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Abstract: We present a model of distributed computation which is based on a fragment
of the m-calculus relying on asynchronous communication. We enrich the model with the
following features: the explicit distribution of processes to locations, the failure of locations
and their detection, and the mobility of processes. Our contributions are two folds. At the
specification level, we give a synthetic and flexible formalization of the features mentioned
above. At the verification level, we provide original methods to reason about the bisimilarity
of processes in the presence of failures.
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Un modéle asynchrone de la localité, I’échec et la
mobilité de processus

Résumé : Nous présentons un modeéle de calcul réparti qui est basé sur un fragment du
m-calcul avec communication asynchrone. Nous enrichissons le modéle pour représenter la
distribution explicite de processus & locations, 1’échec de locations et leur détection, et la
mobilité de processus. Au niveau de la spécification, nous présentons une formalisation
synthétique et flexible des aspects mentionnés ci-dessus. Au niveau de la vérification, nous
décrivons des methodes originales pour raisonner sur la bisimilarité de processus en presence
d’échec.

Mots-clé : m-calculus. Bisimulation. Communication asynchrone. Locations. Modéles de
systémes repartis. Echec et détection d’échec. Mobilité de processus.
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1 Introduction

Traditional process calculi such as CCS and CSP lie their foundations on a reduced set of
concepts and therefore do not provide direct support for the modeling of certain relevant
aspects of systems such as the distribution of resources on different locations, the impact
of failures on the behaviour of the system, the detection of failures, and the mobility of
processes (the exact meaning of these terms will become clearer, as we progress in our
discussion).

This paper pursues a research line initiated in [AP94], in which an explicit modeling of
the features mentioned above is specified, and then a reduction to a more basic model is
seeked.

In carrying on this program, we rely on a m-calculus formalism [AZ84, EN86, MPW92]. In
first approximation, the m-calculus models systems of asynchronous processes which interact
by message passing. The calculus embodies features such as dynamic process creation,
dynamic channel creation, transmission of channel names, and a static scoping discipline.
The blending of these features has led to a calculus which is quite expressive and close to
programming issues, while having a tractable semantic theory.

We select a variety of the m-calculus as the basic model on which additional features
are added. The advantage of this approach, is that notions and results can be inherited
and stated, respectively, within the theory of the 7-calculus. The disadvantage is that to
understand this paper some knowledge of the m-calculus is required.

The variety of 7-calculus which we consider is a fragment of the asynchronous w-calculus
[HT91, Bou92]. In this calculus, the send of a message is non-blocking, that is a process can
deliver a message without waiting for a receiving process (think of e-mail). This communi-
cation model implicitly relies on a non-bounded buffer in which messages can be stocked.
Messages in the buffer can be reordered in arbitrary ways (the buffer does not obey a FIFO
discipline).

We consider a fragment of the asynchronous 7-calculus in which every channel name is
associated with a unique (persistent) process which serves messages addressed to that name
(communication becomes point-to-point). To emphasize the unicity of the receptor, we will
refer to this fragment as the my-calculus. Technically, the 7i-calculus is formalized by means
of a simple typing discipline which enjoys a suitable subject reduction property. We show
that the m-calculus is sufficiently expressive to simulate the asynchronous 7-calculus (with
multiple receivers). We also observe that by restricting the syntax to “functional” processes,
we can define an expressive sub-calculus where (internal) reduction is confluent.

Starting from the 7p-calculus, we specify in an incremental way the features we are
interested in:

1. We explicitly distribute processes to locations. Locations are our unit of distribution
and they can be generated dynamically.

2. Locations are also our unit of failure. A location can fail, entailing the failure of all
processes running at it.

RR n~° 3109



4 Roberto M. Amadio

3. We specify an operator to spawn a process at a remote location. It is then possible
to synthesize a closure, i.e. a process with an environment, at a location and start its
execution at another location.

4. We specify an operator to detect the failure of a location.

There is a variety of choices to be made concerning the model of failures (halting, tran-
sient, byzantine,...), the exact kind of mobility of processes which is allowed and its impact
on message routing, and the power of the failure detectors. We will not try to cover all
possible combinations of these choices, instead we will study in depth a simple model while
hinting to possible variations.

In first approximation, we will consider a system of asynchronous processes which interact
by asynchronous message passing. Processes are distributed to locations which can stop
(halting failure), they can spawn processes at remote locations under certain conditions
which keep the routing problem simple, and they can consult a perfect oracle which will
eventually say if a location has failed or not.

The rest of this paper is organised as follows. In sections 2 and 3, we define our model and
illustrate its expressivity. In particular, in section 2 we present the mi-calculus, and study
its typing system (theorem 1), and in section 3, we incrementally define the m1;-calculus as
an enrichment of the 7;-calculus where locations, failures, mobility of processes, and failures
detectors are explicitly modelled.

In section 4, we turn to semantic issues. Our goal is to develop techniques to prove the bi-
similarity of processes. In particular, we study characterizations of contextual equivalences,
and calculi translations. We define an adequate translation (theorem 2) from the 7;-calculus
to the m-calculus. Next, we characterise barbed equivalence (a contextual equivalence) for
the m1-calculus (theorem 3). The tool we use is a recently introduced notion of asynchronous
bisimulation [ACS96]. We also show that there is a fragment of the m;-calculus for which
the translation into the 7;-calculus is fully abstract, and we formalize the fact that in our
model distribution is transparent in the absence of failures.

Finally in section 5, we consider related work and summarize our main achievements.

2 The asynchronous m;-calculus

We start by considering a polyadic, asynchronous 7-calculus whose processes are specified
as follows (we often omit parentheses):

pi=a)plab|p|p|0|vap|(recA(@).p)(B) | A@)|[a="blp,q 1)

We collect here some basic conventions. We denote with a, b, . .. channel names, with &, l_;, .
vectors of channel names, with @ two vectors of channel names separated by a *”, say d1; d2
(either vector can be empty), and with p,q, ... processes. The sets fn(p), bn(p) contain,
respectively, the names free and bound in the process p. If @ is a vector of names, we

denote with {@} the corresponding set. If @ = dj;d3 then we let a;,, = di, G, = d3, and
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An asynchronous model of locality, failure, and process mobility 5

{a} = {di} U {d3}. Intuitively, in a recursive definition, we distinguish between the names
;o that can be used in input and output, and the names a, that can be used in output only.
Correspondingly, every process identifier A has two arities ar;,(A4) and ar,(A4): ari,(A) is
the number of parameters that can be used in input and output, whereas ar,(A4) is the
number of parameters that can be used only in output. In a well-formed process, actual
and formal parameters agree, and all process identifiers are bound. In a recursive definition
(recA(a).p)(b), we suppose that fn(p) C {Gio,d,}. To define recursive processes, we will
also rely on parametric equations as an equivalent notation. The equivalence = stands for
syntactic identity up to renaming of bound names.

