N

N

General Object Reconstruction based on Simplex
Meshes

Hervé Delingette

» To cite this version:

Hervé Delingette. General Object Reconstruction based on Simplex Meshes. RR-3111, INRIA. 1997.
inria-00073579

HAL Id: inria-00073579
https://inria.hal.science/inria-00073579
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00073579
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

General Object Reconstruction based on Simplex Meshes

Herve Delingette

N° 3111
Féevrier 1997

THEME 3

apport
derecherche







%I INRIA

SOPHIA ANTIPOLIS

General Object Reconstruction based on Simplex Meshes

Hervé Delingette i

Théme 3 — Interaction homme-machine,

images, données, connaissances
) . *%
Projet Epidaure

Rapport de recherche n“3111 — Février 1997 — 61 pages

Abstract:

In this paper, we propose a general tridimensional reconstruction algorithm of range and volu-
metric images, based on deformable simplex meshes. The algorithm is able to reconstruct surfaces
without any restriction on their shape or topology. The different tasks performed during the recon-
struction include the segmentation of objects in the scene, the extrapolation of missing data and
the control of smoothness, density and geometric quality of the reconstructed model. All surfaces
are represented as simplex meshes, that are unstructured meshes whose topology is dual of triangu-
lations. The recounstruction takes place in two stages. First, we initialize the model either manually
or using an automatic initialization routine. After the first fit, the topology of the model can be
modified by creating holes or increasing its genus. Finally, an iterative adaptation or refinement
algorithm decrease the distance of the model from the data while preserving a high geometric and
topological quality. We have applied our algorithm to several medical images or range images.
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Reconstruction de scénes complexes a aide de maillages
simplexes

Résumé : Dans ce rapport de recherche, nous proposons un algorithme de reconstruction
tridimensionnelle utilisant les maillages simplexes déformables. Cet algorithme permet de recons-
truire des surfaces & partir d’images de profondeur ou d’images volumiques, sans restriction sur la
géométrie ou la topologie de ces surfaces. Pour effectuer la reconstruction, notre algorithme permet
de segmenter des objets dans une scene, d’extrapoler des données manquantes et de contréler la
régularité, la densité et la qualité du maillage. Toutes les surfaces sont représentées a l'aide de
maillages simplexes qui sont des maillages non-réguliers dont la topologie est duale de celle des
triangulations. La reconstruction s’effectue en deux étapes. Dans un premier temps, le maillage
est initialisé manuellement ou grace a une procedure automatique. Apres avoir deformé ce maillage
initial, la topologie du maillage est adaptée & celle de I’objet en créant des trous ou en augmentant le
genre du maillage. Dans un deuxiéme temps, un algorithme d’adaptation ou de raffinement permet
de diminuer la distance du maillage aux données tout en conservant de bonne qualités géométriques
et topologiques. Nous proposons plusieurs exemples de reconstructions & partir d’images médicales
ou de données de profondeur.

Mots-clé: segmentation d’'images, modeles déformables, reconstruction tridimensionnelle,
imagerie médicale
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1 Introduction

1.1 General Object Reconstruction

From laser range finders to volumetric medical imagery, the development of three-dimensional
acquisition devices have stressed the need for general shape reconstruction techniques. Ob-
ject reconstruction is a task that consists in building a geometric model from a three di-
mensional dataset obtained from an scanning device. The resolution and accuracy of those
tridimensional datasets may vary substantially and they may be stored as an ordered set
of points, as a two-dimensional range image or as a volumetric image. In all cases, the
reconstruction intend to create a geometric model corresponding to the object scanned by
the acquisition devices. The required property of this geometric model is dependent on the
type of high level task to be performed a posteriori, such as visualization, object recognition
or computation of physical properties (such as mechanical or flow analysis). For instance,
visualization requires geometric models with few vertices whereas CAD requires a model that
closely fits the original dataset. Figure 1 displays the general scheme of object reconstruction.

In this paper, we address the problem of general object reconstruction as opposed to
sensor-dependent reconstruction techniques. Ideally, a general reconstruction system should
be able to handle volumetric images as well as on tridimensional range data, with varying
noise level and resolution. Furthermore, it should be able to reconstruct smooth objects as
well as polyhedral shapes with a control over the mesh density and the closeness of fit.

The recovery of objects from tridimensional datasets requires to carry out several tasks
including :

Segmentation : the scene described in the tridimensional dataset, is usually made of
several objects lying close to each other. The segmentation task consists in isolating
the points of the object to reconstruct from the data corresponding to neighboring
objects or outliers.

Filtering : the datasets always include some level of noise. It is therefore often needed
to smooth the geometric model in order to decrease the effect of that noise. Smoothing
should be done in an ad hoc manner, otherwise salient parts of the object such as sharp
edges could be removed.

Extrapolation of missing data : in many cases, range images do not completely
describe a given object. This is because the object is seen from a given viewpoint and
because the emiter and receptor of the acquisition device are not localized at the same
point thus creating "shadow areas". It is then necessary to handle those missing data
points by extrapolating the surface in the most "intuitive" manner.

Control of mesh density : when dense dataset are provided, it is often desirable,
especially for visualization purposes, to reduce the amount of information stored in the
RR n- 3111
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Figure 1: The general reconstruction scheme

geometric model, by a large amount. On the contrary, when sparse data is provided,
it is necessary to refine the model to increase the density of vertices. Therefore, it is
important to control the amount of information stored in the reconstructed model. An
intuitive algorithm consists in linking the level of simplification or refinement to local
geometric quantities such as curvature or area.

Control of mesh quality : the stability of computation of physical properties on
a geometric model (resistance against deformation, heat,..) requires a mesh of high
geometric quality. The quality of a mesh may be defined by several manners [BE91].
On triangulated models, the geometric quality may be measured with the minimum,
median or average angle of the set of triangles. The topological quality of a triangu-
lation may be measured by the average number of vertices around each vertex of the
triangulation.

Few existing algorithms may be considered as "general reconstruction" techniques. For
the reconstruction from volumetric images, two algorithms are widely used. First, isosurface
extraction, often based on the Marching Cubes algorithm [LC87]| consists in creating a mesh
corresponding to a given isovalue. The technique may also be used for the reconstruction
from dense range images [CL96]. However, because it does not allow the control of the mesh
density and quality, it cannot be considered as a general reconstruction technique.

INRIA
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Delaunay tetrahedrisation and serial slice reconstruction [BG93| are widely used as well
but cannot interpolate missing data points since they do not incorporate any smoothing
mechanism. Furthermore, those algorithms require that data points must be segmented
beforehand.

Deformable models are well-suited for general object reconstruction because they make
little assumption about the shape to recover and they can filter and reconstruct objets from
various types of datasets. Several formal frameworks of deformable models exist, but a com-
mon approach consists in formalizing the deformation as a variational problem involving an
internal energy that enforces some continuity constraints, and an external energy controlling
the closeness of fit. The trade-off between internal and external energy governs the behavior
of deformable models and therefore their ability to recover the shape of an object even in
presence of noise and outliers. Many researchers have proposed reconstruction systems based
on deformable models [CCA92, DHI91, VM93, McI93, CM94| (for a survey of deformable
models in medical image analysis see [IT96]). However, few systems address the problem of
general surface reconstruction, in particular the five tasks listed in this paragraph.

1.2 Deformable Models

A necessary condition for proposing a general reconstruction system based on deformable
models, is that no restriction exists on the geometry or the topology of the reconstructed
objects. Therefore, it is of high importance that the surface representation associated with
a deformable model, is as general as possible.

In this section, we review most of the different representations of deformable models and
then explain our approach based on a new surface representation.

1.3 The Parameterization Problem

Most reconstruction systems are based on parametric representations, such as splines or finite
elements. A parametric representation consists in a continuous transformation between the
parameter space ) embedded in the Euclidean plane IR? and the surface of that object.
The parametric representation have several advantages over unstructured meshes. First,
the shape of the object is defined everywhere. This feature is often required in high level
tasks such as visualization or CAD design. Second, it allows the stable computation of
geometric entities such as normal orientation or curvatures which is more problematic with
unstructured meshes.

However, parametric-based reconstruction mainly suffers from two problems. The first
one is that they are not well suited to represent general shapes. Because parameterizing a
shape is equivalent to mapping a subset of the Euclidean plane onto that shape, problems
occur when the object is not of planar, cylindrical or toroidal topology. For spherical shapes
for instance, with zero genus and no holes, at least one degenerate point or "pole" is created

RR n" 3111
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Figure 2: The parameterization problem : (a) The curve minimizing the approximation
functional of equation 1 with uy = 0.2 and A = 2.0; (b) same as (a) with ug = 0.8 (c) The
curve minimizing the intrinsic approximation functional of equation 2 with A = 2.0.

by the mapping of a plane onto a sphere. This point entails many problems in the deformation
of that surface because at that vertex, normal and curvature cannot be computed in a stable
manner. A lot of work have been done in the field of computer aided geometric design
to overcome those topological problems. A popular approach consists in sewing several
parametric patches and by ensuring that proper geometric continuity is realized between
patches. For instance Hoppe and Eck [EH96| use the construction scheme of Peters [J94] to
build G! continuous surfaces of arbitrary topology while other reconstruction systems such
as Loop and De Rose [LD90] rely on different patch corners such as Sabin nets. An important
constraint in order to efficiently represent general deformable models with spline patches is
that the G' continuity equation across patches must be linear in the control points. Those
continuity constraints across patches usually entail the addition of a large number of control
points and furthermore tend to break the homogeneity of the mesh [Lei93].

