N
N

N

HAL

open science

Declarative Specialization of Object-Oriented Programs

Eugen-Nicolae Volanschi, Charles Consel, Gilles Muller, Crispin Cowan

» To cite this version:

Eugen-Nicolae Volanschi, Charles Consel, Gilles Muller, Crispin Cowan. Declarative Specialization of
Object-Oriented Programs. [Research Report] RR-3118, INRIA. 1997. inria-00073572

HAL Id: inria-00073572
https://inria.hal.science/inria-00073572
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00073572
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Declarative Specialization
of Object-Oriented Programs

Eugen N. Volanschi, Charles Consel,

Gilles Muller, Crispin Cowan

N° 3118
Février 1997

THEME 2

apport
derecherche







% I N RIA

RENNES

Declarative Specialization
of Object-Oriented Programs

Eugen N. Volanschi, Charles Consel,
Gilles Muller, Crispin Cowan*

Theéme 2 — Génie logiciel
et calcul symbolique
Projet LANDE

Rapport de recherche n® 3118 — Février 1997 — 24 pages

Abstract: Designing and implementing generic software components is encouraged by
languages such as object-oriented ones and commonly advocated in most application areas.
Generic software components have many advantages among which the most important is
reusability. However, it comes at a price: genericity often incurs a loss of efficiency.

This paper presents an approach aimed at reconciling genericity and efficiency. To do
so, we introduce declarations to the Java language to enable a programmer to specify how
generic programs should be specialized for a particular usage pattern. Our approach has
been implemented as a compiler from our extended language into standard Java.
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Une approche déclarative a la spécialisation de
programmes objet

Résumé : La conception et I'implémentation de composants logiciels génériques est recom-
mandée dans beaucoup de domaines d’applications. En particulier, la conception de tels
composants est facilitée par les langages objet. Les composants logiciels génériques offrent
de nombreux avantages, dont le plus important est la réutilisation. Cependant, le prix a
payer pour ces avantages est que la généralité induit souvent une perte de performance.

Ce rapport présente une approche permettant de réconcilier la généralité et Defficacité.
Nous proposons d’ajouter des déclarations au langage Java afin de permettre au program-
meur de spécifier comment adapter un programme générique & un contexte d’utilisation
particulier. Notre approche a été implémentée sous la forme d’un compilateur prenant en
entrée le langage Java étendu de nos constructions, et produisant en sortie du source Java
standard.

Mots-clé : composants génériques, spécialisation de programmes, programmation par
aspects, génie logiciel
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1 Introduction

The object-oriented paradigm has well-recognized advantages for application design, and
more specifically for program structure. It makes it possible to decompose an application
in terms of well-defined, generic components, closely corresponding to the structure of the
modeled problem. This structuring leads to a number of important software engineering
improvements regarding maintainability and re-usability of code. However, these advantages
often translate to a loss in performance.

The conflict between software generality and performance has long been recognized in
areas such as operating systems [9] and graphics [27]. This conflict is being increasingly
addressed, with success, using forms of program specialization. This approach consists of
adapting a generic program component to a given usage context. Program specialization
can lead to considerable performance gains, by eliminating from the specialized code all the
aspects which do not directly concern that precise context.

Often, specialization has been performed manually by adapting critical program com-
ponents to the most common usage patterns [34, 33, 6]. This manual approach solves
the efficiency problem, but has a limited applicability, because of the complexity of such
a task. Recently, some tools have been developed to automatically specialize programs
[1, 3, 11, 4, 25, 26, 10]. Applications of such tools are emerging in a number of fields, in-
cluding scientific code [4, 5, 12], systems software [19, 29], computer graphics [21, 2], with
already very promising results.

In essence, these automatic tools are transformation engines: they implement a set
of program transformations which may be directly accessible to the programmer [18] or
generated by some program analyses based on the usage context of the program [3, 11, 26,
1]. Programs can now be efficiently specialized at either compile time [1, 11] or run time
[26, 3, 11].

The variety of options now available to the programmer drastically broadens the appli-
cability of program specialization. However, it also makes it difficult to use for a non-expert.

Some steps towards helping the programmer control specific aspects of specialization
have been achieved. In some systems, annotations are introduced in the original program to
delimit code fragments to be specialized, or to indicate how to manage specialized code at
run time [3]. In other systems, some programming constructs in the language are overloaded
to specify potential stages at which specialization can occur [26]. Although these existing
strategies make specialization more usable for non-expert programmers they address very
specific aspects of program specialization; many issues remain unexplored.

This paper

We present a complete declarative approach for program specialization in the context of the
object-oriented paradigm. Our approach addresses some important open issues:

o Fully integrated declarative support. Declaring the specialization behavior of a program
should not cause the disturbance of the source of this program. We advocate that
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4 Eugen N. Volanschi, Charles Consel, Gilles Muller, Crispin Cowan

declaring specialization should be seen as adding information just as one would declare
different aspects of a software component in an Aspect-Oriented language [24]. In fact,
in our approach, a separate specialization declaration can be associated with any class.

o A uniform approach. As previously noted, progress in program specialization has
considerably increased the number of parameters of this process (manual, automatic,
incremental, run-time, compile-time, ...). Our declarative support offers a uniform
way of exploiting these various strategies.

o Flexible execution support. Introducing specialization in an existing application often
requires mechanisms to be integrated in the run-time environment. These mecha-
nisms include: triggering the specialization, detecting when a specialized component
can no longer be used because the usage context has changed, deciding which specia-
lized versions should be kept and how long. In our approach, some of these aspects
are automatically inferred from the declarations; others are explicitly specified in the
declarations.