Sorts are defined as follows: s ::= Ch(s1,...,8,), where n > 0. A channel of sort
Ch(s1,...,8n) can carry a tuple ci,...,c,, where ¢; has sort s;, for i = 1,...,n. We
suppose that every name a has a sort s which we denote with st(a), that there are infinitely
many names for every sort, and that terms are well-sorted. The basic reduction rule of this
calculus is:

(cm) a(B)-p|ac — [¢/8lp (2)

The behaviour of a process is completely described by a labelled transition system (lts),
whose actions « are specified as follows:

o =1 |ab|v{c}ab (3)
In v{&} ab, we suppose that a ¢ {&} C {b}. Conventionally, we set n(a) = fn(a) U bn(c)
where:
fa(r) =0 fn(ab) = {a} U{B} fn(v{c}ab) = {a,b}\ {2} @)
bn(r)=0 bn(@b) =0 bn(v{c}ab) = {c}

The labelled transition system is specified in figure 1, following an early instantiation style.
The notion of weak transition is defined as usual: p = p' iff p(=)*p’, and, for a # 7, p = p’
iffp=>.-35.3p.

The mi-calculus The m-calculus is a typed version of the asynchronous w-calculus. A
typing context I', is a set of names {ay,...,a,}. In figure 2, we introduce a system to prove
when a process p is well-typed in the context I'. The typing rules rely on the following
intuitions: (1) If ¢ € T then there is ezactly one (persistent) process that is allowed to
receive on a. (2) Property (1) has to be preserved by labelled transitions. (3) Whenever we
create a name, we have to make sure that a unique receiving process is associated to that
name.

The typing rules apply to processes with free process identifiers, as to type a recursive
definition we need to type a process where the related process identifier is free. The actual
parameters of a recursive definition provide a kind of declaration of the channel names on
which the defined process intends to perform input/output actions, and output actions,
respectively. The typing system makes a “linear” use of the names in the context, and
in this respect it has some points in common with other typing systems which have been
proposed for the w-calculus (cf., e.g., [KPT96]). What appears to be original, is the handling
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) e =

out) 2 "7y a#d de (B
l/dp u{d,_c}} ab p,
(ep) p=p bn(a)Nfn(g) =0
pla=7plq

[recA(a).p/A, B/&]p S

) recA@) () 5 ¢

(ms) i A
l[a=alp,q—p

(out)

of
p = P q=4q¢ {Gnfnlqg =0
plg—=vié@®@|d)

Figure 1: Labelled transition system for the asynchronous polyadic 7-calculus
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00 0 Fab

Fl}_pl le‘pg Flﬂl"zz(b FU{G}}_p a¢1"

TyuTla kpy | p2 T'Fvap
Tkp ael Tn{b}=0 {aio} Fp #{bio} = arin(A)
T+ a(b).p {bio} F (recA(a).p)(b)
#{@io} = ario(A) T'kp Thyg
{aio} F Aa) I'kla=blp,q

Figure 2: Typing rules for the m;-calculus

of the input prefix and of the recursive definitions. Note that in a recursive definition we
require that Ehe number of distinct actual io-parameters equals the io-arity of the process
identifier (§{b} = ari,(A)). Hence, the typing under a process identifier is performed under
the hypothesis that all actual io-parameters are distinct.

We can show that typing is preserved by labelled transitions. Typing contexts are not
affected by labelled transitions but in the case of output extrusion. We note that a context
never shrinks, this is because the 7;-calculus always keeps a trace of the running processes,
even when they are virtually terminated as in the process Idle(a) (cf. figure 3). This
design decision entails that if two processes are typed with respect to the same context,
then this property is preserved by labelled transitions. This fact simplifies the definition of
bisimulation (cf. definition 8).

Theorem 1 (subject reduction) IfT Fp and p = p' then T U bn(a) F p'.

Proof of theorem 1 Let o be a name substitution which is the identity almost everywhere.
We say that o is injective on a context I, if o restricted to I is injective. We write oI for
{oa | a €T}, and op for the application of the substitution o to the process p.

Lemma 1 If T F p, and o is an injective substitution on T, then ol + op.

PROOF. By induction on the proof of T" - p. For instance, we consider the case where the
last rule applied is:

{aio} F D ﬁ{Bio} = ario(A)

{bio} F (recA(a).p)(b)

RR n° 3109



8 Roberto M. Amadio

Let o be injective on {b;,}. Without loss of generality, we may suppose that the bound
names @ have been renamed so that 0@ = @. Then o(recA(a).p) = (recA(a).p), as fn(p) C
{a}. Since o is injective on {b;,}, we have f(c{bio}) = ari,(A). Hence, we can conclude
o{bi, } F o(recA(a).p)(b). QED
Lemma 2 If {@i,} F p and ${bi,} = ari,(A) then {b;,} - [recA(a@).p/A,b/a]p.

PROOF. From a proof of {d;,} F p we can obtain a proof of {b;,} F [b/a]p by lemma 1. We
consider the leaves of the related proof tree having the shape:

#{Cio} = ario(A)
{51'0} = A(é)

If we replace each leaf of this type with a proof whose root has the shape:

#{Gio} = ario(4) {di}bFp
{Gio} F (recA(a).p)(¢)

We obtain a proof of {b;,} F [recA(d).p/A,b/d]p. QED

We can now prove theorem 1 by induction on the derivation of the transition p = p’ and
analysis of the last typing rule applied. For instance suppose the transition rule is:
[recA(@).p/A,bjalp = p'
(recA(a).p)(b) = p/

Then the last typing rule applied is:

{aio} F D ﬁ{Bio} = ario(A)

{bio} F (recA(a).p)(b)

By lemma 2, we derive {bi} + [recA(a).p/A,b/d]p. By inductive hypothesis, we can
conclude {b;,} U bn(a) - p'. QED

Barbed bisimulation We provide some insight on the way m;-processes can be observed.
For the time being, we will just introduce a notion of barbed bisimulation which is sufficient
to argue about the adequacy of various encodings. In section 4, we will develop a notion of
(asynchronous) bisimulation for the 7;-calculus based on the lts in figure 1.

As for the asynchronous w-calculus (cf. [HT91, ACS96]), we should suppose that only
output actions are visible. Intuitively, since communication is asynchronous the observer
has no way of knowing when an input action is carried on (we refer to [HT91, ACS96] for
a more extended discussion). There is also an additional hypothesis that should be made,
namely we suppose that an output action is visible only if the corresponding receptor is not
defined in the observed process (otherwise the resulting process would not be well-typed).
The context I' tells us exactly which are the receptors defined in the process p. Hence if
T F p, then we can only observe output commitments on names which are not in T'.

INRIA



An asynchronous model of locality, failure, and process mobility 9

Definition 1 (commitment) Suppose T F p. We write p | @ if p = 9/, a = v{} ab, and
a¢T. Wealso write p @ if p=p' and p' | @.

Definition 2 (barbed bisimulation) A symmetric relation S on m -terms is a strong
barbed bisimulation if whenever pSq the following holds:

(1) If pla then q | a.

(2) Ifp 5 then q = ¢ and p'Sq'.

Let ~ be the largest barbed bisimulation. The notion of weak barbed simulation is obtained
by replacing everywhere the commitment | with I, and the reduction = with =. We denote
with ~ the largest weak barbed bisimulation.

Derived operators Our next goal is to provide evidence for the expressivity of the ;-
calculus. Towards this end, we introduce in figure 3 a few derived operators which allow
for a more handy notation. For each operator, we show the derived typing and (internal)
reduction rules. In the following, we give some intuition, and state some properties of these
operators.

e The process Idle(d@) can be regarded as a process which declares the channels @ for
input/output but never actually uses them.
e Using the idle process, we can type a process that receives only once on a channel.

e The replicated input operator is particularly interesting. The process a(g) > p (if we had
m-calculus replication, we could write this process as !(a(b).p)) can be thought as a functional
or stateless process. This feature can be formalised as follows.