The second problem lies in the nature of the parameterization that greatly influences the
deformation of the model and therefore its final shape. The influence of the parameteriza-
tion originates from the nature of fairness functionals that are usually defined in terms of
parametric-dependent entities such as partial derivatives. This is the case for instance of the
widely used, thin plate functional, that is based on first order derivatives. Because, defor-
mation is constrained by parametric-dependent functionals, the nature of the deformation is
dependent on the nature of the parameterization.

In figure 2, we show a simple example demonstrating the influence of parameterization
on approximation problems. In this case, we are minimizing the following approximation

INRIA
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problem :
o rdr, 5
Bx) = [ 15 ]Pdu+ AP —x(w)] )

The choice of the parameter uy of the attachment point r(ug) has a drastic effect on the
resulting approximation, better visual results being obtained when the initial parameteriza-
tion is close to arc length. On the other hand, when the smoothness functional is intrinsic,
ie independent of parameterization, the solution of the approximation problem is no longer
dependent of the choice of uy. In figure 2(a), we use the length of the curve as the fairness
functional :

L dr
Bintrinsic® = || 115 ldu+ AP = x(uo)]| 2)

Details on the computational aspect of those approximation problems are provided in appen-
dix A. This example reveals the trade-off in choosing a parameter dependent or parameter
independent smoothness functionals. Parameter dependent functionals are easier to handle
numerically but the quality of the approximation depends on the metric distortion of its pa-
rameterization. On the other hand, intrinsic functionals guaranty a high level of smoothness
but lead to complex nonlinear numerical problems.

In most research papers, little attention is paid to the errors introduced in approximation
problems by metric distortions between the parameter space and the surface. This is mainly
because of the limitation to objects of simple topology (planar or cylindrical). However, Eck
and Hoppe [EH96| have addressed this reparameterization problem with the use of harmonic
maps. Brechbuhler and Kubler [BGK92| reparameterize closed surfaces in order to perform
efficient object recognition.

As a conclusion, building parametric deformable models of arbitrary topology is a difficult
task due to the constraints of having G'! continuity across patches as well as keeping a
parameterization with little distortion. It is not well suited for the task of general surface
reconstruction because of the computation expense of performing topological changes such
as creating holes or local refinement.

1.4 Non Parametric Deformable Models

To overcome the topological restriction of parametric deformable models, researchers have
developed alternate representations. For instance, implicit deformable models, where the
surface model is defined through an implicit function f(z,y,z) = 0 have the advantage of
not restricting the topology, connectivity and the geometry of the surface. In most cases,
the function is defined over a regularly tessellated domain. For instance, Mc Inerney and
Terzopoulos [IT95] defined topologically adaptable snakes through reparameterization on
regular simplicial domain. Maladi and Vemuri [MSV95] propose to deform a two dimensional
and tridimensional implicit model by propagating front based on the formulation of Osher
and Sethian. Muraki [Mur91| and Gascuel et al.[TBG95] proposes implicit models based on

RR n- 3111
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radial functions to fit range or medical data. Taubin et al.[TCSP92| fits algebraic curves and
surfaces of high degree on range data. Curless and Levoy [CL96] use distance maps to build
a single model from multiple range images. If implicit model recovery has a lot of advantages
in terms of flexibility, it does not seem to be well suited for tridimensional models because
of the computation cost of reparameterizing at each iteration.

Other surface representations include spherical surfaces based on Fourier descriptors
[SD92|, modal analysis [PS91]|, or principal component analysis [CTLC93|.

Unstructured meshes where no underlying parameterization are defined have been used
as deformable surface representation. The problem with using unstructured meshes lies
in the definition of a stable and meaningful internal energy or internal force. Vasilescu and
Terzopoulos [VT92] use non-linear springs and masses on triangulated meshes for the recons-
truction of range images. If this representation allows local refinement and the detection of
discontinuities, the numerical stability of spring models with non-zero rest length, is very
sensitive to the mesh topology. In particular, if not enough springs are attached to vertices,
the system becomes underconstrained and several rest shapes are possibles. On the contrary,
if too many springs are attached to vertices, the system is overconstrained and the bending
of the spring model is very limited.

Other methods for regularizing a triangulation have been proposed. A traditional method
for fairing triangulations is to apply Laplacian smoothing where each vertex is moved toward
the center of its neighbors. Taubin [Tau95| reduces the shrinkage of Gaussian smoothing by
applying a low-pass filter. Recently, Boyer [Boy96] proposed to minimize locally the area of
the triangles adjacent to a vertex. Mallet [Mal89] uses a smoothness energy on a triangulation
defined as a quadratic form of the neighboring vertex positions. Those three internal energies
provide intuitive deformation, but correspond only to stabilizers of degree 1 and therefore
tends to flatten the curved parts of the triangulation. Welch and Witkin [WW94] use more
sophisticated intrinsic functionals on triangulations by fitting a local coordinate frame at
each vertex, and then minimizing the functional locally. In fact, this method proposes
new finite differences expressions on an unstructured mesh. Despite the generality of this
approach, it does not seem to be well-suited for our purpose because it involves non linear
optimization and numerical instability may occur when performing intensive refinement or
large deformation.

1.5 Simplex Meshes as Deformable Models

We propose an original surface representation, called simpler meshes as the basis of our
reconstruction system. Simplex meshes can represent surfaces of all topologies, just as trian-
gulations. However, unlike triangulations, we can define discrete geometric entities such as
curvature or normal vectors that allow us to easily control the shape of simplex meshes. In
fact, those meshes are handled in a similar fashion than a system of springs and masses but
with a higher level of shape control that include several degrees of continuity constraint and

INRIA
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the existence of deformable contours on deformable surfaces. Simplex meshes are subject to
internal forces computed locally that do not require any intensive computation.

Furthermore, topological operators are defined to locally refine a simplex mesh or change
its genus, in an efficient manner. Because simplex meshes are not parametric models, we
do not need to update a rigidity matrix or the parameterization mapping when performing
those local transformations.

In this paper, we present a shape recovery system based on this surface representation.
The high flexibility of simplex meshes, allow to model complex shapes even in presence
of noisy data or outliers. In particular, we discuss the problem of the initialization of a
simplex mesh, that is often considered as the main drawback of deformable models. Finally,
we present a general algorithm for controlling both the topology and the geometry of a
model. The number of holes or the genus of a simplex mesh may be changed to match the
topology of datasets. Furthermore, the level of refinement and adaptation is governed by
the minimization of a geometric criterion based on distance to the data or local curvature.

The outline of the paper is as follows. In section 2, we briefly introduce the notion of
simplex mesh both in terms of topology as well as geometry. In section 3, we introduce the
internal and external forces applied on those meshes in presence of range data or volumetric
images. In section 4, we describe the various components of our reconstruction system
including the initialization and topology control. In section 5, we present several examples
of shape recovery and conclude in section 6.

2 Simplex Meshes

The properties and definitions of simplex meshes are only summarized in this section. Some
complementary definitions have been added as appendices and a complete exposé can be
found in [Del94].

2.1 Definition of Simplex Meshes

The definitions of simplex meshes and triangulations are closely related. More precisely, their
underlying graph are dual of each other. Another important property of simplex meshes, is
their constant connectivity between vertices. In this section, we will only address the topolo-
gical properties of simplex meshes, that exists independently of the space of embedding. We
give here the general definition of a k-simplex mesh embedded in a Euclidean space IR? of
dimension d. We only consider 1 and 2-simplex meshes of IR? as representations of surfaces
and contours.

RR n" 3111
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Figure 3: Examples of p-cells 0 < p < 3.

2.1.1 Definition of Cells and Simplex Mesh

We define a k-simplex as a union of p-cells. Since those cells are p-simplex meshes, the
definition of a cell is recurrent :

Definition 1 We define a 0-cell of R? as a point P of R* and a 1-cell of R? as an edge of
IR?, i.e. an unordered pair of distinct vertices (P, M). We recursively define a p-cell (p > 2)
C of R* as a union of (p — 1)-cells such that :

1. Every vertex belonging to C belongs to p distinct (p — 1)-cells.
2. The intersection of two (p — 1)-cells is either empty or is a (p — 2)-cell.

3. Given two vertices of C, there exists a path that links the two vertices.

A 2-cell is therefore a set of edges that have one and only one vertex in common. A
2-cell is therefore a closed polygonal line of IR?. The third condition, ensures that a p-cell is
simply connected. Examples of p-cells are shown in figure 3. 0-cell are called wvertices, 1-cell
edges and 2-cells faces.

A simplex mesh is simply defined as:

Definition 2 A k-simplex mesh M of R* is a (k + 1)-cell of R,

A k-simplex mesh is therefore a union of k-cells that follow the properties of definition 1.
Examples of 2-simplex meshes are shown in figure 4.

Property 1 A k-simplex mesh is a (k—+1)-connected mesh : each vertex has k+1 neighboring
vertices.

The constant connectivity between vertices implies the simple relation between the num-
ber of vertices and the number of edges. Table 1 summarizes the existing connectivity
between vertices, edges, faces and cells of a k-simplex mesh.

INRIA
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(a) Plane : (b) Sphere : (c) Cylinder : (d) Tore
Genus = 0 Genus = 0 Genus = 0 Genus = 1
Hole =1 Hole =0 Hole =2 Hole =0

Figure 4: Four generic 2-simplex meshes with different values of genus and number of holes.

Edges / Vertex | Faces / Vertex | Faces / Edge
k=1 2
k=2 3 3 2

Table 1: The connectivity relations of a k-simplex mesh.

RR n-3111



12 H. Delingette

If a k-simplex mesh is (k + 1)-connected, all (k + 1)-connected meshes are not necessary
simplex meshes. For instance, in figure 5, we show a 3-connected mesh that cannot be a
2-simplex mesh since it has two faces intersecting along 2 edges.