Overview of our Approach

We have developed language extensions for object-oriented languages aimed at expressing
program specialization in a separate and declarative way. In our approach, the user declares
what program components should be specialized and for which usage contexts. For an
object-oriented language, this amounts to specifying what methods should be specialized
and what variables should be used for specialization. Given these declarations, a special-
purpose compiler determines how the specialized methods will be generated and managed.
The result of the compilation is an extended version of the source program, able to trigger
specialization when needed, and to replace the specialized components in a transparent way.

Our unit of declaration is a specialization class. It enriches information regarding an
existing class. The relationship between regular classes and specialization classes is defined
by a form of inheritance, based on predicate classes as developed by Chambers [8]. An
important consequence of this technique is the ability to perform incremental specialization
[14] based on class inheritance. That is, the specialization of a class is not fixed, it evolves
as specialization values become available.

Configuring an application for a given usage context now amounts to separately declaring
a set of specialization classes. From these declarations, the specialized behavior is derived.

Our declarative approach to program specialization has been implemented for Java. It
has been introduced as a preprocessing phase. Our implementation produces standard Java
programs which integrate a customized execution support for specialization.

Example

Let us briefly illustrate our approach with a sketch of a specialization class in the context
of a file system. Assume this file system has a class File which contains, among other
variables, an open mode and a reference counter, two methods for reading and writing a file,

INRIA



Declarative Specialization of Object-Oriented Programs 5

spec ExclAccessFile specializes class File

{
count == 1; // no concurrent readers/writers
mode; // open mode is known (any mode is useful)
read(); // produce specialized versions:
write(); // no open mode check, no file locking

}

Figure 1: Declaring specialization for a file

and a method for duplicating the file descriptor (dup ()). When a file is opened, a new File
instance is created, and the mode variable is set to define the permissible file operations for
the whole session (read and/or write). The reference counter is set to one until the file is
shared by duplicating the file descriptor. As explained by Pu et al. [33], the execution of read
and write operations can be significantly sped up when the file is not shared and the mode
is fixed (either read, write or read/write). This allows the elimination of some operations
which are done at every read or write: file-level locking is not needed because of the exclusive
access, and some tests depending on the open mode can be performed only once, when the
file is opened. These specializations can be modeled by the specialization class in figure 1.
Based on these declarations, our compiler can infer that specialization must be done at
run time, and modifies the file class implementation to trigger specialization whenever the
reference counter becomes 1.

Contributions

The contributions of this paper can be summarized as follows:

e We introduce a high-level language for declaring program specialization aspects of
programs. This language is fully integrated in the object-oriented paradigm.

o This integration allows us to introduce incremental specialization based on the class
hierarchy. As a result, classes exploit specialization values as they become available.

e Processing these declarations both produces directives to perform various forms of
specialization (compile time, run time, ...) and generates the run-time support to
manage the specializations. As a result, our declarative approach brings together a
variety program specialization techniques, usually used in isolation.

e QOur approach is implemented for the Java language. Processing of specialization
declarations produces standard Java programs.

The rest of this paper is organized as follows. In section 2 we examine the aspects that
should be covered by a declarative approach to specialization. In section 3, the syntax and
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6 Eugen N. Volanschi, Charles Consel, Gilles Muller, Crispin Cowan

the semantics of specialization classes are presented, a complete example of specialization
classes is given, and our compilation scheme to Java is outlined. Section 4 describes specific
aspects of specialization classes involving run-time specialization. Section 5 discusses related
work, and Section 6 presents some perspectives and conclusions.

2 Issues in Declaring Specialization

A declarative approach to defining the specialization behavior of a program component
must address all the aspects of specialization. More specifically, it should make it possible
to express what should be specialized and how it should be specialized. Before presenting
the details of our approach, let us first examine these aspects.

2.1 What to Specialize

Declaring specialization involves identifying the program components that should be spe-
cialized, and describing the usage contexts for which the components should be adapted.
Components associated with multiple usage contexts may require incremental specialization
to best exploit all available specialization values.

Program components. Traditionally, the program components considered for speciali-
zation are: the whole program, a set of procedures, a procedure, or a block of code (within a
procedure). The choice of a particular entity depends on the language structure, and more
importantly, on the power of a given specializer — for example, whether the specialization
process is intra/inter-block or intra/inter-procedural.

Specialization context. The usage context for which a program component is specialized
is a set of predicates over some parts of the program state, which hold over some period
of time. Program specializers usually consider predicates consisting of equalities, that is,
specialization is performed given some variables having some specific values. In general, a
predicate is said to be compile-time if it can be evaluated at this early stage. Otherwise it
is said to be run-time.

