased estimator of g(Uy(€2)) based on K}, independent trials of

C (Un(9)) (see definition (1)).
It is showed in [12] that the variance of this estimator is

~ h=h(Q)
Var {F} = (9(9) — gu(2))(9u(2) — 9(2)/K — 3 ma(D(g(UA(D)) — 9(U(R))*/K. (®)
h=1
Then
Var {F} < (9(9) ~ 91(€))(9u(2) — 9(2))/K
< g1 —g(Q)/K.

By equality (2), the value g(Q2)(1 — g(€2))/K corresponds to the variance of the standard estimator of
g9(€2) and

Var {7} < Var {&(C ()} .

The last inequality implies that F offers more accurate estimates than the standard one.

RR n° 3122
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For a given sample size K, an estimate of g(2) by this sampling strategy can be obtained from the
following function with the parameter R equal to 2. In step 0 of this function we use the procedure
Bounds(R, M, gi(R), gu(R), h(R), S(R), {m1(R), ..., mhr)(R)}) that computes, for a given rectangular
subset R of Q and a fixed integer M of decompositions, the bounds g;(R), g,(R), the number h(R) of
undetermined rectangular subsets, the set of undetermined sets S(R) = {U1(R), ..., Upr)(R)}, the set
of associated weights {m(R),...,mr)(R)}. If T(R) < M, this procedure gives g;(R) = gu(R) = g(R)
and h(R) = 0. The reader can see [7, 12], for details about the computing process of the procedure
Bounds(), even if this is not necessary to understand our work.

Function StratifiedSamplingl(K, R)

0. Preliminary step: Bounds(R, M, gi(R), gu(R),h(R),S(R),{m1(R),...,mnr)(R)}))
1. Initialization: Est :=0
2. For h:=1 to h(R) do
2.1. Evaluate the size Kp,: Kp, := K X m(R)/(9u(R) — gi(R))
2.2. Compute the standard estimation of g(Up(R)): Esty, := StandardSampling(Up(R), Kp)
2.3. Add the contribution of the stratum h to Est:
Est := Est+ m,(R) x Esty,
3. Return the estimate of g(R): return(g;(R) + Est)

4.3 A new stratified sampling estimator

In the above algorithm, the estimation of each reliability parameter g(Up,(2)) associated to the stratum
Un(€), is accomplished by the standard sampling. If these reliabilities are estimated by estimators
that belong to the variance-reduction family, we will obtain more accurate estimator than F (7). As a
consequence, we propose to replace the standard estimator by the recursive importance sampling one
presented in [3, 4]. For any rectangular subset R of Q, this estimator is a sample mean based on the
random variable Z(R) given in the next proposition. When we compute a trial of Z(R), we transform
the sampling in R into the sampling in one undetermined subset among the h(R) undetermined subsets
resulting from M decompositions of R. The selection of this undetermined subset results from a trial of
the random variable ﬁ(R) defined in subsection 4.1. We then use recursively this transformation until
it is called on an undetermined subset such that its reliability can be computed exactly by a number of
decompositions smaller than or equal to a fixed integer M. An adequate combination of this reliability
and other probabilities collected during the recursive sampling process constitutes a trial of Z(R). By
this technique, we avoid the use of the standard sampling technique during the simulation process.

INRIA
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4.3.1 Theoretical developments
In the following proposition, we recall the random variable Z(R), used to construct the recursive im-

portance sampling estimator, and we define the new stratified estimator.

Proposition 4.2 For a fized integer M < T(Q2) and for any rectangular set R C Q, let us define the
recursive random variable Z(R) by:

_ ) 9(R) fT(R) <M
200 = { 500+ () a2 et ©)
where all parameters are defined as in lemma (4.1).
Let
206 0(9) = = 3 20 w,(9)
’ Kn =

the sample mean based on Kj, independent trials using the distribution function of Z(Up(S2)). Then,
the estimator

B h=h() _
Z=g( Q)+ Y Z(Kn Un()m() (10)
h=1
verifies - N
E{Z} =9 =E{F} (11)
and
Var {2} < Var {.7?} < Var{cf(g)} (12)
Proof. We can prove with a recursion on T'(R) that, for any rectangular set R,
E{Z(R)} = E{B(R)} = g(R) (13)
and
Var {Z(R)} < (9(R) — gi(R))(9u(R) — g(R)) < g(R)(1 — g(R)) = Var {B(R)} (14)

Equality (13) implies that a sample mean based on Z(R) is an unbiased estimator of g(R) and equa-
lity (14) implies that this estimator leads to more accurate estimates than the standard one. The reader
can see [4] for the detailed proof of equalities (13) and (14).