We will write V(M) as the set of n vertices of M and N (M) its connectivity function. If
P; is a vertex of a k-simplex mesh M then (Pny), Pn, i), - - - » Pn,(iy) are its (k+1) neighbors.

Figure 5: This mesh is 3-connected but cannot be decomposed in terms of a union of cells
because two faces intersect along 2 edges.

2.1.2 Duality with Triangulations

It is important to stress the dual nature between k-simplex meshes and k-triangulations.
k-triangulations also called k-manifolds [Rus91]|, are sets of k-simplices' that follow strict
topological rules such as the Euler-Poincaré relation. k-triangulations are actually a subset
of more general sets of k-simplices that are called k-simplicial complexes.

A k-triangulation is made of p-simplices (1 < p < k) which are called the p-faces of the
triangulation. The 0O-faces are vertices, 1-faces the edges and 2-faces triangles.

We can define a topological transformation that associates a k-simplex mesh to a k-
triangulation. This transformation is pictured in figure 6 and considers differently the vertices
and edges located at the boundary of the triangulation from those located “inside”. Basically,
this duality transformation associates a p-face of a k-triangulation with a (k — p)-cell of a
simplex mesh.

Table 2 in appendix Appendix B summarizes the transformation between a p-face of a k-
triangulation and a p-cell of a k-simplex mesh. For cells or faces that belong to the boundary
of a triangulation or a simplex mesh, the dual transformation applies differently. Vertices,
edges and triangles that belong to the boundary of a k-triangulation are associated with two
cells of a k-simplex mesh : one (k — p)-cell and one (k—p—1)-cell (0 < p < k) (see table 3).

This difference of symmetry in the duality between triangulations and simplex meshes
originates from the fact that unlike simplex meshes, triangulations include the notion of

la k-simplex is a set of k + 1 independent points
INRIA
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(a) (b) (c) (d)

Figure 6: Duality between 1, 2-triangulations (drawn in solid lines and with circles) and the 1,
2-simplex meshes (drawn in dashed lines and with squares). The first two figures correspond
to triangulations without boundaries while the last two ones consider the existing boundaries.

holes : a triangle is not necessarily surrounded by three triangles. In a simplex mesh, a hole
is simply an "empty" cell, since each vertex is surrounded by (k + 1) k-cells.

There exists other duality transformations that have been defined on k-triangulations.
The most commonly studied has been the duality between triangulations and cellular com-
plexes through the duality between Delaunay triangulation and Voronoi diagrams |Boi84].

Voronoi diagrams are cellular complexes and the duality relation with Delaunay triangu-
lation is geometric because it depends on the position of its vertices. On the contrary, the
duality between triangulations and simplex meshes is only in terms of topology. In another
words, there exists no bijections between simplex meshes and triangulations. This is the
reason why simplex meshes are a distinct surface representation from triangulations.

2.1.3 Contours

Contours are 1-simplex meshes, ie closed polygonal curves, defined on a 2-simplex mesh.
They are simply defined as a set of neighboring vertices such that a vertex on a contour
has two and only two neighbors that belong to that contour (see figure 7(a)). Contours can
be defined around any face of a mesh. In particular, we will always create contours around
holes, ie “empty faces”. Contours do not always divide a mesh into two parts if the mesh has
a genus greater than zero (see figure 7(b)).

Contours are considered as deformable models moving independently from the mesh.
The surface mesh is thus attached to contour vertices that set the boundary conditions for
the mesh deformation. This framework allows the deformation of meshes with an arbitrary
number of holes.

RR n- 3111
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End

Contours

(a) (b)

Figure 7: (a) Definition of contours in a 2-simplex mesh; (b) Two contours defined on a
mesh on genus two.

2.1.4 Mesh Transformation

Simplex meshes similarly to triangulations are unstructured meshes and therefore can be
locally refined or decimated. In addition, simplex meshes can be cut along contours and
surface handles can be created.

We define four basic topological operators acting on a simplex mesh, 77, T2, T2, T, des-
cribed in figure 8. The first two operators, are Fulerian because they do not modify the
mesh topology. On the other hand, 77 and T} are meta-operators because they can break a
mesh into two pieces, or change its genus (number of surface handles).

All operations on a mesh can be decomposed into a set of those four operators. For
instance, the refinement algorithm described in section 4.4.2, makes uses of operator T; as
well as the edge-swap operator that can be decomposed in terms of 77 and T3 (see figure 9).

Unlike most deformable models developed so far, it is possible with simple operations to
merge two meshes or to break a mesh into two pieces as well as to change the genus of a
mesh. This property provides a high topological flexibility of those deformable models.

2.2 Geometry of simplex meshes

In this section, we present the main geometric relations existing in a 1-simplex mesh of IR?
and a 2-simplex mesh of IR?. The main result consists in a simple equation (equation 3 and
equation 10) giving the position of a vertex relatively to its neighbors and some geometric
entities : the simplex angle and the metric parameters. The geometry of 1-simplex mesh of
IR? is described in appendix Appendix C.

INRIA
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Figure 8: (a) The two Eulerian operators TZ, T2 defined on 2-simplex meshes; (b) The two
meta-operators Ty and T7.

DR

(a) (b) (c)

Figure 9: T? consists in swapping an edge.It can be decomposed into one operator Ty followed
by one operator T7.
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16 H. Delingette

2.2.1 Geometry of planar 1-simplex meshes

The geometry of a planar 1-simplex mesh M € IR* is described by its metric parameters
and its simplex angle.
We first define the local tangent t; and normal vector m; around a vertex P; as :

f)i—lpi—i—l - tJ_

t,= L g
| Pic1 Piga ||

The local curvature x; is defined as the inverse of the radius of the circumscribed circle at
(Pi—1, P;, P,11) (see figure 10). We define as well r; as the half distance between P;,_; and
Pipr o =[P Prall /2.

Py

Figure 10: (a) Definition of tangent and normal vector around a vertex P; of a 1-simplex
mesh. (b) Definition of curvature k; and circumscribed circle.

We then define the metric parameters and the simplex angle at P;.

Definition 3 Let P; be a verter of a planar 1-simplex mesh. Let F; be the orthogonal pro-
jection of P, onto the line [P;_1P;y1]. Then, the metric parameters at P;, (¢}, €2) are defined
as the barycentric coordinates of F; relative to P,_y and Py :

&tPi_1 +€Py = F;
¢ +e=1
Definition 4 The simpler angle p; at P; is the oriented angle existing between the two
adjacent segments [P;_1P;] and [P;P;11].
INRTA
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The fundamental relation gives the position of vertex P; as a function of its two neighbors

P;,_; and P,;; and the three shape parameters (e}, €}, ;) :

P, =€/ Pi_1 + € Pip1 + L(r, [2¢] — 1|ri, ;) m; (3)
where : (2 — ) tan(y)
L(r;,d;, ;) = = : (4)
ey} + (r} — d?) tan®(p,) + 7
and

e=1 if o <m/2
e=—1 if |pi|>m/2

The values of the metric parameters and simplex angle describe the shape of the mesh up
to a translation, rotation and scale transformation.

2.2.2 Geometry of tridimensional 2-simplex meshes

On a tridimensional 2-simplex mesh M € R?, we define a normal vector n; as :

0 — Py N Pryiy + Pryiy N Py + Py N Py

= (5)
||PN1(i) A P,y + Pryiy N Prsgy + Py A PNl(i)”

The definition of the simplex angle generalizes the definition of section 2.2.1.

We introduce the sphere S, of center O; and radius R;, circumscribed to the four vertices
(P;; P,y (iys Prs(iys Praiy)- The simplex angle ¢; = Z(P;, Py, s), Prs(i), Prsiy) at Py is defined
with the two equations :

©; € [-m, 7] :
Sll’l((ﬂz) = % signe(PiPNl(i) . l’ll') (6)
cos(p;) = JJO;T?U signe(O;C; - n;)

The simplex angle has many original properties that are developed in [Del94]. Tt is
important to note that there is a simple relationship between the simplex angle ¢; and the
curvature H; = % , also called the mean curvature at vertex P; :

Pi
")
From a vertex P;, we introduce the orthogonal projection F; of P; onto the neighboring
triangle (PNl(,-),PNQ(i),PNS(i)). The metric parameters at a vertex P; are the barycentric
coordinates of the F; with respect to the triangle (Py, ), Pny(i), Prs)) :

Fi = € Pyy(i) + € Pryiy) + € Pry(i) ®)

e+e+e=1 (9)
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Figure 11: (a) The circumscribed sphere S, of radius R; and the circumscribed circle S; of
radius ;. (b) Projection of figure (a) onto the plane ( O;, C; ,P;). The simplex angle can be
interpreted as an angle of planar geometry.
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The simplex angle with two metric parameters (since the three metric parameters are
linked with equation 9) represent the position of P; with respect to its three neighbors :

P; = €] Pyyiy + € PGy + € Pyy + L(ri, di, i)y (10)
where
e r; is the radius of the circumscribed circle at the triangle (P, ), Pnsiy, Pna))-
e d; is the distance between F; and the center C; of the circumscribed circle.

e L(r;,d;, ;) is a function described in equation 4

3 Deformable Simplex Meshes

In this section, we describe the law of deformation of simplex meshes. Unlike parametric
representation, the geometry of a mesh is only defined by the position of its vertices. The
deformation of those meshes is therefore not based on the notion of partial derivatives, but
on the relative position of a vertex with respect of its neighbors, i.e. in terms of simplex
angle and metric parameters.