Besides its stage, a predicate must be classified with respect to its lifetime, i.e., whether
or not the predicate can change its value during run time. If its value can never change,
the predicate is said to be stable. If it can be invalidated because of some state changes, it
is said to be unstable. Both stable and unstable predicates correspond to actual situations
found in real experiments [34, 33, 36].

Incremental specialization. A set of predicates may not be satisfied all at once. Usually,
all predicates do not become true at once. Therefore, it is useful to be able to describe
a sequence of specialization contexts for a given program component so that it can be
specialized further as more values become available.

INRIA



Declarative Specialization of Object-Oriented Programs 7

2.2 How to Specialize

The operational aspects of specialization involve applying specialization and integrating the
specialized components into the program.

Triggering specialization. An important issue in using specialization is when to produce
the specialized code. For contexts depending only on compile-time predicates, specialization
can be applied either at compile time or at run time. For the other contexts, specialization
must be applied at run time. In this latter case, some run-time support must detect when
all the predicates in the context become valid, trigger the specialization, and replace the
component (either immediately or when the component is used).

Preserving the validity of specializations. For contexts depending on unstable pre-
dicates, the run-time support must preserve the validity of the specializations. This implies
detecting when the predicates are invalidated, and replacing the specialized component by
one compatible with the current state.

Caching specializations. Run-time specialization requires a run-time cache to associate
specialized components to their contexts, so that no duplicate specializations are produced.
Due to limited space resources, one may only want to keep a few frequently used specialized
components. As a result, caching techniques need to be used to manage run-time specialized
components.

3 Specialization Classes

Now that we have detailed the issues involved in specializing programs, let us present our
declarative approach to addressing these issues.

Specialization classes separately define the specialization behavior of existing classes. A
specialization class

e defines a context for specialization,
e indicates which program components should be specialized for this context, and
e possibly selects some options for the specialization support.

We choose the granularity of a specializable program component to be the set of methods
associated with a (regular) class. Each specialization class is attached to a class in the target
program. Multiple specialization classes can be attached to a single class, capturing different
opportunities for specialization. If these opportunities define a sequence of incremental
specialization stages, the specialization classes can be extended step by step, instead of
being all defined from scratch.

RR n°3118



8 Eugen N. Volanschi, Charles Consel, Gilles Muller, Crispin Cowan

sc_decl = [runtime] spec sc_name parent_decl [cache_decl] { (pred_decl ;) (method_decl 5)* }
parent_decl = specializes [class] class_name |
extends [spec] sc_name
pred_decl = variable_name == wvalue |
variable_name |
sc_name variable_name
method_decl = method_prototype |
method_definition
cache_decl = cached cache_strategy [[ integer ]|
cache_strategy = LRU |
Amortization |
Priority |
BestFit |

sc_name = identifier
Figure 2: The syntax of Specialization Classes

The syntax of specialization classes is given in figure 2. The syntax is given as a Java
extension: the undefined non-terminals (identifier, integer, class_name, variable_name, me-
thod_name, method_prototype and method_definition) are those defined by Java.

3.1 Semantics of Specialization Classes

In this section, we describe informally the semantics of specialization classes. The compila-
tion scheme from a Java program with specialization classes to a standard Java program is
discussed in section 3.3.

In Java, there are already two forms of inheritance. First, a class (or an interface) can
extend another class (or interface, respectively). Second, a class may also implement some
interfaces. We tried to keep the same spirit, by attaching a specialization class to a (regular)
class via a new form of inheritance, specialize.

All the specialization classes attached to a regular class C' form a hierarchy of possible
specialization states. Class C is called the root class. Each specialization class either spe-
cializes a regular class, or extends another specialization class.

All the fields (variables and methods) occurring in a specialization class must exist in
the corresponding root class. In other words, a specialization class cannot add new fields to
a class. This is because specialization classes are not meant to add functionality to a class,
but to adapt it to a particular context. To define this specialization context, a specialization
class S adds some constraints over existing variables of some class C, by defining a list of
predicates on the object’s state. An object of class C is considered to be “in specialization
state S” whenever all the predicates of specialization class S are valid. When this is the
case, the specialized methods defined by S override the generic versions defined in class C.

INRIA



Declarative Specialization of Object-Oriented Programs 9

The predicates can either refer to the local state, if they involve an instance variable of
non-object type, or to non-local state, if they include an instance variable of object type.
For the moment, we do not consider array instance variables, nor class variables®.

A predicate on a variable of non-object type can be either compile-time or run-time. The
syntax for compile-time predicates is “variable_name==value;” , where the value is a compile-
time constant. The syntax for run-time predicates is simply “variable_name;” without giving
any value for the variable. This predicate is true for any value and is valid as long as the
value does not change.

A predicate on a variable of some object type class (1 constrains that sub-object to be
in a specific specialization state S1 (where SI is a specialization class for class CI). The
predicate is written “S1 variable_name;”, similar to a Java type declaration. In fact, it can
be considered that the variable was redefined to be of a more precise type.

We made a deliberate design choice to restrict predicates to these simple forms, which
are directly usable by a program specializer. This restriction allows the specialized method
to be automatically derived from the generic definition by the program specializer. However,
the syntax allows the user to specify a complete method definition for the case when the
method is specialized manually.