Definition 3 (7 s-calculus) Let the m s-calculus (f for functional) be the subcalculus of
the my-calculus in which we allow input prefix and recursion only as macro expansions of
processes of the shape a(b) > p.

Let =; be a structural equivalence which includes besides a-renaming, the laws for the
commutation of restriction with restriction and parallel composition, and the laws for the
associativity and commutativity of parallel composition.

Proposition 1 (confluence) In the m¢-calculus, T-reduction is confluent modulo =1 .

ProoF HINT. We note that the m;s-calculus is closed under 7 reduction. Given a term of
the 7 s-calculus, two distinct reductions superpose when two messages are addressed to the
same channel, as in C[ab | @b | a(&) > p. It is immediately checked that the two reductions
commute. QED

We note that the typing rules forbid the nesting of replicated inputs on free names. Indeed,
this would break the property that each channel has at most one receiver. Nevertheless, the
mig-calculus is still quite expressive. For instance, one can adequately encode the simply
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Idle Idle(&) = (recA(b; ). A(B; ))(@;)

#{a} = ari,(A)
(@Y F Idle(a)

Input once a(b) :p=a(b).(p | Idle(a))
F'kp ag¢l —

TU{a}F a(b):p a(B) : p | a¢ — [&/Blp | Tdle(a)

-

Replicated input (b) >p = (recA(q; a).a(b).(A(a;d) | p))(a;a’)

n(p) C {b} U {a'} U{a}, which are pairwise disjoint sets.

OFp a¢{b} = _
W a(b)>p | ac — a(b )>P|[C/b]p
Booleans (if ¢ then p else ¢) = [c1 = ¢2]p, ¢

at,b=vey (@cy,c1,b | Idle(cl))
af, b= ve, vey (aCI,CQ,b | Idle(cq, c2))

'kp Thyg
Tk if ¢ then p else g

Internal choice  p@®q =wva(a(c) : if ¢ then p else ¢ | at | af)

TrEpThe o, . N
TFpog pPogq aP POY aq
Link a— b= Link(a;b) = a(c) > vd (bd | Link(d;c))
m(ﬁc|ar—>b)—>ar—>b|l/d(bd|dr—>6)

Figure 3: Derived operators
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typed call-by-value A-calculus with a ground type o as follows (cf. [ALT95]), where we note
0 F (M)d.

(0) =Ch()

(0 —7) =Ch((o),Ch((r)))

{a)d =da

(Xa.M)d =vec(de|c(a,d)>(M)d)

(MNYd = vd vd" ((M)d' | d'(c) > ((N)d" | d"(c') b &(c, d)))

Roughly, one can think of the join calculus [FG96] as the 7 s-calculus extended with the
join operator. The join operator allows to receive two (or more) messages as an atomic
operation. This feature is essential in programming non-functional processes, in particular
using the join, one can represent a variant of the channel manager described in the following
figure 5 (which can be understood as a process with two states).

e Boolean values t and f are coded as a pair of fresh names (equal for t and distinct for
f). We use bool as an abbreviation for Ch(), Ch() (which is a list of sorts). If ¢ is a pair,
we denote with ¢; the first component and with ¢s the second. An if_then_else_ operator
can then be simulated relying on the matching operator. Using the if _then_else_, we can
code an internal choice operator (the equivalence ~ stands for strong bisimulation and will
be defined in 8). It is possible to code the if then_else_ and the internal choice operators
without using the matching operator, however in this case the typing rules are less general.

Another possibility, is to remove the matching operator and introduce a rule to type
(a simulation of) the if then else_. In this case, internal choice can still be defined, but
matching is not definable. Indeed, it can be shown that contexts without matching have less
discriminating power. In a calculus without matching, what matters of a name is not its
identity, but the visible activity one can generate by sending a message to it. It is easy to
immagine situations in which two distinct names generate the same activity, and therefore
cannot be distinguished from an external observer.

Definition 4 (7w -calculus) Let the m; -calculus be fragment of the mi-calculus without
matching.

e We can translate the m; -calculus into a sub-calculus where all transmitted names are
new, or equivalently, the transmission of free names is forbidden. The translation relies on
the link operator [San95] which can be used to simulate a free input with a bound input.
The idea is to replace the message @b, where b is free, with the process ve (ac | ¢ — b). The
link ¢ — b forwards messages addressed to ¢, to the channel b, and recursively replaces a
free output with a bound output, hence introducing another link process. The translation
acts as follows on the output, and does essentially nothing on the other processes of the
77 -calculus, that is [p | p'] = [p] | [¢'], etcetera.

[@b] = ve(ac | ¢ — b) (5)

In this paper, we will not study the formal properties of this translation.

RR n~° 3109
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(@bi,... by =wve(@e | e(d).@by |- | e(d).(dbnoy | e(d) : dbn)---))

(a(by, ..., bn).p) = alc).(vded [ d(br)-(cd | --- | d(bp1).(ed | d(bn) : (p))---))

Figure 4: From the polyadic to the unsorted monadic m;-calculus

| 7 o
CM (as,a0) = ao(Bo).ai(c). (Tbo | Tic | CM(ai,a,))@®
(cbo | CM (ai,a,))

Figure 5: From a w-calculus with multiple receivers to the m1-calculus

Another useful translation, is the one into a monadic w-calculus where all transmitted
vectors of names have length one. In the monadic calculus, we assume that all names have a
sort s satisfying the recursive equation s = Ch(s). By analogy with the untyped A-calculus,
we call this the unsorted monadic 7-calculus. We observe that the translation presented
in [Bou93] from the polyadic to the monadic asynchronous m-calculus can be typed in our
framework. We outline the translation in figure 4. Note that there are more refined sorting
disciplines which can be defined on the monadic calculus, and in which we can still sort
the translation above. One obvious solution, is to introduce a “sum” sort and assign to the
channel d in the translation the sort Ch(s; + --- + s,,), where s; are the sorts assigned to
the names b;.

Translating the asynchronous n-calculus A test for the expressivity of the m1-calculus
is its ability to simulate a calculus where a channel can have multiple receivers. As source
language, we consider the core of an asynchronous polyadic w-calculus. The translation is
presented in figure 5. We suppose that for every channel a with sort s of the source calculus
there is a pair of names a;,a, (i for input and o for output) in the m;-calculus such that
a; has sort Ch(s) and a, has sort s. Since we cannot have several receivers on the same
channel, we associate to every (restricted) channel a channel manager CM (a;,a,), which
continuously receives input/output requests and matches them if possible. We note that

0+ {p).

INRIA
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A first rough relationship between the source and target calculus can be stated by sup-
posing that in the source calculus we consider processes such that: (i) all input names are
restricted (so that the commitment @;c in the translation are hidden), and (ii) input para-
meters cannot be used as the subject of an input action. The notion of barbed bisimulation
is adapted in a straightforward way to this asynchronous 7-calculus.