As in most deformable model schemes, all vertices of a simplex mesh are considered as a
physical mass submitted to a Newtonian law of motion consisting of an internal and external

force : 2P AP
: = - ! an Fem 11
pTE ¥ o + t+ t ( )

m

where m is the mass unit of a vertex and v is the damping factor. F,,; is the internal
force that enforces the continuity of the shape of the mesh. F,,; is the external force that
constrains the mesh to be close to some tridimensional dataset.

We discretized the time ¢ in order to compute the evolution of the simplex mesh under
the law of motion 11. Using central finite differences with a explicit scheme, the law of
motion is discretized as :

P = P+ (1= ) (P! = PIY) + Fi + P (12

Both forces F;,; and F.,; are computed at time ¢t. With equation 12, the internal and
external forces have the dimension of a distance.

3.1 Internal Force Computation

The internal force acting on simplex meshes is computed based on the minimization of a local
criterion. In that respect, it can be compared to the deformation of particle systems such as
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those introduced by Szelisky [ST92| or springs systems. The internal force is derived from
the minimization of a local energy that is proportional to the deflection from some ideal
position. Global smoothness functionals have been used mostly with parametric models
such as in [McI93, CCA92]. Those global functionals provide an objective evaluation of the
goodness of a solution as well as a well-posed mathematical framework. However, in practise,
the minimization is transformed into the iterative application of an internal force, similarly
to our approach.

Unlike spring and masses systems, the smoothness constraints applied on simplex meshes
range from position continuity constraint to curvature continuity constraint with a control
over the scale at which the smoothness applies. Examples in figure 13 shows that perfect
continuity across patches can be achieved with simplex meshes, independently of topology.

Another interesting property is the ability to have different continuity constraint on
different parts of a mesh.

We note S; the local criterion to minimize at vertex P; :

S, =SPP? (13)
The internal force is then : 9
Fit = o5 = PP}
t ap, o i

where

e «;is ascalar (0 < a < 0.5) that weights the internal constraint with respect to external
constraint. Values of «; over 0.5 result in unstable deformations.

e P* is defined with respect to the neighbors of P; with the simplex angle ¢F and the

metric parameters (e}*, e2*, e3*)

Using equation 10, the internal force, may be written as :

Fint = (€, P,Pn, iy + €* PP,y + € PiPryiy + L(rs, i, 0F)1;) (14)
The metric parameters (e1*, €7*, €*) are constants that are imposed during the deforma-
tion. The local adaptation algorithm optimizes those metric parameters in order to concen-
trates vertices around parts of high curvature (see section 4.4.1). In all cases, in order to
ensure a stable deformation, those metric parameters must be strictly positive.

The simplex angle ¢ may not be constant over times depending on the type of regularity
constraint that should be enforced. We list four regularity constraints that may be enforced.
More explanations are provided in [Del94].

Position Continuity Constraint We set ¢ = ¢,. The surface can freely bend around
vertex P;. This is useful to represent surface orientation discontinuities.
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QO(IiD) Q') JP

Figure 12: Description of a neighborhood Q* (P;) around a vertex P,.

Surface Orientation Continuity constraint We have simply ¢} = 0. Hence, the in-
ternal force writes as: Fin: = (€1iPn,i) + €2iPnygi) + €3:Pnyy — Pi). When metric
parameters are equal to 1/3, we have Fi,; = 5 (Py, 5+ Pnyi) + Prs)—3F:). The vertex
P, is attracted towards the center of its neighbors. Continuity of normal orientation is
guaranteed but not the continuity of simplex angle or mean curvature.

Shape Constraint Given the constant ? by setting ¢ = ¢? we constrain the simplex
angle at P; to ¢). The mesh is deformed towards some reference shape described by

the simplex angle ©? and metric parameters (e)*, €2, €3*).

Simplex Angle Continuity Constraint ¢} is defined as :

gi= Y @ (15)

JEQ%(P;)

©r is the weighted average of the simplex angles on the neighborhood Q*(P;) of size
s; around P;. This neighborhood is defined in a recursive manner. We define Q°(P;) =
{P;} and Q'(P,) = {P;, Pn,i)> Pnyi)» Pny(iy}- The neighborhood Q% (F;), s; > 1 is the
union of Q*~*(P;) with the vertices of M that have a neighboring vertex in Q*~'(F;)
(see figure 12).

s; corresponds intuitively to the notion of rigidity, or scale of deformation. On a
highly rigid model, the model is smoothed over a large scale, and therefore an external
constraint would entail a small deflection but over a large extent on the surface, since
the curvature is averaged over a large number of vertices. The rigidity has an effect
of the dynamics of deformable simplex meshes, as well. This is because the scale of
deformation influences the speed of constraint propagation on the surface. A flexible
mesh with a small rigidity needs more iterations to reach its stable position than a
mesh with high rigidity.

Because the internal constraint of simplex meshes relies on geometric quantities instead
of parametric quantities, a high level of visual smoothness can be achieved. For instance, in
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figure 13, we smooth a surface of complex topology, with four holes, with various types of
continuity constraints.

(a) (b) (c)

Figure 13: Example of smoothness constraints applied on simplex meshes. We constraint a
surface with four holes (figure (a)) to smoothly connect 4 cylinders with normal orientation
continuity (figure (b)) and simplex angle continuity (figure (c)).

In most cases, we apply the simplex angle continuity constraint on deformable simplex
meshes, because it ensures the highest order of regularity. We keep the constant «; equal to
0.5 but we change the value of the rigidity parameter s; during deformation.

3.2 Deformable Contours

Contours defined on simplex meshes are deformable as well, and vertices belonging to those
contours follow the same law of motion than equation 11, but with a different expression
of the internal force. The internal constraints applying on space contours are described in
Appendix D. The internal constraints are closely related to those of surface mesh, ranging
from position continuity to curvature continuity. In most cases, we apply simplex angle
continuity constraint on contours.

Because contour vertices are deformed independently of mesh vertices, contours provides
boundary conditions for the surface mesh. The boundary conditions are posed in terms of
vertex position but additional conditions can be added. There are two types of surface-
contour constraint:

Simplex Angle Condition The simplex angle at contour vertices are set to a given value.

Tangent Condition The angle between the normal at the mesh and the contour normal
measured around the contour tangent vector, intuitively corresponds to the angle bet-
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ween the surface and contour. This angle can be controlled through the simplex angle
at the contour and the mesh.

In figure 14, we show examples of mesh and contour deformations. In the first two
examples, a contour is constrained to approximate five fixed points with normal orientation
and simplex angle constraint. In the last figure, we built a vase with five contours with
appropriate simplex angle and tangent boundary conditions.

Figure 14: (a) A contour defined on a simplex mesh is submitted to normal continuity
constraints. The contour interpolates the position of five contour vertices displayed with
black squares. The surface mesh has everywhere null mean curvature; (b) Same as (a)
except that the contour is submitted to curvature continuity constraints. The continuity of
normal is then verified at each five fixed vertices;(c) A vase created from a cylinder and five
contours with different end conditions;

3.3 External Force Computation

The external force F.,; is proportional to the distance of P; to the dataset. The computed
force is directed along the normal direction n; at the vertex P; where the force is applied.
The collinearity of F.,; with n; is important for two reasons.

First, it entails smooth deformations with attraction forces varying smoothly along the
mesh. Since we use an iterative process, it is important to guaranty a stable and smooth
behavior over times. Indeed, tangential displacements could create vertices with negative
metric parameters or even a mesh with self-intersections.

Second, the normal direction of the external force ensures the resulting shape of the mesh
will be smooth even in the presence of sparse data. If the attraction force was directed along
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the direction joining the vertex P; and the closest data, the mesh at equilibrium would be
unstructured with non intuitive shape (see figure 15).

Figure 15: (a) A simplex mesh is fit on sparse data represented with the dark dots. The
external force is not projected along the normal direction and tangential components of the
force perturbates the smoothness constraint of the mesh. (b) The external force is directed
along the normal direction resulting in a smooth shape.

The complexity of the computation of F.,; is linear in the number of mesh vertices. This
is sharp contrast with previous work of Metaxas [KMB94| and Terzopoulos [McI93| where the
complexity is linear with the number of data points since they compute the distance of the
data points to the mesh. This method is not appropriate for general surface reconstruction
since it makes the double assumption that all data points belong to the same object and
that there are no outliers in the data. Furthermore, in presence of dense data, this method
becomes too computationally expensive, and some algorithms are needed to decrease the size
of the dataset. Finally, there exists no efficient algorithms for computing the true distance
of a point to a triangulated mesh whereas computing the distance of a data point to the
normal line can be done with efficiency.

We propose an expression of the external force that deals with sparse as well as dense
datasets and that can take into account outliers. We describe the computation of F.,; for
range data and volumetric images.

3.3.1 External Force Computation On Range Data

The computation of the external force is dependent on the notion of closest point. For every
vertex P; of the mesh, we search for the closest data point Mcy;) and the force is then
computed as :
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| P Meagiy ||

Fewt = /BzG ( D

> (Pz'MCl(i) : ni)ni (16)
ref

where (3; is a weight parameter, n; is the normal vector of the mesh at P;, G(z) is the stiffness
function (see figure 16) and D is a reference distance.
G(x)
A

i > X

Figure 16: The stiffness function G(z).

The force F.,; is computed as the projection of the vector P;Mc¢y;y along the normal
direction. The distance D is the maximum distance of attraction of a data point. The
stiffness function G(z) ensures that the force decreases sharply when the distance between
Mci;) and P; is greater than D.