Note that there is no distinction between stable and unstable predicates, at the syntactic
level. Indeed, in an object-oriented language such as Java, it is simple to determine statically
which predicates can never be invalidated — it suffices to check that the corresponding
variables are only assigned in the constructors.

The syntactic constructs described so far allow the user to declare what specialization
to do. There are some other syntactic constructs through which the user can influence how
the specialization is achieved (keywords runtime and cached). They relate to run-time
specialization, and are discussed in section 4.

3.2 Specializing a Filesystem

In a previous study [33], Pu et al. motivated the need for incremental specialization in the
context of adaptive operating systems. This experiment focused on the HP-UX file system.
A number of stable and unstable predicates were identified?, under which specialization was
performed by hand with very good results. The validity of specialized versions was managed
by hand-written pieces of code called guards, manually inserted in the modified file system
source, which both installed specialized versions and restored unspecialized ones.

The example presented below is a Java program, directly inspired by the HP-UX ex-
periment. We define the specialization classes for the main objects, and we show how our
approach makes the management of specialized versions automatic.

The key concepts of a Unix-like file system are the file and the i-node (for the sake of
simplicity, we do not take v-nodes into account). Two data structures implement these

1The target Java program can contain any array or class variables; the only restriction is that they cannot
be involved in a predicate.
2In that study, stable predicates are called invariants, and unstable predicates are called quasi-invariants.
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10 Eugen N. Volanschi, Charles Consel, Gilles Muller, Crispin Cowan

entities: the file descriptor and the i-node descriptor. In fact, the file concept in Unix is an
abstraction for character streams. It covers much more than regular disk files, as it includes:
sockets, devices, pipes, etc. The actual type of the file is stored in an i-node descriptor —
there is one for each device, disk file, or pipe — that is referenced in the file descriptor.

An i-node descriptor (see figure 3) contains, among other elements, type information and
access permissions. In fact, the type information (partially in the pipe flag and partially in
the mode bit-mask) never changes once the i-node is created. The access permissions (also
part of the mode bit-mask) may be changed via the chmod() method. The most important
methods of an i-node are the read and write methods (for conciseness, write() is omitted).
The read method is generic in that it covers functionality belonging to all types of i-nodes.

Figure 4 shows a specialization class which specializes the generic i-node definition for
the case where the i-node refers to a read-only, disk file. It declares that whenever an i-node
has the specified values for the variables pipe and mode, a read operation should invoke a
read method specialized with respect to these values. Whenever the state changes (i.e., the
i-node is no longer read-only), the generic version should be used again.

One could advocate for a different design of the filesystem, which consists of creating a
static i-node sub-hierarchy, with a different class for pipes or devices; this would make it
possible to separate the read functionality into distinct, overloaded methods. This design
is seldom adopted, because the different read functionalities are quite complex and closely
intertwined; such a separation would create a lot of hand-written versions of the same
methods, and increase the risk of errors. Program specialization is an appropriate solution
here, because it allows to derive the specialized functionality for each i-node type, directly
from the generic version. Program specialization can furthermore eliminate other checks
which cannot be encoded in a static hierarchy, like testing the access permissions at each
read operation.

3.3 Compiling Specialization Classes

The compilation scheme takes as input a Java class definition and a set of specialization
classes. It creates a new Java class definition that incorporates all the specialization behavior.
We detail the compilation process for the i-node example.

As a naming convention, notice that new field names (variables or methods) introduced
by the compiler are prefixed with ’sc’.

The compiler splits the functionality of the original i-node into several objects (see fi-
gure 5). An enclosing object (shown in figure 6) reproduces the basic functionality of the
original i-node, but delegates the evolving part of its behavior to an implementation object.
Actually, two implementations are created: a generic one (shown in figure 7) and a specia-
lized one (shown in figure 8), corresponding to the specialization class ReadFileInode (see
figure 4).

Such an object, which changes its implementation dynamically is abstracted by an inter-
face, named Mutable in figure 9. Therefore, the compiled i-node is enriched to support this
level of abstraction. It includes a new variable, named scImpl, that refers to the current im-
plementation object. The “specializable” method read() in the enclosing object is replaced

INRIA
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public class Inode extends Object {
short mode; // rwz info + device/regular file
boolean pipe; // true if i-node is pipe

/1

// constructor:

public Inode(short mod, boolean pip) {
mode = mod;
pipe = pip;

// change access mode (rwz bits):
public void chmod(short mod) {

// ... various checks

mode = (mode & ~RWX_BIT) | mod;

}

// read one byte:
public int read() {
// Generic version: file or pipe or device
// -.. check if readable
}
b

Figure 3: The original i-node definition

spec ReadFileInode specializes class Inode

mode == I_ REGULAR | R_BIT;
pipe == false;

read(); /* produce a simpler version:
disk file, read-only */

Figure 4: A specialization class for an
i-node

with a forwarding method, which simply invokes the current implementation object. Note
that the implementation object must execute all the methods as if they were executed by
the original i-node object. To do so, the implementation object maintains a pointer (called

scEncl) to the enclosing object. Any self

reference that occurred in the original object

methods (via this) is replaced by a reference to the enclosing object (via scEncl).