By replacing R by U, (§2) in equality (13), we obtain that E{ Z(K, Un(9))} = g(Un(2)) and then,

~ h=h(Q2) R
E{Z} = a@+ > Wh(Q)E{Z(Kh,Uh(Q))}
h=h(s)
= q@)+ Y m(Q)g(Un(Q)) =g()
h=1

RR n° 3122



12 Stéphane Bulteau, Mohamed El Khadiri

from formula (6).
For the variance, by applying the result (14) with U, (f2), we obtain

_ Var { Z(U,(Q2))} < Var {B(Ux(£2)) }
Kh o Kh

Var { Z(K», Un(2) } = Var {& (K, Un(2)) } .

. h=h(@) ~
Var {2} = ’; () Var { Z(Ky, Un(2)) }

and

We deduce that

Result (11) implies that Z is an unbiased estimator of g(€2). Result (12) implies that the use of
the recursive importance sampling to estimate the contributions of the strata leads to more accurate
estimator than the previous stratified estimator proposed in [12].

4.3.2 Algorithmic description of the new simulation algorithm

The function I'mportanceSampling() that gives a trial of the random variable Z(R) defined by the
recursive formula (9) can be described as follows:

Function I'mportanceSampling(R)

1. Check end recursion condition:
1.1. Bounds(R, M, g(R),gu(R),h(R),S(R),{m1(R),...,7hr)(R)}))
1.2. If (h(R) = 0) return(g;(R))
2. Accomplish a trial R’ € S(R) by using the distribution function of U(R)
3. Recursive call: return(g;(R) + (gu(R) — gi(R)) x ImportanceSampling(R'))

For a given sample size K, an estimate of ¢g(Q2) by the proposed strategy can be obtained from the
function
StratifiedSampling2() with the parameters K and Q. As in the function StratifiedSamplingl(), the
new function uses the procedure Bounds().

INRIA
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Function StratifiedSampling2(K, R)

0. Preliminary step: Bounds(R, M, gi(R), gu(R),h(R),S(R),{m1(R),...,mhr)(R)})
1. Initialization: Est:=0
2. For h:=1 to h(R) do
2.1. Evaluate the size Kp: Kj := K X m,(R)/(94(R) — gi(R))
2.2. Compute the estimation of g(Up(R)) by a sample mean based on K}, trials of Z(Uy(R)):
2.2.1. Esty, :=0
2.2.2. For k:=1 to Kj do Esty, := Esty, + ImportanceSampling(Uy(R))
2.2.3. Esty, := Esth/Kh
2.3. Add the contribution of the stratum h to Est: Est := Est+ mp(R) x Esty,
3. Return the estimate of g(R): return(g;(R) + Est)

5 Numerical illustrations

We illustrate our methodology by evaluating the reliability of the network with 10 nodes and 25 arcs
represented in Figure 1 [12]. For each arc j, the random discrete capacity C; is a Bernoulli random
variable that has value 0 with probability ¢ and value c; (on the arc j of Figure 1) with probability
p =1—¢g. We consider five different demands d = 20, 36, 50, 60 and 71, and the probability p = 0.9.
When the capacity of every arc j is fixed at its upper value c;, the maximum s¢-flow is equal to 71.
Consequently a demand greater than 71 at the sink node ¢ can not be satisfied. Then, such demands
are not to be considered. We only consider the case, M=1. So, the procedure Bounds() is called with

M=1.

Figure 1: The network used for numerical results in Tables 1 and 2

RR n° 3122



14 Stéphane Bulteau, Mohamed El Khadiri

In Table 1, we present at Columns 2 and 3 the exact values of g() and their estimates by Z with
K = 2'6, Tt can be observed that each estimate is close to the corresponding g(£2). The exact algorithm
of Doulliez and Jamoulle has been used to compute g(2) and g,(2), for h = 1,...,h(2). These values
serve to tabulate, at Column 4, the variance of B(2), which is equal to g(2)(1 —g(€2)) and, at Column

5, the variance of F , evaluated by equation (8). Since the variance of Z is unknown, its unbiased
estimator [13]

R h=h() 1 Kn .
Vi= > Mg (2~ 2,1)? (15)
h— 1=
h=1 i=1
is used to obtain estimates of Var {Z~ } at Column 6.
d  g(Q) z  va{d©)} Vva{F} Var { 2}

20 0.985506 0.985520 2.180 x 107 9.495 x 10~8  5.069 x 10~10
36 0.909608 0.909620 1.255 x 1076 6.692 x 10~7 2.616 x 10~°
50 0.667960 0.667936 3.384 x 1076 2.452 x 10~7 1.064 x 10~°
60 0.456285 0.456283 3.785 x 1076 3.130 x 10~® 3.210 x 10!
71 0.372807 0.372810 3.568 x 107® 2.015 x 10~® 5.113 x 10712

~ —>

Table 1: Evolution of variances of ®(C), F and Z as a function of the demand d, with p = 0.9.