It is indeed very important to control the range of attraction of data points in order to
limit the influence of outliers. This distance D is computed relative to the overall size of the
dataset, i.e. the radius of the sphere surrounding the dataset. During the first stage of the
deformation, we pick a relatively large value of Dy (up to 20% of the radius) in order to
allow large deformations of the mesh. After few iterations, the value of D is decreased (at
most 8% of the radius) in order to limit the effect of outliers and to speed-up the search of
the closest point.

The computation of M¢y;) depends on the nature of the dataset and can be achieved
with four algorithms :

Projection Method On dense range images extracted from triangulation principles [SW91]
or stereovision [DF96], the search of the closest point is theoretically of complexity
O(m?) for an m x m image. However, when the calibration matrix is known, we pro-
pose an method in O(1), that approximates the search of closest point. Indeed, we
restrict the search along a two-dimensional segment in the image, projection of the
tridimensional line passing through P; and directed along n; (see figure 17). This seg-
ment is centered around the projection of P, and is only a few pixels long, depending
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on the value of Do . Once the closest point along the segment has been found, we
search for the closest point in a 5 X 5 window around that point.

Projection Method and Normal Orientation We can further restrict the choice of the
closest point by considering the normal orientation of the range data in addition to the
Euclidean distance. We then check if the dot product between the normal n; at the
mesh and the normal at the range images is strictly positive.

Projection of the normal line

¥

Y/

Projection of P

Figure 17: Search of the closest point on a range image

KD-tree When no calibration matrix is available, we compute the closest point with a kd-
tree [PS90|. This data structure gives the closest point inside a sphere centered around
P; and of radius D¢, at nearly constant time. Because of memory limitation, it is
not often possible to store all data points inside the kd-tree. In the first stage of the
deformation where D¢ is relatively large, we usually subsample the whole dataset in
order to guaranty a fast computation of F.,;. During the second stage, we discard all
data points that are far away from the mesh, and store all remaining points in the kd-
tree. The size of the kd-tree may still be large, but since the value D¢ is substantially
lower, the computation time is still moderate.

KD-tree and Normal Orientation As for structured range data, when normal vectors
are available for each data point, we use a six dimensional kd-tree combining position
and orientation information, similarly to Feldmar [FA94|.

3.3.2 External Force Computation On Volumetric Images

On volumetric images, the task of reconstruction usually consists in isolating regions of
consistent intensity values. Therefore, gradient intensity is the main information on which
is based the external force. As in [CCA92| and |[McI93|, we combine both gradient intensity
and edge information for the computation of F.,; :

Fezt = Fg?"ad + Fedge (17)
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The gradient intensity is used for local deflection of the mesh towards the voxels of maximum
variation of intensity. The edge information, on the other hand, corresponds to maxima of
gradient and entails larger deformations of the mesh. The edge image is a binary image
extracted from the gradient intensity image through thresholding.

Previous works [McI93| has derived the computation of F, .4 as the gradient of the poten-
tial field ||V||?, thus generalizing the approach of active contours. However, this formulation
has the drawback of creating oscillations of the deformable model across the voxels of high
gradient, due to the choice of the time step and the space discretization. Cohen [CC90| has
proposed to normalize the gradient vector in order to limit those oscillations within a pixel.
However, it has the drawback of limiting the range of influence of the gradient force to an
arbitrary value.

We propose an expression of the gradient force that avoid all oscillations and that is
not disturbed by local maxima of gradient intensity. The force F .4 at vertex P; relies on
the search in a neighborhood of P;, of the voxel of maximum gradient intensity. If V is the
closest voxel of P;, then we inspect all voxels in a m x m x m window around ) for the voxel
center G;, of highest gradient intensity (see figure 18(a)). The force expression is then :

Fgmd = 5igmd(PiGi-ni)ni (18)

B3¢7*! is weighting parameter with 0 < ¢"*’ < 1. Since the force is proportional to the
true deflection vector P,G; (and not the gradient vector), this force entails no oscillations of
the mesh. The computation of this force is actually fast since we can precompute the voxel
center G; given the voxel V and a fixed window size.

The gradient force can be made more specific by incorporating additional constraints :

e gradient direction constraint. The voxel GG; must have the highest gradient inten-
sity and have a gradient normal that is consistent with the normal direction at P; :
VI(G;).n; > 0. This constraint is natural since the gradient is always directed inwards
or outwards a region of constant intensity value.

e intensity value . The voxel GG; must have an intensity value in a given range value
[Valmin, Valmaz|. This constraints helps to discriminate against neighboring regions of
high contrast with different intensity values.

The edge image is built by thresholding the gradient intensity values. The removal of
small connected components may help to obtain reliable edge information. The traditional
approach for the computation of the edge force F.q4. has been to use distance maps built from
the binary edge image [CCA92, McI93, NA93]. Distance maps provide a simple algorithm for
computing the direction of the edge force even at a long range. However, this approach has
several limitations. First, it entails very large deformations away from the edge voxels, which
causes an unstable behavior of the mesh model. Furthermore, distance are ambiguous at
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Figure 18: (a) Computation of the gradient force F qgient : G is the center of the voxel with
the highest gradient intensity in the neighborhood of voxel v; (b) Search of the closest edge
voxel along the normal line for the computation of F 4.

voxels equidistant from two edge voxels. Our method uses the normal orientation at vertex
P; to raise this ambiguity.

Our approach consists in finding the closest edge voxel in the normal direction of the
mesh. At vertex P;, we find the closest voxel V, and a tridimensional line of voxels is
scanned in the direction of n; (see figure 18 (b)). The maximum number of voxels scanned is
given by the reference distance D .¢, determined as a percentage of the overall radius of the
edge image. In general, less than 30 voxels are scanned for each vertex. The tridimensional
Bresenham line drawing algorithm is used to efficiently scan the voxel image along the line.
If F; is the closest edge voxel along the normal line, then the edge force is given by :

Fedge = 62'6dge-PiEi (19)
The vector P,F; is collinear with n; and 3¢ corresponds to the stiffness of the edge force :
0< B9 <1,

Similarly to the gradient force, we can add constraints to the determination of the closest
edge voxel :

e gradient direction constraint . The voxel E; must have the highest gradient in-
tensity and have a gradient normal that is consistent with the normal direction at P,
: VI(G;).n; > 0.

e intensity value . The voxel F; must have an intensity value in a given range value
[Ua'lmina Ua'lmax]-
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4 Reconstruction Algorithm

4.1 Modeling Scheme

We propose a reconstruction scheme that is independent on the type of dataset and that re-
quires little a priori knowledge about the scene to be reconstructed. The scheme is presented
in figure 19 (a) and consists in two main stages.

The first stage corresponds to the deformation of the mesh from an initial position to
a close approximation of the shape of the dataset. To initialize the model, the user can
choose the mesh topology among three possible classes : spherical, cylindrical or planar.
He can then either initialize manually the mesh around the dataset or called an automatic
initialization algorithm described in section 4.2, if the dataset has few outliers.

In all cases, the topology of the mesh can be changed after the first stage of deformation.
The change of topology occurs first by creating holes in the mesh, and second by increasing
the genus of the mesh as seen in the diagram 19.

Once the mesh has the desired topology, the second stage of deformation consists in
providing a better geometric representation of the object. In order to control its distance
to the data, the mesh may be refined or adapted. Refinement and adaptation are two
complementary tasks that consist respectively in adding vertices and moving vertices towards
parts of high curvature. Both tasks ensure that the final mesh will be at a given distance
from the data while having good geometric and topological properties.

Only the rigidity parameter r; and the external force parameter (3; are modified between
the first and second stage. During the first stage, we set r; to high values (r; ~ 10) and g;
to low values ( §; = 0.1 ) in order to have smooth and large scale

deformations of the mesh. On the contrary, during the second stage, we use low values
of r; (r; &2 1) and high values of 3; ( §; ~ 0.5 ) since we want to control the distance of the
mesh to the data.

4.2 Initialization

One of the main problem of reconstruction systems based on deformable models, is that the
recovered shapes depend on the initial position of the mesh. In general, those models need
to be initialized closed to the data. When modeling complex shapes, manual initialization
may not give proper results, despite the ability to adapt the mesh topology to the topology
of the dataset.

We propose an initialization algorithm that can only handle a limited number of topolo-
gies (three for the current implementation) but that performs well even in the presence of
missing data. Initial models can be created from both range and volumetric images. The
algorithm is not sensitive to noise but may be influenced by outliers.
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Figure 19: (a) The general reconstruction scheme; (b) The first stage of deformation : the
mesh is brought from its initial shape to a rough approximation of the data; (¢) The second
stage of the deformation : the mesh is refined or adapted in order to create an optimal
representation of the object.
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The creation of a spherical mesh takes place by first computing the centroid G of the
dataset, and then by finding the spherical surface centered on G that enclose the whole
dataset. To do so, we consider a tessellated unit sphere centered on GG, and we project each
data point or voxels onto that sphere. We store on each surface element on the sphere, the
maximum distance of projected points from the center. When no points project on a sphere
element, we use the mean value of the radius instead. The variance of the radius on the unit
sphere determines the number of vertices of the initial simplex mesh.

For cylindrical meshes, we first compute the axis of minimum inertia. We then divide this
axis into n segments. Finally, we project each data point on a segment and then compute for
each segment the centroid and the largest distance along radial directions of all projected data
points. We then fit a simplex mesh of cylindrical topology onto this generalized cylindrical
surface. The mesh handles incomplete data because it interpolates the parts when no data
is available. The variance of radius determines the number of vertices of the initial mesh.

The initialization of planar meshes is similar to the cylindrical case. Instead of the axis
of minimum inertia, we define the plane of maximum inertia, passing through the centroid
GG and directed by the direction of maximum inertia. We project data points onto the plane,
and compute for each planar elements, the average height from the plane. The variance of
height determines the number of vertices of the initial mesh.