Original | node

Encl osi ng
obj ect

fixed methods

forwarding methods

methods

N

generic
methods

| npl emrent ati on
obj ects

specialized
methods

Figure 5: The compiled i-node
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public class Inode extends Object
implements Mutable {

// copy original fields:
short mode; // rwz info + device/regular file
boolean pipe; // true if i-node is pipe

// add some new fields:
Inodelmpl scImpl; // current implementation
List scClients; // list of Mutable clients

// rewrite constructors:

public Inode(short mod, boolean pip) {
// copy original body:
mode = mod;
pipe = pip;

// add initialization code:
scClients = null;
scNotify();

}

// copy original methods and rewrite
// assignments to Mutable fields inside:
void chmod(short mod) {
// ... various checks
scImpl.scSet_mode((mode & ~RWX_BIT) |
mod);
}

// add Mutable behavior:
public void scNotify() {
// Determine the new specialization class
/] € switch to it
if (mode == (I_LREGULAR | R_BIT) &&
Ipipe)
scSwitchToImpl("ReadFileInode");
else
scSwitchToImpl("Inode");
// propagate the notification to all clients:
scClients.scNotify();

protected void scSwitchTolmpl(String spec)

public void scAttach(Mutable m)
{...} // add client

public void scDetach(Mutable m)
{...} // delete client

public boolean scIsA(String spec)
{...} // inspect state

/] forward specializable methods
public int read() { return scImpl.read(); }

b

Figure 6: The enclosing i-node class

import sclib.x;

class InodeImpl extends Impl {
// fized part for a generic implementation:
protected Inode scEncl; // the enclosing object
public Inodelmpl(Inode i) { // constructor
scEncl = i;

}

// set methods:
short scSet_mode(short new_mode) { // guarded
scEncl.mode = new_mode; // the assignment
if(new_mode # . REGULAR | R_BIT)
scEncl.scNotify(); // inform the Inode
return new_mode;

}

/] specializable methods:

int read() {
// Generic version: file or pipe or device
// ... check if readable
// with ’scEncl’ substituted for ’this’

}
};

Figure 7: The generic i-node implementation

import sclib.x;
class ReadFileInodeImpl extends Inodelmpl {

// redefine (some) set methods:
// (none here)

// redefine (some) specializable methods:
int read() {
// ... simpler version: disk file, read-only

}
b

Figure 8: The specialized i-node implementa-
tion

INRIA
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package sclib; 1. scAttach()

public interface Mutable { 2. scNotify()
public void scNotify(); .
private void scSwitchToImpl(String sc); File 3. 0IsA() Inode
public void scAttach(Mutable m); '

public void scDetach(Mutable m);
public boolean scIsA(String sc);
b 5. scDetach()

4. scSwitchTolmpl()

Fi 9: The Mutable interf
e ¢ Mutable mtertace Figure 10: The protocol between File and Inode

In order to detect state changes, which may affect the current implementation, assign-
ments to variable mode are guarded: every assignment to this variable is replaced by a call
to a new method, named scSet_mode (). Besides doing the assignment, this method checks
whether the new value invalidates specialized methods. If an assignment has invalidated the
current specialization state, the scNotify () method is invoked to determine a new specia-
lization class. More precisely, it proceeds by taking every specialization class related to the
i-node, and checks whether all its predicates are satisfied. When a specialization class is
found (possibly the generic class), the current implementation is updated by invoking the
private method scSwitchToImpl().

In fact, moving to a new specialization class may change the set of guarded variables
since it may rely on predicates involving different variables. Note that assignments to the
pipe variable are not guarded; a trivial static analysis determined that this variable is never
assigned outside the constructors.

When changing the implementation, scSwitchToImpl () method produces a new instance
of either InodeImpl or ReadFileInodeImpl. In the i-node example, all the specialized
methods are produced at compile time, but in case of run-time specialization, creating a
new implementation invokes the run-time specializer on the fly.

Assignments in the constructor(s) are not guarded, since the state is not yet completely
initialized. The constructor(s) are only extended to call the scNotify() method right before
returning. Indeed, at this stage the state is complete and the implementation corresponding
to this initial state may be selected.

3.4 Extending the Filesystem Example

We now present a complete example, where both the file object and the i-node object are
specialized. The example shows how the two specializations are composed, by defining a
predicate on non-local state, and by preserving its validity at run time. It also covers the
use of run-time predicates and an example of incremental specialization.

The original definition of the file descriptor is given in figure 11. A file descriptor is
created each time a file is opened. The descriptor contains a reference to the correspon-
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14 Eugen N. Volanschi, Charles Consel, Gilles Muller, Crispin Cowan

ding i-node, an opening mode (which cannot be more permissive than the access mode of
the i-node), the current position in the file, and a reference counter (indicating how many
processes are using the file). Variables ino and mode never change after the file is opened.
Variable count can only be changed if the file is duplicated (method dup()). In practice,
this operation is executed quite rarely. The file position is incremented at every read.