Table 2 compares the performance of CTJ(E}), F and Z defined by (1), (7) and (10), respectively.
At Column 2, we give the variance-reduction ratio achieved by the estimator F when compared to

~ —
the standard sampling ®(C). At Column 3, we present the variance-reduction ratio achieved by the
~ ~ —
estimator Z relatively to ®(C). This ratio is always greater than the variance-reduction ratio achieved by

the estimator F. It results that Z is more accurate than F. At Column 4, the quantity T(&)(E))) /T(Z)
gives the ratio of the time required to collect 2'° trials for &)(Z) and the time required to collect 2!
trials for Z. Because this ratio is always smaller than 1, the reduced variance has been achieved at a
higher cost per trial for Z than for the standard estimator. The performance parameter that takes into

account both variance-reduction ratio and time ratio is the product

w@@) _Va{*0)} 1@c)

WE) | va{Z} | T(2)

INRIA
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~ ~ —
This parameter is called the speedup of the estimator Z with respect to ®(C) and gives the time that the

estimator @(8) requires to obtain the same variance obtained by the estimator Z in one unit of time.
The speedup values, presented at Column 5, are always greater than 1, showing a better performance
of the estimator Z. N .

As the cost of the estimating by F is about the same as the cost of estimating by ®(C) [12], the
speedup of F with respect to the standard estimator is close to the variance-reduction ratio, and the
speedup of Z with respect to the stratified sampling estimator can be estimated by the ratio of the
values in Columns 5 and 2, for each case. These speedups are tabulated at Column 6. By comparing
the speedup values, we deduce that our methodology is more attractive than the stratified sampling in
[12].

We can remark from the values (g,(U(2)) — g:(U(€2))), tabulated at Column 7, that the estimator
F is as better as the bounds are close, that is the value of (g,(U(€)) — g;(U())) is close to 0. This
effect does not appear for Z , due to the recursion. However, we can observe that it has the properties
of the exact evaluation, that is it is more efficient when the demand is close to the maximal s, t-flow.

Var{@(?)} Var{a(g)}

TEE)  WEE) WE (g Q) — g(U(9Q))

var{ F} var{Z} T(Z) W(Z) W(Z)
20 2.30 430  0.156 67 29 0.4686
36 1.87 479  0.215 103 55 0.6126
50  13.80 3180  0.238 758 95 0.3416
60 120.94 117928  0.327 38610 319 0.1296
71 180.11 697790  0.461 321988 1787 0.1050

~

Table 2: Evolution of the speedup of the estimator Z with respect to @(E}) as a function of the demand
d, with p = 0.9.

This gain in accuracy of Z with respect to Fis improved in the case of highly reliable components.
For example, when the elementary reliabilities are set to 0.99, we obtain the speedups values from 18159
to 2048026.

6 Conclusions

The problem of the exact evaluation of the probability that the maximum si-flow exceeds a fixed value d
in a stochastic flow network is an NP-hard problem. Consequently, algorithms to resolve it exactly have
a high computational cost. When exact algorithms fail or when their computational time is prohibitive,
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Monte Carlo methods can supply an estimate in a reasonable time. In this paper, we have proposed
to use the decomposition methodology of Doulliez and Jamoulle to construct a new stratified sampling
estimator. We have shown that it belongs to the variance-reduction family and that it is more accurate
than the previous stratified sampling estimator based on the same decomposition [12]. We deduce
from the results of several tests that our methodology offers substantial gains. Further research can
be performed in two directions. On one hand, one can attempt to accomplish the M decompositions
such that the bounds are close, at each call of the procedure Bounds(). This will lead to more accurate
estimates. On the other hand, one can quantify the effects of varying the number of decompositions M
in order to establish some rules to suitably fix this parameter. An other interesting point is to study
the incorporation of recursive stratification within the undetermined sets.
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