Examples of spherical, cylindrical and planar meshes is given at figures 20, 21 and 22.

(a) (b) (c)

Figure 20: (a) The principle for initializing a spherical mesh : each data point is projected
on a sphere; (b) The surface in spherical coordinates that encloses the range image of a foot;
(¢) The simplex mesh fit on the previous spherical surface;
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Figure 21: (a) The axis of minimal inertia, the spine and the slices used for the initialization
of a cylindrical mesh; (b) The surface in cylindrical coordinates that encloses the range image
of a foot; (¢) The simplex mesh fit on the previous cylindrical surface;

Data Points

Direction of

Maximum Inertia

(a) (b) (c)

Figure 22: (a) The initialization of a planar mesh is based on the projection of data points
on the plane of maximum inertia; (b) The surface in planar coordinates that averages the
range image of a face; (¢) The simplex mesh fit on the previous planar surface;
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4.3 Changing the mesh topology

After the initialization of a mesh, it may occur that the mesh does not have the same topology
as the object. Since topology of tridimensional surfaces are characterized by their number
of holes and their genus number, we propose two algorithms for changing those topological
characteristics. Because initial meshes are, in general, topologically more simple than the
object to recover, we only focus on building models with additional holes and increased
genuses.

4.3.1 Creating Holes

The principle of this algorithm is to create holes in the mesh where no data points exist.
We thus compute for each vertex, its distance from the closest data points and we label the
faces whose vertices have a distance greater than the reference distance D o¢. Those faces are
gathered in sets of connected components called zones. Then with the help of the topological
operator T%, each zone is removed from the mesh and a contour is created around the hole.
This contour after few iterations, will deform to closely fit the hole existing in the dataset.

Example of this algorithm is demonstrated for the reconstruction of a skull model (figure
23) and face model (figure 24). For the skull, holes has been created at the level of the orbits,
the nose and the foramen. Other zones have not been cut due to their small size.

The example of the face shows why this procedure cannot be made fully automatic. Two
zones have indeed been created : one around the upper part of the head and at the neck
level. The zone at the top of the head corresponds to missing hair data due to the limitation
of the acquisition technology. But the zone around the neck does not correspond to existing
physical points and should be cut. Therefore, we can run the hole creation module in an
interactive mode where the user can specify the zones to be cut based on his knowledge of
the tridimensional scene.

4.3.2 Increasing the genus of a mesh

The genus of a surface is a topological characteristics defined as the number of surface
handles. When dealing with incomplete data, the initialization stage proposed in section 4.2
provides, as initial shape, meshes with zero genus (sphere, cylinder or plane). It is therefore
necessary to provide an algorithm that increases the genus of a mesh.

We propose an algorithm consisting in connecting, with the topological operator 77, two
contours surrounding two holes. In a simplex mesh, a hole is an “empty” face surrounded
by a contour. Among all pair of contours surrounding holes, we choose those verifying the
following criteria, :

1. The centers of the two contours must be close enough.

2. The diameters of the two contours must be similar.
RR n~°3111



34 H. Delingette

(c) (d)

Figure 23: Creation of holes on a skull model : (a) Mesh after first stage; (b) Color coding
of the distance of mesh vertices to the dataset; (c) Zones to be cut; (d) Mesh after creation
of holes;
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Figure 24: Creation of holes on a face model : (a) Simplex mesh after the first stage; (b) The
zone corresponding to the hair where the data was not acquired by the Cyberware scanner;
(¢) Zone corresponding to the neck; (d) Mesh after cutting the neck zone;

RR n-3111



36 H. Delingette

3. The 2 contours must be located inside nearly parallel planes.

In figure 25, we initialize a mesh around a vertebra with the spherical topology. The
algorithm described in the previous section, creates automatically two holes on each side of
the handle. If two contours verify the three criteria, then they are merged and the mesh is
subsequently refined to closely fit the model.

4.4 Controlling the closeness of fit
4.4.1 The adaptation algorithm

Because simplex meshes are discrete representation of surfaces, the goodness of fit of a mesh
not only depends on the distance of vertices to the data, but also on the relative location of
vertices on the surface object. A good strategy is to concentrate vertices towards parts of
high curvature into order to optimize the shape description.

The metric parameters €; = {e€y;, €2, €3} control the relative distance of a vertex to
its three neighboring vertices. Our algorithm updates the values of the metric parameters
depending on the mean curvature values of neighboring vertices.

Basically, the algorithm operates as follows : vertices of low mean curvature migrate
towards neighboring vertices of relatively larger mean curvature whereas vertices of high
mean curvature have metric parameters close to % in order to obtain a uniform concentration
at highly curved parts.

The concentration of vertices is governed by the local minimization of an energy &;,
function of the variation of mean curvature. We periodically update the metric parameters
values : if € is the value of the metric parameters at iteration ¢, then we compute the metric
parameter at iteration ¢ + p as:

]_ e
€§+p = E; + §V&
The energy &; is defined similarly to the energy S; of equation 13 :

£= 5let = o)

where € is computed as a function of the variation of the absolute value of the mean cur-
vature. We derive the expression of €; by first considering the mean value of the absolute
mean curvature |H;| = (|Hy, )| + [Hny@)| + [Hngey|) /3. We then compute the relative mean
curvature deviation vector 6|H |;:

|Hy, | —|Hil
[Hi|
6|H|z — |HN2|(21|_|H1"
[H gyl — | Hil
ad INRIA
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Figure 25: (a) Deformation of a mesh initialized as a sphere on data representing a vertebra;
(b) Color coding of the distance to the data; (¢) The automatic hole creation algorithm
generates two holes; (d) The two contours are merged and the mesh has a genus equal to
one;
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We link the value of the reference metric parameter € with the relative mean curvature
deviation vector:

1
€ = 3T Yid| H; (21)

~v; is a constant that controls the extent of the adaptation of the simplex mesh and is usually
chosen between 0.03 and 0.25. However, since all metric parameters ¢; should be greater
than 0.05 and less than 0.833, we may compute a value of 7; substantially lower than 0.05.
Finally we have:
T = et (e~ ) (2)

The weight 0.5 enables a smoother variation of the metric parameters over time. In practice,
we choose to update the metric parameters every p = 10 iteration in order to stabilize the
mesh before re-evaluating the mean curvature over the mesh.

Figure 26 shows the effect of the mesh adaptation on a rounded cube. The metric
parameters are initially equal to % After the mesh adaptation, vertices nicely concentrates
at highly curved parts, the level of concentration being controlled by the value of ;.

4.4.2 The Refinement Algorithm

Mesh adaptation optimally moves vertices toward parts of high curvature. However, the
shape description is limited by the number of vertices of the initial mesh. We therefore
introduce a method for refining a simplex mesh in order to control its distance to the original
data.

We refine faces of a mesh according to several criteria including curvature, distance from
a dataset, area and face elongation. The user may combined several criteria if desired.

For each face, we compute a refinement measure that describes whether the face is a good
candidate for refinement. This refinement measure is centered around 1.0.

The refinement algorithm takes place in an iterative manner (see figure 27 (a)). We first
look for the face having the maximum refinement measure. If the measure is above a given
refinement threshold, we refine the face by creating a new edge with the topological operator
T?. The mesh is then locally smoothed around the newly created edge. In order to keep
the number of vertices per face uniform on the mesh, we iteratively swap edges adjacent to
large faces. Each time an edge is swapped, the mesh is locally smoothed around the swapped
edge as well. Finally, we recompute the refinement measure for all faces whose vertices have
moved. We iterate until no face has a refinement measure above the threshold.

Because the geometry of the mesh is modified only around the refined faces, the algorithm
converges quickly and is not time consuming. Furthermore, it is important to swap edges
adjacent to large faces in order to guaranty a mesh with high geometric properties (small
distance to the dataset) as well as high topological properties (number of vertices per face
close to 6).
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Figure 26: (a) The initial mesh with the isosurface; (b) the mesh fit on the isosurface.
The metric parameters are everywhere equal to %; (c¢) The adaptive mesh with a value of
v; = 0.10; (d) The adaptive mesh with a value of «; = 0.15; (e) The adaptive mesh with a

value of v; = 0.20.
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The four criterion measures are computed as follows :

The relative area of a face : It is computed as the ratio of a face area by the total area
of a mesh.

The elongation of a face : It is computed as 1 plus the difference of length between the
longest edge and the smallest edge of a face, divided by the median value of the length
of the face edges.

The measure of Gaussian curvature : It is evaluated through the computation of area
of the spherical polygon described by the normal vector on the Gaussian sphere.

The relative distance to 3D data : It is based on the ratio of the distance to the closest
data point by the radius D ¢ of the corresponding range data.

The refinement threshold is dimensionless and it is therefore evaluated independently of
the size of the mesh. The user can either set a threshold value or select coarse, medium or
fine resolution. In this case, the threshold is automatically computed in order to refine 15%,
25% or 40% of all faces.

The refinement may not perform well in the presence of strong noise or outliers where
the distance between the mesh vertices and the data is relatively high. At those parts, the
refinement would result in actually fitting the noise. Therefore, we may only apply the
refinement process at specified part of a mesh.

As for the adaptation algorithm, the refinement algorithm is only performed at every p
iterations. This allow the mesh vertices to nicely spread over the surface object. In general,
we choose a value of p = 5.

5 Results

5.1 Quantitative Results
5.1.1 Influence of the damping factor

Our deformable model framework is based on a Newtonian law of motion (see equation
11), that includes the acceleration of each vertex and a damping factor in order to prevent
oscillations of the system. Most deformable model systems, on the contrary, are based on a
Lagrangian law of motion, where the speed of each vertex is equal to the sum of the internal
and external force.