The specialization for the i-node is the same as previously. For the file, two specialization
stages are defined, as described in figure 12. The first stage (specialization class ReadFile)
defines an open disk file: the predicate on the mode is a run-time predicate, since it holds for
any value. In fact, any open mode triggers useful specialization. Variable ino is redefined to
be of specialization class ReadFileInode. Thus, it requires the corresponding i-node to be in
specialization state ReadFileInode. As a result, specialization happens inter-procedurally,
that is, not only does the read method of the file object get specialized, but also the read
method of the embedded i-node object. In our example, the specialized version eliminates
the access test and in-lines the call to the (specialized) i-node’s read method.

The second specialization stage for a file adds a new constraint: the disk file should be
accessed exclusively by one process. In this case, the read method is even simpler, because
the concurrency constraints on the file level can be ignored. Therefore, the synchronized
branch is removed in the specialized version.

To keep the specialization states coherent between two inter-dependent objects (such as
the file and its i-node), there is a simple protocol between the two objects via the Mutable
interface (see figure 9). Each mutable object, such as the i-node, maintains a list of references
to other mutable objects which depend on its state. When a file is connected to an i-node,
by an assignment to its ino variable, the file declares itself as a client of the i-node object, by
invoking the ino.scAttach() method (see figure 10). The ino.scAttach() method records
the file in a list of clients (variable scClient). Consequently, if some predicates in i-node do
not hold anymore, the file object is notified (scNotify()) that its i-node cannot be used for
specialization anymore. Method scNotify() inspects the current state of the file, including
the state of the i-node — by calling ino.scIsA("ReadFileInode"). The boolean method
scIsA("statename") allows a client to check if a mutable object has at least reached a
given specialization state. Finally, when a file is closed, it invokes ino.scDetach(), which
deletes that file from the scClient list.

Let us examine how the whole example works with a simple main program (file’s main ()
method), as shown in figure 11. The program creates an i-node for a disk file, initially
with read/write permissions, and opens a file object on this i-node in read-only mode. The
constructors for both objects inspect their states. The i-node selects the generic imple-
mentation, because the access permissions are not read-only. The file selects the generic
implementation too, because its i-node is not in state ReadFileInode.

Afterwards, the access permissions of the i-node are changed to read-only. Since the
assignment to the mode variable is guarded, the predicate defined on mode is checked. Because
it now holds, the i-node object switches to a ReadFileInode implementation, and notifies
the file object. The file notices that the i-node is now specialized, and switches directly to
ExlcReadFile, because the value of variable count is 1.
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Finally, a dup() operation applied to the file triggers an un-specialization of the file
up to the ReadFile specialization class. When the i-node returns to a read-write mode,
both objects return to the generic implementation: first the i-node object, and then, by
propagation, the file object too.

4 Run-time Specialization Issues

When a specialization class defines a run-time predicate (like the predicate on the mode
in a ReadFile), the specialized implementations for this class cannot be generated before
execution because the precise constant values are not known in advance.

In contrast, compile-time predicates can be exploited either at compile time or at run
time. Usually, compile-time specialization is preferred because it does not incur the run-
time code generation cost. However, run-time specialization may have other advantages.
For example, if N specialization classes are defined for a given root class, specialization
at compile time has to speculatively generate N implementations. Run-time specialization
generates only the implementations used at a given moment. Either choosing compile-time
or run-time specialization is a tradeoff between time and space; this choice is usually driven
by the application. As explained below, our solution consist of using a default behavior, and
provide the user with declaration support to overwrite it.

Our compiler computes for any specialization class a specialization time attribute, which
can be either run-time or compile-time. This attribute is attached to the whole specialization
class (instead of to every predicate), because predicates are not exploited individually. By
default, if a specialization class contains only compile-time predicates, the compiler infers
a “compile-time” attribute; any other specialization class is run-time. The user can force a
compile-time class to be classified run-time by prefixing the specialization class declaration
with the keyword runtime. There is no possible keyword for compile-time, because run-time
predicates cannot be exploited at compile time.

The run-time attribute is inherited. That is, any specialization class D derived from a
run-time specialization class R, is run-time as well. This is because class D inherits all the
predicates from class R, which are (or were forced to be) run-time.

Within a single program, run-time specialization classes can coexist with compile-time
ones. Furthermore, different implementations of the same root class can have different spe-
cialization times. For example, the generic implementation is always generated at compile-
time, while some of its descendants can be generated at run time. In our example, the
i-node implementations are compile-time, whereas the two specialized file implementations
are run-time.

4.1 Caching Specialized Implementations

Caching run-time specialized implementations consists of keeping the generated implementa-
tions in a data structure of bounded size. Besides limiting the code growth, this organization
has two potential benefits. The first one is to save space by avoiding to duplicate an existing
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File
public class File extends Object {
Inode ino; // reference to the inode descriptor
short mode; // open mode (r and/or w) .
long pos; // current position in file ReadFile
int count; // No. of processes using this file descriptor

Inode

ReadFilelnode
public File(short mod, Inode inod) { // constructor

mode — mod: ExclReadFile
- )
ino = inod;
=1:

;(())léni 0; ’ // Inode hierarchy:
} spec ReadFileInode specializes class

. Inode {
Fﬂceoﬂsz +{, mode == I_REGULAR | R_BIT;

) H —_— -

return this; pipe == false;
} read(); /* produce a simpler version:
public static void main(String argv[]) { disk file, read-only x/

Inode i = new Inode(Inode.I._ REGULAR | }

Inode.R_BIT | Inode.W_BIT,
false); Lo .