It is possible to give decidable conditions that guarantee properties (i-ii), for instance
see the read/write sorting discipline in [PS93]. Moreover, property (ii) is not so restrictive
since Boreale [Bor96] has defined an adequate translation from an asynchronous w-calculus
into an asynchronous 7-calculus satifsying condition (ii).

Proposition 2 Let p,p’ be processes of the asynchronous w-calculus satisfying properties
(i) and (ii). Then: p =~ p' iff (p) =~ (p').

PROOF HINT. We observe that:

(1) Ifp = p/ then (p)(5)"(p').

(2) plaiff (p) | @.

In simulating a communication on the channel a the process CM (a,,a;) takes four steps:
it performs two inputs on a, and a; respectively then it performs an internal choice and
finally communicates to the receiver the actual parameters. The last action is deterministic
and does not rise any difficulty. The first two actions are potentially non-deterministic, to
avoid this phenomena of gradual commitment, the channel manager can always preempt the
communication by means of an internal choice. By using this preemption mechanism, we
concentrate all non-determinism on the internal choice. We can then consider the first two
and the fourth communications as administrative. We write ¢ =4 ¢, if ¢ reduces to ¢’ by

means of administrative reductions. Let Pr; = {q | 3p ((p) = ¢)}. We define a relation R
between well formed 7-terms and 7i-terms in Pr; as follows:

pRq if 3¢ ((p) Zaa ¢’ and ¢ S04 ') (6)

We show that processes which are R-related have corresponding commitments and their
internal reductions can be kept in lockstep. QED

3 An enriched mj-calculus
We extend the syntax of the m-calculus in order to model the distribution of processes to

locations, the failure of a location, the spawning of a process at a remote location, and the
detection of a failure.

Language We start by defining the language of configurations. A configuration is a “so-
lution” in which we can find processes running at a location, messages, and locations.

RR n~° 3109



14 Roberto M. Amadio

e A process p running at a location a is denoted with {p}a. New channels and new
processes that might be created during the computation of p are located in a. To
create processes at remote locations, a special operator spawn(.) is applied.

e Messages (m) can be output particles (ab), stop of a location a (stop(a)), spawning
of a process p at a location a (spawn(a,p)), and testing of a location a, with a return
on by if the location is running, and on b2 otherwise (ping(a, b1, b2)).

e We associate to every location name a location process which receives routing, stop(_),
spawn(_), and ping(.) messages. To this end, we introduce a new sort loc, and a
specific way of creating a location process which receives on a name a of sort loc
(Locr(a), where T' € {R, S}, R for run, and S for stop). Location names are just
names of sort loc, in particular location names are transmissible values. The typing
rules will be extended to location processes as well. In this way, we will guarantee that
for every location name there is at most one location process. We refer the reader to
[AP94] for an alternative presentation in which the information about the status of
the locations is maintained in a context.

Formally, we define the following syntactic categories. The languages for sorts and processes,
include the respective languages defined for the 7;-calculus.

sort su= loc|Ch(s1,...,sn) (n>0)

process pu= ab)p|p|pl0|vap]|(recA(a).p)(b) | A@) |
[a=0blp,q|m]! (7)

configuration ru= {pa|m]|l]r|r|O0]|var

message m o= Eg| stop(a) | spawn(a, p) | ping(a, b1, b2)

location process [:=  Locr(a) T € {R,S}

Reduction rules Next we define a few reduction rules which specify the possible interac-
tions between the components of the solution. It is particularly appealing that all the rules
share the same pattern: reduction happens when a message (possibly decorated with the
name of its location) meets its destination.

(cm) @] {a(b).p}a — {[/Ep}a’

(stop)  stop(a) | Locr(a) — Locs(a)

(route) {m}a | Locgr(a) — m | Locg(a) (8)
(spawn) spawn(a,p) | Locr(a) — {p}a| Locr(a)

(ping,) ping(a,bs,be) | Locn(a) — by | Locn(a)

(ping,) ping(a,b1,ba) | Locs(a) — b | Locs(a)
We describe the operational intuition behind these rules:

(cm) Processes are decorated with the location where they run. In the absence of failures,
this decoration is transparent (cf. proposition 6), in particular to send a message to
a process, we do not need to know its location. Later, we will add a few structural
equivalences (equations (10)) to ease the manipulation of the decorations.
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An asynchronous model of locality, failure, and process mobility 15

(stop) When a running location process Locg(a) meets a stop message stop(a) it becomes
a stopped location process Locs(a), and stays in that state for ever (halting failure).
One should note the dual use of the stop command: it can be employed either to
program the halt of a location, or to model the potential failure of a location.

(route) Once a location has stopped, all processes running at that location should be
virtually stopped for an external observer. We model this requirement, by blocking
the routing of the messages at location a: a process that cannot route its messages is
as good as a stopped one. On the other hand, a process running at a failed location
keeps receiving messages as stated by rule (cm). Since communication is asynchronous
and messages are addressed to a unique process, we can never observe this receiving
activity. Of course, it would be possible to actually stop all processes running at a
failed location, as it is done in [AP94], however in a model based on asynchronous
communication, this is a needless complication.

(spawn) One should wonder if this extension is really necessary. Indeed, one alternative
would be to stick to the w-calculus tradition of transmitting names only. In this case,
we could imagine that each location is equipped with a sort of interpreter (a “universal
m-calculus machine”) which by some protocol receives a description of the process to
run (as a sequence of channel names), and runs it locally. While this solution is
theoretically possible, it would make the modeling of process mobility in distributed
systems particularly heavy. It is a widespread belief that, in order to perform formal
verification, the model has to abstract from inessential details. A model in which we
have to take into account the details of the interpreter would probably defy formal
treatment. The modeling solution which we adopt instead, is that of enriching the
calculus with a spawn(a, p) operator that allows to start the execution of the process
p at the location a. Hence, in our model the transmission of processes is regarded
as a primitive and atomic operation whose implementation is left unspecified. An
important restriction on the transmission of processes, will be described next in the
context of the typing rules.

(ping) The systems we model are fully asynchronous, a few non-trivial problems can be
solved in this framework in the presence of failures. For instance, the algorithm for
renaming in an asynchronous environment described in [ABND*90]. On the other
hand, there are problems, consensus being the most famous [FLP95], which cannot be
solved in a fully asynchronous framework in the presence of failures. In order to cope
with this limitation, the asynchronous model has been enriched in a number of ways
including randomization, partial synchrony hypotheses, and failure detectors. We refer
to [CT96, CHT96] for an up-to-date discussion of these issues. The approach we follow
here, is to enrich our model with a failure detector ping(-) which eventually allows
any process to know if a location runs or not. This solution can be integrated with
little effort into our model. On the other hand, the handling of time or probabilities
would require a major revision.
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Variations on failures, and failures detectors Halting failure is probably the simplest
form of failure considered in the literature. More complex failures include transient failures
and byzantine failures (see [Lyn96, Tel95]). It is easy to adapt our model to represent
transient failures: simply allow a process location to go from a stopped state to a run state.
The representation of byzantine failures, requires a formalization of the notion of “arbitrary
behaviour”. This is a specification issue which we will not address in this paper.