In this section, we compare the efficiency the Newtonian law of motion with the Lagran-
gian law of motion. We recall that the discrete Newtonian law of motion is :

P =P+ (1= )P = P7") + Fins + Feuy 29)
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Y

Found aface
above threshold 2~

(a) (b) (c) (d)

Figure 27: (a) Flow chart of the refinement algorithm;(b) A simplex mesh fit on a synthetic
cross without refinement (1620 vertices); (b) Mesh with a low level of refinement : (1970
vertices); (¢) Mesh with a high level of refinement (4020 vertices);

We note that if vy = 1, then equation 23 corresponds to a Lagrangian law of motion. As
the damping factor v decreases towards zero, the effect of the acceleration factor increases.
For v = 0, the deformable model behaves as a perfect oscillator.

We have tested the effect of the damping factor on the deformation of simplex meshes
on a range image of a foot and initialized as an ellipsoid. The deformation is stopped after
30 iterations. The initial mesh position and the deformed mesh with a value of v = 0.80 are
shown in figure 28.

In figure 29, we have studied the displacement of vertices during deformation for several
values of the damping factor. It appears that as 7y decreases, the speed of convergence
increases. However, when ~ is smaller than 0.20, large oscillations prevent the mesh to
converge towards the shape of the range data. For v = 0.20, we observe that the resulting
mesh self-intersects.

The results show that the Newtonian law of motion is more efficient than the Lagrangian
law of motion. However, the choice of the damping factor must be governed by a trade off
between efficiency and stability. If v is too small, the mesh may not converge towards the
right shape, especially when the mesh is far away from the data. If v is too close from 1.0,
then the efficiency of the deformation process is poor. In practise, we choose a value of
v = 0.65.
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(a) (b)

Figure 28: (a) Initialization of the mesh around the range data of a foot; (b) Mesh after 30
iterations with v = 0.80

Influence of the damping factor

0.0020 40.0
—— Mean Distance after 30 Iterations
——- Median Distance after 30 Iterations
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0.0000 0.0
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Figure 29: (a) Chart of the mean displacement of vertices as a function of the number of
iterations for several values of the damping factor; (b) The mean and median distance to
the range data for several values of the damping factor
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Accuracy Mean Maximum Dot Computation Computation
Rate Error Error Cost of the Cost of the
Projection Method KD-tree
Initial Mesh 33 % 36.93 mm 371 mm 380 mm 0.79 ms 27.20 ms
Deformed Mesh | 95.2 % 0.38 mm | 45.89 mm | 95 mm 0.81 ms 2.21 ms
Refined Mesh 98.7 % 0.04 mm | 14.32 mm | 95 mm 0.81 ms 2.02 ms

Figure 30: Accuracy and computational cost of the projection and kd-tree method.

5.1.2 Evaluation of Performance of the Closest-Point Algorithms

We have introduced two methods for finding the closest data point from a given vertex. The
projection method uses the calibration matrices of camera-based range-finders to search the
closest point along the normal line. This method does not guaranty to find the true closest
data point, but it is fairly computationally efficient. On the other hand, the kd-tree data
structure, gives the true closest point from a vertex, but at a higher memory and computation
cost.

In this section, we compare the accuracy and the computational efficiency of those two
methods on three cases. The three meshes are shown respectively in figure 28 (a) and figure
31 (a) (b). They correspond to three stages of deformation with decreasing distance to the
original data : after initialization, after the first deformation and after refinement.

Since the kd-tree method gives the true closest Euclidean distance to the data, we evaluate
the accuracy of the projection method, by comparing for each vertex, the closest distance
given by the projection method with the distance given by the kd-tree method. All distances
are measured along the normal direction at a vertex, in order to remove the effect of sparse
data. In table 30, we can see that the accuracy of the projection method, increases drastically
as the mesh is closer to the range data. The vertices where the error remains large even on
the refined mesh, correspond to parts where the range data is incomplete (such as the tip
of the foot) and therefore does not have an important influence on the overall shape of the
deformable model.

The computational cost of both methods are compared in table 30. It appears that the
efficiency of the kd-tree method is linked with the radius D¢ of search around the vertex
and therefore with the distance between the mesh and the data. When the mesh is far away
from the data, the kd-tree method is 35 times slower than the projection method whose
computational cost is independent of D, ¢. On the other hand, the kd-tree method is only
2.5 times more expensive. In all cases, the cost for building the kd-tree of the 512 x 512
range image was 4.03s.

From this experiment, we conclude that when the calibration parameter of the range
sensor are known, the projection method is better-suited than the kd-tree method because
of its low computational and memory requirement. Furthermore, the poor accuracy of the
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projection method when far from the data is not a problem because the stiffness parameter
B; is then very low (3; = 0.1). It is therefore not necessary, in such cases, to compute with
high accuracy the closest point.

5.1.3 Effect of the Refinement on the Distance Error

In this section, we study the effect of refinement on the overall distance error of the mesh.
Starting from a rough estimate shown in figure 28 (a), the mesh position after applying
the first stage of deformation is shown in figure 31 (a). This model has 1280 vertices and
oversmoothes the shape of the original data.

We refine this mesh based on the mesh distance to the data. In this example, we choose
two different refinement levels set by two refinement measures. The first refinement measure
has been automatically computed in order to refine 25% of the original number of faces
while the second corresponds to a refinement level of 40%. Since the refinement measure, is
linked with the maximum distance to the data, choosing a refinement measure is equivalent
to choosing a maximum bound for that distance. The first refinement measure corresponds
to a maximum distance of 22.10 mm while the second of 14.25 mm. Note that this distance
to the data is computed not only for all mesh vertices, but also for the centers of all faces.

(a) (b) (c)

Figure 31: (a) The mesh of figure 28 (a) after the first stage of deformation; (b) Mesh after
the coarse refinement; (c) Mesh after fine refinement.

The meshes before and after refinement are shown in figure 31. Quantitative results about
distance to the original data, are given in table 33. The refinement procedure is called every
INRIA



45

General Object Reconstruction based on Simplex Meshes

5 iterations and stops when there are less than 5 faces to refine. We limit the number of faces
refined per procedure to 100, in order to obtain a more homogeneous spacing of vertices.
The number of faces refined per call to the refinement procedure is described in figure 32
(a). The total number of iterations increases from 45 to 130 as the required refinement level

is modified.
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Figure 32: (a) The number of faces refined for each refinement procedure called; (b) The
distance error histogram before and after refinement.

In figure 32 (b), we can see the change of the distance error histogram before and after
refinement. As shown in table 33, the maximum error is within the bounds set by the
refinement criterion. Note that the median error does not vary substantially between the
two levels of refinement. This is because the median error corresponds approximately to the
resolution of the range data.

Mean Median | Maximum | Number of | Number of | Computation
Distance | Distance Distance Vertices Tterations Time
Deformed Mesh 16.01 mm | 14.53 mm | 75.70 mm 1280 30 23.77 s
Coarsely Refined Mesh | 3.56 mm | 244 mm | 21.98 mm 1518 20 35.73 s
Finely Refined Mesh 294 mm | 227 mm | 14.07 mm 2020 50 124.43 s

Figure 33: Distance error and computation time for three meshes at different refinement

levels.
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The computation times were evaluated on a DEC Alphastation 200/233. We indicate in
table 33 the time needed for the first stage of deformation (where the mesh is deformed from
an ellipsoid) as well as for the refinement stage. Within the refinement stage, most of the
time is spent on evaluating the refinement criterion for all faces.

5.2 Qualitative Results
5.2.1 Changing the Connectivity

In this section, we demonstrate that our reconstruction scheme can take into account the
change of connectivity. More precisely, starting from a simplex mesh, the creation of holes,
as described in section 4.3.1, can separate a simplex mesh into two independent meshes.
The change of connectivity occurs when the part of the zone interpolated has more than one
border.

In this example, we use a pre-segmented volumetric image consisting of manually seg-
mented contours. The difficulty lies in building a smooth geometric model that closely fit
those contours. Direct reconstruction techniques, such as Delaunay triangulation [BG93] or
the Marching Cubes algorithm, extrapolate the contours without taking into account any
smoothness constraint.

In our framework, the deformable mesh is attracted by the contours and submitted to
regularizing forces. To compute the attraction force, we simply consider the contours as
edge voxels. We start the reconstruction of the lungs with the automatic initialization of the
mesh around the data. We chose the spherical topology and obtain a mesh surrounding both
lungs (see figure 34(a)). The first stage of deformation creates a smooth model where we
can correctly detect the part that has been interpolated. Because this part has two borders,
the removal of the interpolated vertices entails the separation of the mesh into two meshes
(figure 34(c)). Those meshes are then refined and the final reconstruction is seen in figure
34(f).

5.2.2 Reconstruction from volumetric images

In this example, we reconstruct the ventricles, atriums and the pericardium from a T1-
weighted MRI volumetric image. The image corresponds to a routine acquisition of the
abdomen and consists of only 10 slices without any contrast agent. Because of the low-
contrast, deformable models are the only alternative to manual segmentation. Furthermore,
we cannot initialize automatically our models because it is impossible to isolate the ventricles
and atriums in the image. Instead, we initialize the ventricles and atrium models as ellipsoids
(figure 35(a)) and we manually position them within the image. The pericardium is initialized

as a cylinder.
The models are attracted towards edges with the additional constraint that the surface
normal must be coherently oriented with the gradient direction in the image. The gradient
INRTA
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Figure 34: (a) Initial mesh; (b) The zone detected as interpolated; (¢) Change of connectivity;

(d) and (e) Reconstructed model of the first and second lung; (f) and (g) Final reconstruction;
(h) and (i) Slices of the lung models.
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information was computed as a 2D gradient because the interslice distance is six times larger
than the pixel size.