File f = new File(R_BIT, i); /] File hierarchy:

i.chmod(Inode.R_BIT); spec ReadFile specializes class File {

f.du 0: T ’ mode; /* any value is good x/

i.chrlr)loél(lnode R_BIT | Inode.W_BIT); ReadFilelnode ino; /* restriction on
} ’ T T ’ inode’s state x/
public int read() { read(); /* produce a simpler version:

if((mode & R_BIT) == 0) disk file, mode is known */

return new FileAccessError(); }

if(count > 1)
synchronized(this) { // lock the file descriptor
pos +=4; // Advance with the size of an integer

spec ExclReadFile extends spec
ReadFile
cached Amortization[20] {

else pos +=4; // avoid lock when possible count == 1;

t ino.read(); )
} return ino.read(); read(); /* produce an even simpler

version: no locking x/

}

Figure 11: The original File definition and the main

program Figure 12: The specialization classes
for the filesystem
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Figure 13: The cache hierarchy

implementation, whenever possible. For example, two different files which are in specializa-
tion state ReadFile can share the same implementation if they have the same mode.

The second benefit of caching is to save time by keeping specialized implementations
that are not currently used, but are likely to be reused. For example, a directory file is likely
to be opened several times. Keeping its implementation for some time after the file is closed
may pay off.

Different applications may need different caching strategies. Our compiler gives a de-
fault strategy, and provides a number of alternatives. The user can choose between these
alternatives, allocate new caches, and define some new strategies. To select a specific cache
behavior for some specialization class S, the declaration fragment “cached strategylsizel”
must be included in S’s definition (see figure 12). This fragment specifies that a cache of
size elements is reserved for class S. Cache behavior is also inherited, so that this cache is
also used for classes derived from S (unless they redefine it).

Our implementation is extensible (see figure 13). There is a Specializer interface,
which defines the specialization functionality (method spec()). The run-time specializer
implements this interface. A cache is a “filter” for the run-time specializer. That is, the
cache both implements the interface, and contains a reference to the run-time specializer. It
satisfies some of the specialization requests by itself, if it can reuse an existing implementa-
tion from the cache; if not, it invokes the runtime specializer. In this scheme, the user can
provide its own cache strategy by extending the Cache abstract class.
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4.2 Some Caching Strategies

A number of general cache strategies (e.g., LRU, multi-way associative, etc.) can be used for
the specialization caches. However, caching of run-time specialized implementations raises
some specific issues:

o Specialization must be amortized. Failing to take this constraint into account may
trigger frequent specializations which will never pay off.

e Specialization classes are ordered by the “more specialized than” relation. The most
specialized implementation is intended to give the best performance gain. There is also
some compatibility between ordered implementations. That is, an implementation for
a given specialization class is applicable to any derived specialization classes.

e A specialization request can be refused, when resources are unavailable, by defaulting
to the generic implementation.

Taking these issues into account, some novel, domain-specific strategies can be studied.
Let us outline some examples.

o Amortization: Considers the amortization effect as the most important aspect. The-
refore, a specialized implementation is never evicted from the cache until it is no more
referenced. This strategy can cause some specialization opportunities to be neglected
when space is exhausted.

e Depth-most priority: Specialization classes are prioritized upon their “depth” (or de-
gree) of specialization in the inheritance tree. In case of an eviction from the cache,
the least specialized implementations is chosen. This strategy makes highly specialized
methods more likely to be available

e First fit: In response to a specialization request, this strategy searches in the cache
until if finds any implementation compatible with the requested one. Implementations
are evicted only when no approximate fit is found. This strategy encourages re-use of
implementations, at the price of approximate fitting.

4.3 Overhead of the Execution Support

Managing specialized version at run time imposes some overhead, both in terms of time and
space. Our execution support tries to minimize the time overhead in frequently executed
paths. Namely, as long as the state does not change, each call of a specializable method
incurs only one extra method call to delegate the behavior to the current implementation.
Only when there is a state change, the execution support is invoked to perform various tasks:
determining which specialization to choose, calling the specializer on-the-fly (for run-time
classes), propagating notifications, and replacing the implementation.

Furthermore, the overhead is not paid by all objects of a root class. In the filesystem
example (see figure 12), assignments to variable count are not guarded in any generic file
object because this part of the state does not affect the current implementation.
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4.4 Current Status

We have implemented a compiler prototype for specialization classes, written in Java. We
are currently working on a specializer for Java code which is not yet fully functional. The
idea is to use our existing Java-bytecode to C compiler, called Harissa [28], as a front-end
to our existing specializer for C programs, called Tempo [12, 23]. Specialized programs may
then be translated back to Java.