Chandra and Toueg [CT96] have proposed a classification of the power of failure detec-
tors. In their work, we find n asynchronous processes which interact by reliable point-to-
point communication channels. At most n — 1 processes are subject to an halting failure.
Every process, maintains a local view of the failures that have occurred in the system. Let
F(t) be the collection of processes which have failed at time ¢, and H(p)(¢) be collection
of processes which the process p suspects have failed at time ¢ (¢ ranges over the natural
numbers). Roughly, failure detectors are classified according to the convergence properties
of the functions H(p) to the function F.

We hint to a representation of these concepts in our model. We distribute n processes
on n distinct locations, and we state that at most n — 1 locations can fail (to say this
operationally, we use the process in equation 11).

We suppose that every process maintains locally a list of processes suspected to have
failed. This list represents the local view H(p)(t). Initially, this list is empty, and it is
periodically updated by using the ping(-) operation, which should be regarded as a way to
query an oracle.

In our formalization, we have postulated the existence of an oracle which never gives
misleading answers. We can then fulfill the following requirements:

(1) Every failed process is eventually suspected by every (correct) process.
(2) A correct process is never suspected by some process.

In Chandra and Toueg terminology, this is called a perfect failure detector. By the results
in op. cit., there is an algorithm which solves the consensus problem using a perfect failure
detectors and tolerates up to n — 1 faults.

Formally, (1) and (2) are properties of the runs of the system (in our terminology,
a run is a sequence of internal reductions). In this respect, it should be noted that our
implementation of a perfect failure detector relies on a fairness hypothesis, otherwise one
can build runs where the answer of the oracle is never received.

Chandra and Toueg consider weakenings of condition (2). Accordingly, one can define
oracles whose answers are less and less reliable. For instance, consider the combination of
condition (1) and condition (2'):

(2') Eventually, no correct process is suspected.

To weaken our model, we add a state “fuzzy run” Locrgr(a) and a state “fuzzy stop” Locrg(a).
These states behave as the states “run” and “stop”, respectively, but for the fact that they
give arbitrary answers to ping(_) messages. We also add internal transitions from fuzzy
run to run, and from fuzzy stop to stop, so that, under a fairness hypothesis, answers will
eventually become reliable.
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T'tp st(a) =1loc Tu{a}Fp a¢T st(a)=1loc

T'F{p}a F'tvar
st(a) = loc st(a) = loc
{a} F Locr(a) 0+ stop(a)

st(a) =loc OkFp st(a) = loc st(by) = st(ba) = Ch()
0 + spawn(a,p) 0 F ping(a, by, b2)

Figure 6: Additional typing rules for the 7y;-calculus

To summarize, there is a space of models of failure and failure detection, which can be
formalized and studied within our framework. The formalizations differ in the definition of
the location process, and may rely on a fairness hypothesis. In this paper, we concentrate
on the model which enjoys the simplest formalization.

Typing rules The typing rules for processes and configurations are obtained by adding
the rules in figure 6 to those in figure 2. We allow the creation and transmission of new
location names. As for channels, whenever we create a new location name a, we have to
associate with it a location process (Locr(a)). We omit the rules for typing the parallel
composition or restriction of configurations. These rules are shaped after the corresponding
rules for processes.

The main point to note is the restriction on the rule for spawn(-): the spawned process
is typed in the empty context. In this way, we make sure that by spawning we are not
moving a process which can receive on some name, from a location to another. If we would
allow this, we would break the property that each channel name can be seen as an absolute
physical address which does not change during the computation.

Upon relaxing this hypothesis, one has to address two problems: at the implementation
level one has to develop routing algorithms which adapt to changes in the network topology
in the presence of failures, at the specification level one has to find an abstract description of
the properties guaranteed by the routing algorithm. To the author’s knowledge, there is no
satisfying analysis of these issues. An attempt at defining a programming language where
processes can migrate while keeping their identity has been recently proposed in [FGL*96],
however that paper does not analyse the implementation level.

Labelled transition system The reduction rules 8, can be rephrased as labelled transi-
tions, by including “location signals” among the actions:

au=7|ab|v{ctab|ar|ar T €{R,S} (9)
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Labelled transitions are defined on configurations and they are displayed in figure 7. Besides
renaming of bound names we assume the following structural equivalences:

{plgta={pta|{gta  {vbpla=vb{p}a (a #D) (10)
{Locr(a')}a = Locr(a)

The rules specified for the mi-calculus are trivially extended, moreover we add the labelled
transitions for the location processes and the new messages.

Remark 1 It should be noted that a blind application of labelled tramsitions can bring a

. - . . . .. as as
configuration in a “meaningless” configuration. For instance, a transition - = - = - can
never arise in our model since we can stop a location at most once. Another example in this

. . .y a a . . . .
vein is the transition - = - 28 ., where we stop a location, and then the location says it is
TUNNING.

Proposition 3 (subject reduction) IfT Fr and 7 = 1’ then T U bn(a) Fr'.

Proor. By adapting the proof of theorem 1.

Representing a migrating stack Having completed the formalization of our model, we
illustrate its expressive power by a few examples. We start by programming a “migrating
stack”, that is a stack with standard operations push, pop, empty which is enriched with a
move operation allowing its migration from a location to another. This should suggest that
the typing restriction on spawn(_) is not too severe.

First, we describe an implementation of a stack over an unspecified domain of values D,
next, we enrich this implementation with a move operation. The process Stack(a) supports
operations op € {empty, pop, push(d)}. Stack(a) receives on a the request for an operation
whose result is returned on k. It then forwards the request to Cell(c; ¢, d) which is actually
the first element of the stack. Cell(c;c,d) contains a data d (which is ndl if it is the last
element of the stack) and a pointer ¢’ to the next Cell. The cell returns the result r of the
operation along the channel b. The stack updates its pointer to the internal representation
of the stack and returns the result ro on the channel k. In the following, we are ignoring
sorting issues in order to make the program shorter. For instance, the result 7 might be
either a boolean, or a data, or nil, or an acknowledgement signal. The program could be
correctly sorted by doing some case analysis.

St(a, b;c) = a(op, k).(cop, b | b(r1,r2).(kr2 | St(a,b;r1)))
Cell(c;c',d) = c(op, b).
[op = empty] if d = nil then (bc,t | Cell(c; ', d)) else (be, £ | Cell(c; ', d))

[op = pop] if d = nil then (b, nil | Cell(c; ¢, d)) else (bc',d | Idle(c))
[op = push(d')] v (Cell(c";c,d') | b, _| Cell(c; ', d))

To create a stack Stack(a), which can be accessed through the name a, we run the process
Create(a) which is defined as follows:

Create(a) =vbvc(St(a,b;c)| Cell(c;_, nil))
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Figure 7: Lts for the mq;-calculus
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To create a stack at a remote location n, we can use the process rCreate. Upon creation,
we receive on the name k£ a name to access the stack.

rCreate(;n, k) = spawn(n, va (ka | Create(a)))

Now to migrate Stack(a) to location n, it is enough to create a new stack at location n,
say Stack(a'), and transfer the contents of Stack(a) to Stack(a’). This is a simple loop that
pops elements from Stack(a) and pushes them in Stack(a'). In order to preserve the order
of the elements in the stack we can use an intermediate stack.