We first deform those models with a high rigidity parameter and, in a second stage,
we decrease the rigidity parameter to a minimum while slightly refining the meshes based
on area. Because of the rough initialization of the models, we allow the user to grab the
mesh locally in order to remove it from a local minimum. However, we found that using
the coherence between the gradient direction and the orientation of the deformable model
greatly helps the segmentation. The right and left ventricles have been easily segmented
(figure 35(b) and (c)) while the recovery of the atriums is more problematic. In particular,
the right and left atrium intersect each other because the septum separating the two cavities
is missing in the image (figure 35(h)). In figure 35(i) the slicing of the different models shows
the accuracy reached in the segmentation. A better fit could be reached by increasing the
resolution of the models at the expense of computation time. The number of vertices for the
right /left ventricles, the right/left atrium and the pericardium is respectively 1920, 1280,
1320, 1592 and 366.

5.2.3 Reconstruction by Parts

When the object to recover is strongly non-convex or non-star shaped, it may be necessary
to recover sub-parts of that object and subsequently join the different parts.

For instance, we have reconstructed a hand model by reconstructing independently the
palm and the 5 fingers. Those models have been initialized with a sphere and 5 cylinders,
as seen in figure 36(a). After recovering each pieces, they have been are manually connected
with several T3 operators. The connected parts are then automatically smoothed to ensure
a continuity of normal orientation. The final model has about 8000 vertices and uses the
texture of both range data. The flexibility of the simplex mesh representation allows to
perform the reconstruction by parts in a straightforward manner.

This technique is useful as well for reconstructing an object from many non-recovering
range images. In this case, it is difficult to merge all data points in the same frame. We can
recover the different parts of the object from each image, and then merge the meshes based
on some rough rigid transformation between the various images. We have build a complete
body model with eleven distinct body parts stored as Cyberware range images (see figure
37).

6 Conclusion

In this paper, we have presented a general reconstruction framework based on deformable
simplex meshes. It differs from previous approaches by using a non-parametric representa-
tion of surfaces and by the addition of deformable contours with deformable surfaces. The
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(8) (h) (i)

Figure 35: (a) Initial meshes; (b) and (c) The right and left reconstructed ventricles; (d)
The right and left atrium; (e) (f) and (g) The 5 recovered models from the MRI image; (h)
and (i) Slicing of the different models with the image.
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(c) (d)

Figure 36: (a) Initial estimate of the palm and the five fingers; (b) The six recovered meshes;
(¢) Simplex mesh model after connecting the pieces together; (d) Textured hand model.
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(a) (b)

Figure 37: (a) The different parts extracted from range images; (b) The body model built
by connecting the 11 body parts.
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deformable models can be refined, adapted, and their level of continuity and smoothness can
be easily controlled. Because simplex meshes can represent all topologies, we have devised
an algorithm for adapting the mesh topology to the topology of the object. Furthermore, we
have proposed a solution to the initialization problem for the spherical, planar or cylindrical
topologies. Finally, we have applied this framework to the reconstruction of complex objects
from range images or volumetric images.

We would like to improve the robustness of this framework by creating better initial
models. The initialization technique we have proposed, requires that the object has been
isolated from the scene. We intend to develop a more general initialization technique that
does not require the a priori knowledge of the object topology.

Finally, when the object to recover is known a priori, the robustness of segmentation
and reconstruction could be improved by including in the deformable model a notion of
shape statistics. This would be specifically beneficial for segmenting medical images where
databases of volumetric images and anatomic structures could be used.
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Appendix A Approximation problem

-
-
. \.

Figure 38: The solution of this approximation problem is piecewise linear.

From the Euler-Lagrange equation associated with equation 1, it can be proved that the
curve minimizing equation 1 is piecewise linear. If we note A and B the extremities of the
curve, P the data point and ry the vertex of parameter ug, then the problem consists in
finding ry that minimizes :

_ A =xol®  |IB = rof®

E
(rO) U 1— Ug

+ )\”I‘() — 1)”2

which leads to the following equation :
o — /\UO(]. - ’U,Q)P + ’U,QB + (]_ - ’U,())A
0 1+/\U0(1—U0)

Replacing the sum of square derivatives with the total curve length, removes uq in the
expression of the optimal curve :

Eintrinsic(rO) = [|A = o[ + ||B — ro|| + Al|ro — P”2
which leads to the following non-linear equation that does not have any closed form solution :

o = 2AB — rof||A —xo||P + [|A —1o|[B + [|B — rof|A
0=
B — rol| + [[A = o[l + 2A|B — ro||[| A — ro|

Appendix B Topology Of simplex meshes

Here is the description of the topological duality transformation between k-triangulation and
k-simplex meshes.

We now explain why simplex meshes and triangulations are not dual in terms of geometry.
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1-Tr <= 1-SM | 2-Tr <= 2-SM
p =0 | Vertex <= Edge Vertex <= Face
p=1| Edge <= Vertex Edge <= Edge
p=2 Triangle <= Vertex

Table 2: Duality between a k-triangulation and a k-simplex mesh without consideration of
the boundaries.

1-Tr = 1-SM 2-Tr = 2-SM
p=0| Vertex = Edge | Vertex = Face
Vertex = Vertex | Vertex =—> Edge
p=1 Edge — Edge
Edge = Vertex

Table 3: Duality between a k-triangulation 7 and a k-simplex meshes for faces that belong
to the boundary of T

1-SM = 1-Tr | 2-SM = 2-Tr
p =0 | Vertex = (nil) | Vertex = (nil)
p=1 Edge = (nil)

Table 4: Duality between a k-simplex mesh M and k-triangulation for cells that belong to
the boundary of M

INRIA



General Object Reconstruction based on Simplex Meshes 55

Proof The geometry of a non-degenerate k-simplex mesh or a non-degenerate k-triangulation
is determined by the coordinates of its vertices. However, for £ > 1 the number of vertices
Vem of @ k-simplex mesh is different from the number of vertices V. of a k-triangulation. For
k =2, and for a triangulation without holes, the Euler relation gives :

Vim

V:tr_ 2

=2(1-yg)

Therefore, we cannot build an homeomorphism between the set of coordinates of a trian-
gulation and the set of coordinates of a simplex mesh since they have different dimensions.
Only for 1-simplex meshes, is it possible to build a geometric dual 1-triangulation since they
have the same number of vertices.

Appendix C Geometry of shape contours.

Contours are tridimensional 1-simplex mesh M € IR®, where we define a local frame made
of the tangent t;, normal m; and binormal b; :

PPy PP\ PPy
PPt [PoiPoA PP 24
@i

Piya

Fy

Figure 39: (a) Definition of curvature x; with the radius of the circumscribed circle R; = 1/k;.
C; is the middle of segment [P; ;1 P,;1]. (b) Definition of tangent and normal vectors. F; is
the foot of P, on P,_1P; ;.

The metric parameters and the simplex angle are defined as for planar meshes. However,
we need to introduce another angle /; as additional shape parameter. This parameter is
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defined through vector r; :

AN (PP NP Piy)
Its A (Pi—aPici A P Piy)||

r;

(r; and t; A r;) defines the normal plane, orthogonal to t;. Therefore, we define 1); as the
angle between m; and r; :
m; = COS(wi)I',' + Sin(iﬁi)ti A T;

The shape of a tridimensional simplex mesh is then fully described by its metric para-
meters, simplex angle and angle 1; :

P, = € P_1 + €/ Pii1 + L(ry, d;, ;) (cos(¥i)r; + sin(y);)t; A ;) (25)

Appendix D Internal Force applied on contours.

Let C be a contour defined on a simplex mesh M. The shape at a vertex Pj(; is defined by
the position of its four neighbors on the contour P, | =4 — 2,4 — 1,7+ 1,2+ 2 and the
angle values ¢;;) and ;). The regularizing force F;,; corresponds to the minimization of
the local criterion Sy :

Qi)
2
The internal force is then proportional to the displacement vector joining Pj; to the point

Pj ;) determined by the two angles ¢ ;) and ¢}, :

Si=

1Po)Pieo I

Fie = a56P0P
Fie = aye(esw P Pra-1y) + (1 — €6) Pray Py +
X;(i) (Cos(w?;(i))rJ(i) + Sin(wj(i))tJ(i) X Ty())

) . | Prii—1yPrg+ll 1 X
with Ay = L( ( )2 DL (ery — §)||PJ(1—1)PJ(1'+1)||7 ©i))

€7() is the metric parameter and this parameter is fixed during the deformation. We define
the following constraints on a contour vertex :

Position Continuity Constraint . We set ) = @) and Y,y = i) where @) and
i) are the current values of curvature and torsion.

Normal Continuity Constraint . We set ¢}, = 0 and ¢} ;) = 0. The force then simply
writes as ﬁmt = j(s) (€J(¢)PJ(z’)PJ(z‘—1) + (1 - eJ(i))PJ(i)PJ(i—f—l))-

INRIA



General Object Reconstruction based on Simplex Meshes 57

Pr—1)TPI6E)TPI(+1)
3

Angle Continuity Constraint . We set ¢7,) = 0 and ¢, = . We can

generalize this expression by averaging over a larger extent s;:

Di—si<j<its; PIG)
282' +1

SD*J(i) =
s; is the rigidity coefficient that is similar to the simplex mesh case.

Shape constraint We set ¢, = @y and Y5 = ¥, where ¢y and 95, are two
constants corresponding to the reference shape.
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