In the meantime, one can use specialization classes in two ways. First, Tempo can be
directly used for specializing native methods in Java programs, both for compile-time and
run-time specialization classes. Second, the user can supply manually specialized code, by
supplying a complete definition for each specializable function in a specialization class. Note
that this manual strategy only works when the code can be specialized statically (i.e., only
for compile-time specialization classes).

5 Related Work

Predicate classes [8] are a form of dynamic inheritance, which complements the static inhe-
rintace of an object-oriented language. They offer support for defining an object with several
implementations, which are dynamically selected based on arbitrary predicates on the ob-
ject’s state. Implementations are not restricted to specialization of an existing behavior; they
can add completely new functionalities. All implementations must be defined statically, by
hand. Part of the interface checking must be done at run time, unless avoided by some user
annotations. The dynamic selection of implementations is based on multi-dispatching.

Specialization classes are based on predicates classes, but are tailored for a particular
goal: program specialization. Our predicates have some simple forms, which allows us to au-
tomatically derive implementations, even at run-time. As the interface of specialized objects
never changes, static interface checking can still be done without any user guidance. The as-
sumption that unstable predicates seldom change allows us to optimize the implementation,
and to fully integrate it into a single-dispatched language such as Java.

Dean et al. explore a specific form of program specialization, which is aimed at elimi-
nating most of the virtual method calls in an object-oriented language [17]. To eliminate a
virtual method call on a receiver object, a clone of the caller method is produced for each
possible type of both the receiver and the arguments. Special care is taken to avoid an
uncontrolled code growth by selectively performing this optimization. The selection algo-
rithm estimates the impact of a potential specialization based on profiling information. In
their approach, methods are specialized only with respect to the type of the objects. Our
specialization is with respect to the state of the objects. An interesting direction would be
to explore a selection algorithm for (general) program specialization. This algorithm would
compute the most useful specialization classes, based on profiling information.

Existing program specializers offer different levels of support for expressing and guiding
specialization. In CMix [1], a specializer for C programs, the transformations are guided by
command line parameters to the specializer. The management of specialized components is
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not addressed, because the program is always specialized as a whole. In Tempo [11], (our
specializer for C programs) both run-time and compile-time specialization can be done [13],
based on a separate description of the specialization context. This description is flat and
somewhat limited, due to the lack of sufficient structure in C programs. The run-time spe-
cialized versions must be entirely managed by the user. In Fabius [26], a specializer for ML
programs, the user guides the transformations by rewriting the program to expose two exe-
cution stages, using currying. The specializable component is a function, and it is up to the
programmer to generate and manage the specialized functions. In the C dynamic compiler
developed by University of Washington [3], the programmer can mark replaceable compo-
nents by directly annotating the program, using a few syntax extensions. The management
of specialized blocks is done automatically.

Cowan et al. describe some execution support for managing several versions of the same
procedure, in the context of adaptive operating systems [15]. Their work focuses on a re-
plugging algorithm able to deal with the concurrency issues of an operating system.

Finally, let us note that our compiling scheme for generating the execution support
generalizes some programming patterns found in object-oriented applications dealing with
forms of dynamic adaptivity. As an example, in the standard Java library, several objects
offer some adaptivity to security restrictions. The java.net.Socket class delegates part
of its functionality to an implementation object called SocketImpl. These implementation
objects are created by a SocketImplFactory object, which can be replaced by a user-defined
one. This adaptivity is irreversible in that once a socket is created, its implementation cannot
change anymore.

6 Future Work and Conclusions

Specialization classes provide a complete declarative approach to describe the specialization
behavior of program components. As a result, specialization can better adapt a program to
a specific usage pattern. Specialization classes allow the programmer to declare what pro-
gram components should be specialized and how they should be specialized. This approach
uniformly captures the numerous emerging alternatives to perform specialization (compile
time, run time, incremental, automatic, . ..).

Specialization classes are fully integrated in the object-oriented paradigm. It declares
specialization aspects of existing classes without disturbing the source program.

Specialization classes define a specialization context which can be applied at both compile
time and run time. If a specialization context changes because of some state updates, this
situation is automatically detected and the corresponding specialization methods are either
specialized with more values or made more generic if some specialization values become
unavailable. Because specialization classes form a class hierarchy, objects can be specialized
incrementally as more specialization values become available.

Specialization classes allow the programmer to specify what run-time support a class
should include to manage its specializations. In particular, various cache strategies can be
declared to better fit the specialization needs of the application.
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We have implemented a compiler from extended Java, with specialization classes, to
standard Java. We are currently completing a program specializer for Java programs. It
will then be interfaced with our specialization class compiler. It will allow a programmer to
specify both compile-time and run-time specialization aspects of classes.

We are studying the generalization of the form of predicates used in specialization classes.
In particular, we plan on introducing disjunctions and class variables to improve the expres-
sive power of predicates.

Regarding applications of specialization classes, we are continuing the effort initiated by
Cowan et al. in the area of adaptive operating system components [16]. We would like
to use specialization classes to specify a number of systems optimizations that have been
described in the litterature (e.g., [22, 7, 35, 20]). In particular, we are redesigning a part of
the CHORUS IPC subsystem, to exploit opportunities for run-time optimization that have
not been addressed so far because of a lack of appropriate methodologies and tools.
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