The name o' is returned to the process which has requested the move operation only
when the transfer is completed, hence the move operation can be considered as an atomic
operation. Formally, the migrating stack is obtained by adding an extra branch to the defi-
nition of St(a) entailing the execution of the procedure sketched above. Following requests
to Stack(a) can be handled in a variety of ways, for instance: (1) Stack(a) becomes an idle
process, (2) Stack(a) returns an exception, or (3) Stack(a) forwards requests to Stack(a’).

Representing failures There is a twist in the representation of failures. If we introduce
the message stop(d) in the system description, then at any point in the computation the
system can reach a configuration where the location d is stopped. Moreover, under a fairness
constraint, it will eventually reach this configuration. If we want to leave open the possibility
that a location may also run for ever, then it is more appropriate to introduce the process
maystop(d) = stop(d) ® 0. The following example, will highlight the difference between
stop(d) and maystop(d) in a concrete case.

More generally, we can represent the fact that at most m locations out of n locations
dy,...,d, may stop (m < n) by considering the following process:

Ve, €1y - -y Cn (Ii=1..n(Cc; | ¢; : maystop(d;)) | ¢(a1) ... c(am) : i=1..m@;) (11)

Our approach should be contrasted with the one taken (in a CCS context) by Janowsky
[Jan95]. He defines the notion of bisimulation in such a way that an equivalence which is
shown to hold for a number of faults n, will also hold for m faults, 0 < m < n. While
this may save some work at the verification level, it requires the introduction of a notion of
bisimulation ad hoc.

Representing a system resilient to failures We give an example of a system in which
the ping operator is used to monitor two resources which may fail. More precisely, the system
is composed by a user U which relies on two resources R; and R to emit an observable
signal on b. A fourth process M, monitors the activity of R; and Rs, so that when the
resource R; (i = 1,2) fails it is replaced by a new one. Formally, the system is described in
the q;-calculus by the system of equations in figure 8. The specification is expressed by the
requirement that Sys(;b) is weakly bisimilar to Spec(; b) (formally, Sys(;b) and Spec(;b) do
not belong to the language of configurations, they are just abbreviations for the left-hand-
side of the equation).
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Ri(5a1)
Ra(;a2)

U(U‘la az; b)

Mi(;a1,a2,d1,ds2)
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Sys(;b)

S(;b)
Spec(; b)

= yc(ac | c: Rl(;‘“))
= vc (@c | c: R2(§a2))

= a1(0).(z | a2(0).(z | B | Uar, a231)))

= vey ves (ping(di,e1,e2) |
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ey : vdy (spawn(R1(;a1),d1) | Locr(di) | maystop(di) | Ma(;a1,asz,d1,d2)))
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=vrai,az, dl, dz, d,d’

({U(a1,az2;b)}d | Locr(d) | {M1(;a1,az2,d1,dz)}d" | Locr(d') |
{R1(;a1)}d1 | Locr(d1) | maystop(di)

{R2(;a2)}d2 | Locr(d2) | maystop(ds) )

| S(;b)
d({S(;b)}d | Locr(d))

=b
=v

Figure 8: Example of system resilient to failures
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An automatic verification, can be carried on with a standard tool such as the Concurrency
Workbench modulo a suitable representation of Sys(;b) as a finite control Ccs process. To
this end, we model failure by introducing a switch. A resource can internally choose to
switch off (this mimicks failure) and the monitor can switch it on again (this mimicks the
creation of a new resource).

This example illustrates the difference between stop(-) and maystop(_). Suppose that
we program the monitor in such a way that it waits for the failure of, say, the resource R
before checking the failure of the resource Rs. Then, if we use maystop(-) to model failure,
the user U is stuck if Ry never fails and Rs fails. On the other hand, if we model failure
with stop(_), we are assured that the monitor will take appropriate action to allow U to
progress.

4 Tools to reason about equivalence

There is a simple translation [_] from the 7y;-calculus to the m;-calculus. We are interested in
this translation as a way of reducing verification problems for the 7;-calculus to verification
problems for the m-calculus (cf. [AP94]). The translation (bi-)simulates the m;-calculus in
the 7i-calculus. A fortiori it has nothing to do with the way a program of the my;-calculus
would actually be executed. Every name a of sort st(a), is translated into the same name
with sort [st(a)], where:

[Ch(s1,.--,8,)] =Ch([s1],--.-,[81]) [Lloc] = Ch(bool,bool, Ch(),Ch())

The translation of configurations is displayed in figure 9, where we use a case statement
(which can be easily coded with a nesting of if_then else_’s) to make the control of the
location process clearer. The translation of configurations relies on an auxiliary translation
of processes which is parametric in a location name. This name represents the location
where the process is running.

Definition 5 (complete configuration) Let T r be a well typed configuration. We say
that the configuration r is complete if 1 = 1’ and a ¢ T implies that v’ cannot perform a
transition with label ar.

Intuitively, in a complete configuration all locations mentioned in the configuration have
been defined and therefore transitions labelled with @ are not visible. Let I' + r be a
complete configuration. This property is preserved by internal reduction, hence we can
introduce a relation of barbed bisimulation on the my;-calculus, commitment being defined

&} ab
as follows. Let I F r be a complete configuration, then r | @ if a ¢ T', and r e -
Definition 6 A symmetric relation S on well-typed, complete configurations is a strong
barbed bisimulation if whenever rSt’ the following holds:

(1) Ifr | @ then ' | @.
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To spawn or to route t,t
To ping t,f
To stop £, f

Codes for the signals to the location process

|"m_:|d =1/S(dt7t7c7c|c:|_m'|)
[@b] =ab
[spawn(d,p)] = ve(@t,t,c.c | c: [pld)
[ping(d,c,d)] =dt,f,¢c
[stop(d)] =df,f,_,_
[Locr(a)] = Ly(a;) where
Lg(a;) =a(b,V,c,c'). case (b,V',¢, ') of
(t,t,¢,¢): ¢ | Lr(a;)
(t,%,¢,¢'): €| Lr(a;)
(fv f,., —) : LS(a; )
Ls(a;) =a(b,b,c,c'). case (b,V',¢,c') of
(t,f,¢,¢'): ¢ | Ls(a;)
(5o o) iab b e, | Ls(a;)
[var] =wva [r] [vaplc =wvalple a#c
[p|qle = [plc| [qle [r | =[r] | [r']
[0] =0 [0]c =0
[a(b).p]c =a(b).[plc c¢{b} [(recA(a).p)(b)lc = (recA(a).[ple)(b) c ¢ {a}
[la="0lp,qle =la=0[ple,[q]le  [{p}e] = [ple

Figure 9: Translating the 71;-calculus into the 7;-calculus
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(2) Ifr Sy then ' 5 vh and riSr).

Let ~; be the largest barbed bisimulation. The notion of weak barbed simulation is obtained
by replacing everywhere the commitment | with |} and the reduction = with =. We denote

with él the largest weak barbed bisimulation.

Theorem 2 (adequacy) Let r,r' be complete well-typed configurations. Then:

reyr iff [r) N [

Proof of theorem 2 In the following we work up to the structural congruence which is
generated by the associative and commutative laws for parallel composition, the identity law
of 0 w.r.t. parallel composition, the laws for the commutation of restriction with restriction
and parallel composition, the law for the unfolding of recursive definition, and the following
equations:

va Idle(@) =0

if t thenpelseq =7p

if f thenpelseq =g¢q

Lemma 3 Let r be a complete well-typed configuration. Then:

(1) rlaif[r]la.

(2) Ifr 5 ' then [r] D<o [r'].

PROOF HINT. (1) We analyse the transitions r v g -, and [r] 8% . Commitments on
(the translation of) location names are impossible by the hypothesis that r is complete.

(2) The reductions (e¢m), (stop), and (ping) are simulated in one step. The reductions
(route) and (spawn) are simulated in two steps. The second step is a reduction of the shape:

vb(b:p|b) Sp b¢ fn(p) (12)

QED

We call the reductions of type 12 administrative. These reductions are normalizing
and confluent. Roughly, reductions and commitments in the my;-calculus and in the ;-
calculus are in one-to-one correspondence modulo administrative reductions. As mentioned
in lemma 3, the simulating term may need one extra administrative reduction in order to
conform to the shape of the translation of the reduced term in the source calculus. Toward
the formalisation of this idea, we define a set Pr; = {p | 3r complete ([r] = p)}.

On the processes in Pr;, we can determine the administrative reductions, for instance
by a suitable annotation of the restrictions. We write p — 44 p' if p — p' and the reduction
is administrative. We also use = .4 to indicate zero or more administrative reductions.

We define a binary relation R between complete configurations and processes in Pr; as

follows:
Rp iff pSaq [r] (13)
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We note that it is not possible to perform an administrative reduction starting from [7], so
[r] plays the role of a normal form.

Lemma 4 In the following let r be a complete configuration and p € Pr;. Then:

(1) rR[r].

(2) Ifr | @ and TRp then p | a.

(3) If pl @ and rRp thenr | @.

(4) IfrRp and r = 7' then p S qq - — - =qa [7'].

(5) If Rp and p D44 P’ then TRy’ .

(6) IfrRp, p = p', and we are not in the previous case, then r = r' and p' =44 [r'].

We can now conclude the proof by showing as a direct application of lemma 4, that

the relation Ro ~ oR~! is a barbed bisimulation for the 7r1;-calculus and the relation
L]

R 1o = oR is a barbed bisimulation for the 7i-calculus. QED

Bisimulation for the mi-calculus We undertake a deeper study of equivalence for the
m-calculus. It is well known that barbed bisimulation fails to be a congruence, in particular
it is not preserved by parallel composition. We can refine barbed bisimulation by asking
preservation under certain contexts. In particular, we require preservation under parallel
composition and call the resulting equivalence barbed equivalence.

Definition 7 (barbed equivalence) We define a relation ~p of barbed equivalence bet-
ween well typed processes as follows: p ~y p' iff for each q, such that p | ¢ and p' | q are
well-typed, p | q o | ¢ holds. The notion of weak barbed equivalence = is obtained by

replacing ~ with ~.

In the following, whenever we compose two processes we implicitly suppose that their
composition is well-typed. We also note that if p ~; p/, then there is a context T' which
types both processes. Suppose I' - p, IV F p’ and a € T'\I", then p | @ cannot be barbed
bisimilar to p’ | @ as the second commits on @ while the first does not. For instance, it can
be shown that Idle(a) is barbed equivalent to a(b) > @b but it is not barbed equivalent to 0.

In this section, we show that barbed equivalence can be characterised by a suitable
(asynchronous) bisimulation over the labelled transition system. This supports the view
that the m-calculus is not only an ezpressive calculus, but it has also a “tractable theory”
of equivalence (at least in the sense the m-calculus has one!). For the sake of simplicity we
will work with the monadic unsorted 71-calculus (cf section 2). Following standard notation
[MPW92|, we write the action v{b} @b as a(b).

In defining the commitment relation, we have been careful to observe only those output
commitments which relate to free channels whose receiver is not defined in the observed
process. Following this idea, we introduce a restricted form of labelled transition. Let
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the function cmt be defined on actions as follows: c¢cmt(7) = cmt(ab) = @ and cmi(ab) =
cmi(@(b)) = {a}. The rule (cp) in the lts described in figure 1, is then replaced by:

p=p bn(@)Nfa(q) =0 Tkq emt(ae)NT =0
pla=7p'lq

(cpep) (14)

Whenever we speak of transitions of typed processes, we will apply the rule (¢ps,). We can
now define a notion of (asynchronous) bisimulation over the restricted lts. The following
definition follows quite closely [ACS96] modulo some type constraints.

Definition 8 (bisimulation) A symmetric relation S on typed processes is a bisimulation
if p S q implies:

(1) There is a context T such that T F p and T | q.

(2) Ifp =9, bn(a) N fu(q) =0, and « is not an input action, then ¢ = ¢’ and p' S ¢'.

(3) Ifp L4 p' then either q 2 ¢ andp' Sq', orq5 q andp' S(q | ab).

We denote with ~, the greatest bisimulation. The notion of weak bisimulation is obtained

by replacing everywhere transitions with weak transitions. We denote with =, the greatest
weak bisimulation.

It is shown in [ACS96] that weak asynchronous bisimulation is preserved by all operators
of the asynchronous w-calculus but matching. In particular, the fact that asynchronous
bisimulation preserves parallel composition, suffices to show that asynchronous bisimulation
implies barbed equivalence. This is stated as follows (in the weak case).

Proposition 4 If p =, p' then (1) for each q, p| q=ap' | q, and (2) p =y p'.

In the other direction, we obtain the following result which relies on a proof technique
introduced in [ACS96].

Definition 9 Let us fiz a decidable structural equivalence relation. A lts is image finite
(w.r.t. weak transitions), if for any process p and action o the set {p' | p = p'} is finite
up to the structural equivalence relation. We say that o process p is image finite if the lts
formed of the processes reachable from p by labelled transitions is image finite.

Image finite processes include “finite control” processes and therefore represent an inter-
esting class. In the case of strong transitions, all processes of the 7-calculus turn out to be
image finite.

Theorem 3 (characterisation) (1) If p ~y q then p ~, q. (2) If p,q are image finite and
DRy q, then p =, q.

ProOF. Let F be the monotone operator over P(Pr x Pr) associated to the definition of
asynchronous bisimulation. Suppose &= Pr x Pr, mitl= F(~F), and ~2= N, _, ~F.

It is well-known that on an image finite lts the operator F preserves co-directed sets. In
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a
p = ¢ implies p =% ¢q. From the previous remark the theorem follows.

particular, F(~%) ==~%. It follows that on image finite processes ~,==%. We show that

e We fix some notation. Let L;, L,, L}, L! denote finite disjoint sets of names. We use L,
L’ as an abbreviation for L; U L,, L}, U L’ respectively. If L' = {ay,...a,} then vL'p =
vay ...vapp.

e We define a collection of tests R(n,L) =u. R(n,L;,L,) depending on n € w and L
finite set of channel names, and such that L, - R(n, L;, L,). Intuitively, R(n, L;, L,) tests a
process p that may receive on L;, that is L; F p, and may send on L,, that is L, = fn(p)\L;.
We show by induction on n that:

3L,L'(L 2 fn(p| ¢), L' € L and vL' (p | R(n, L)) % vL' (¢ | R(n, L))))
implies p =7 q.

e If the property above holds then we can conclude the proof by observing:

prvg SVrplrqlr)
:>\7’n€w(p|R(n,L)éq|R(n,L)) with L=fn(p|q), L' =10
= Vn ew(p~y q)
=P q

o We define the tests R(n,L). If X = {p1,...,pn} is a set of processes, then &X is an
abbreviation for p; & --- @ p,. We suppose that the collection of channel names Ch has
been partitioned in two infinite well-ordered set Ch' and Ch”. In the following we have
L' C L Chnite Ch". We also assume the following sequences of distinct names in Ch':

{bn, b, [ n € w}

{c#|n€wand B € {r,ad,a,aad',a| a,a’ € Ch"}}
{?|n€wand € {ad,a|a,a € Ch'}}
{d?|n€ewand B € {a|aecCh"}}

{en|n € w}

The test R(n, L) is defined by induction on n as follows, where we pick a” to be the first
name in the well-ordered set Ch""\ L. When emitting or receiving a name which is not in L
we work up to injective substitution to show that P =7 Q. In the following whenever we

write, e.g., b, @ - -+, we actually mean (b, | Idle(L,)) @ - - - The processes Idle(L,) have to
be added to have a correct typing.

R(O’ Lia LO) = 50 (&) FO

R(n,Li,Lo) =b, ®b,, @ (for n>0)
(E; 52 R(’I’L - 11 Li7 LO)) S
@ {e2 @ (@a' | R(n—1,Li,L,)) |a € Li,a' € L} &
& {E ovd (@" |R(n—1,Li,LoU{d"}) |a € L} @
) {EZ”I @ala").(d @ (o =d'dy, ® R(n—1,Li,L,))) | a € Lo,a' € L} &
@ {c @ala").(dy @ (D{[a" =d']d, |a' €L} P&, ®R(n—1,L;U{a"},L,)) | a € Lo}
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e We suppose n > 0, vL' (p | R(n, L)) ~ vl (¢ | R(n,L)), and p = p’. We proceed by case
analysis on the action « to show that g can match the action « (in the asynchronous sense).
QED

Full abstraction and transparency We concentrate on a non-trivial set of configura-
tions which is defined as follows.

Definition 10 A location closed configuration is a configuration where transitions of the
shape ar or ar are not observable, and such that this property is preserved by labelled
transitions.

Of course, location closed configurations are complete configurations. Many systems
resilient to failures, including the one described in section 3, can be formalized within this
fragment. On location closed configurations, the translation described in figure 9 turns out
to be fully abstract. Intuitively, the translation of a location closed configuration can interact
with the environment without revealing any information about the internal representation
of locations.

To state our result, one has to adapt the definition 8 of bisimulation so that it relates
location closed configurations to processes of the 7;-calculus. By a little abuse of notation,
we still indicate with =, the related greatest weak bisimulation.

Proposition 5 (full abstraction) Letr be a location closed configuration. Then r ~, [r].

PROOF HINT. Internal actions are related as in theorem 2. Input-output actions turn out to
be in one-to-one correspondence. In establishing this correspondence, one has to take into
account the sort translation. For instance, an input action ab, where st(a) = s, is related to

an input action ab, where st(a) = [s]. QED

We conclude this section, with a formalization of the idea that in the absence of failure,
the distribution of processes is transparent. Given a location closed configuration r, er;(r) is
either (i) a process of the m;-calculus where all the information on locations has been erased,
or (ii) undefined if the configuration contains stopped locations, or stop(_) messages. The
formal definition of the function er;(_), on its domain of definition, is given in figure 4.

Proposition 6 (transparency) Let r be a location closed configuration. If er;(r) is defi-
ned, then r ~, ery(r).

PROOF HINT. Input-output transitions of r and er;(r) are in one-to-one correspondence. The
internal transitions of r, for routing, spawning, and pinging (cf. rules 8), simply disappear
in ery(r). QED

INRIA



An asynchronous model of locality, failure, and process mobility 29

eri(loc) = Ch() eri(Ch(s1,...,8n)) = Ch(eri(s1),...,eri(sn))
eri(Locgr(a)) = {dle(a) em(spawn( D)) = e (p)

eri(ping(a, b1,b2)) =b1 eri(ab) =ab

erl({pla) = 6’!‘L(p) eri(var) =vaer|(r)

eri(a(b).p) =a(b).eri(p) eri(p | ) = eri(p) | eru(p)

eri(vap) = va eri(p) eri(r|r") ) =eri(r) | eri(") }
eri(A(a)) = Aa) eri((recA(a).p)(b)) = (recA(a).eri(p))(b)
eri(0) =0 eri([a = blp, ) = [a = bleri(p), eri(q)

Figure 10: Location erasure

5 Related work and achievements

In previous work [AP94|, we have developed a formal framework which models the distribu-
ted module of the Facile programming language [TLP*93]. The Facile communication model
is quite powerful as it includes guarded choice, synchronous communication, and multiple
receivers. A synchronous communication (ignoring choice) may require a synchronization
between processes distributed to three different locations: the location of the sender, the
location of the receiver, and the location of the channel manager (which is a process which
has to resolve concurrent requests for reading or writing on a channel). This complexity
limits the manageability of the distributed model.

The work on the join calculus [FG96], suggested that a simplification of the communi-
cation primitive (asynchronous communication with a unique receiver) could considerably
simplify reasoning about a system where failures can occur. Technically, the m;-calculus can
be regarded as a way to capture some basic features of the join calculus [FG96], e.g. unicity
of the receptor, by imposing a type discipline rather than by modifying the 7-calculus. One
advantage of this approach, is that it is possible to reuse technical insights already develo-
ped for the (asynchronous) 7-calculus [ACS96] such as labelled transition system, and proof
techniques based on bisimulation.

Incidentally, the m-calculus can also be seen as a way to make the communication
primitives of the 7-calculus closer to those of object-oriented programming languages, where
interaction arises when an object calls the method of another uniquely determined object.
Indeed this computational paradigm was a main source of inspiration in the design of the
typing system of the 7;-calculus. Unfortunately, the term object is overloaded with meaning,
and for this reason we have replaced it with the more neutral process.

Besides Facile, other programming languages which address (some of) the issues of loca-
tions, failures, and process mobility include CML [Rep91], Erlang [AWWYV96], Java [AG97],
Pict [PT96], Obliq [Car95], Oz [Smo95|, and Telescript [Mag97]. As Facile, they lack a
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complete formal definition, and a fortiori any serious technique to reason about program
equivalence.

The definition and analysis of systems where failures can occur, has also been the subject
of a number of studies in the distributed algorithms community in the last decade [Lyn96,
Tel95]. In these studies, a system is roughly the (asynchronous) product of a finite number of
labelled transition systems. The way the labelled transition systems are generated is either
ignored or informally specified. It follows that it is impossible to speak seriously about issues
such as process equivalence, model-checking, scoping, and process mobility.

To summarize the state of the art, we can say that programming languages lack a for-
mal semantics, and models in the distributed algorithm community lack the right level of
intensionality. Our proposal sits between the two. We have not tried to create a theory
from scratch, but we have set this theory in an appropriate and well-understood model (the
m-calculus). Our framework is close to programming issues (scoping, process mobility...), it
is flexible enough to be adapted to different models of failure, failure detection, and process
mobility, and it has a tractable theory of process equivalence.
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