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Abstract:

Evaluating precisely the temporal variations of tumor volumes is very important
for at least three types of practical applications: pharmaceutical trials, decision mak-
ing for drug treatment or surgery and patients follow-up. In this paper, we present
a volumetric analysis technique, combining precise rigid registration of 3D medical
images, non-rigid deformation computation and flow field analysis. Our analysis
technique has two outcomes: the detection of evolving lesions and the quantitative
measurement of volume variations. The originality of our approach is that no precise
segmentation of the lesion is needed but the approximative designation of a region of
interest, which can be automatized. We distinguish between tissue transformation
(image intensity changes without deformation) and expansion or contraction effects
reflecting a change of mass within the tissue; a real lesion being generally the com-
bination of both effects. The method is tested with synthesized 3D image sequences
and applied, in a first attempt to quantify in-vivo a mass effect, to the analysis of a
real patient case with Multiple Sclerosis.
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Analyse de déformations pour détecter et
quantifier les lésions évolutives dans les
séquences d’images 3D

Résumé : L’évaluation précise des variations temporelles du volume des tumeurs
est importante pour au moins trois types d’applications pratiques : les essais phar-
maceutiques, la prise de décision pour le traitement par des médicaments ou pour
une chirurgie, et le suivi de patients. Dans cet article, nous présentons une tech-
nique d’analyse volumétrique qui combine le recalage précis d’images médicales 3D,
le calcul de déformations non-rigides et ’analyse du champ de déformation. Notre
technique d’analyse a deux débouchés : la détection de lésions évolutives et la me-
sure quantitative des variations de volume. L’originalité de notre approche est de ne
nécessiter aucune segmentation précise de la lésion, hormis la détermination approxi-
mative d’une région d’intérét, qui peut étre automatisée. Nous faisons la distinction
entre la transformation des tissus (changement d’intensité de 'image sans déforma-
tion) et les effets d’expansion ou de contraction qui reflétent un changement de masse
& lintérieur des tissus, une lésion réelle étant généralement une combinaison de ces
deux effets. La méthode est testée avec des séquences d’'images 3D synthétiques
et est appliquée, dans une premiére tentative de quantification in-vivo de l'effet de
masse, a ’analyse d’un patient réel atteint de sclérose en plaques.

Mots-clé : Analyse du champ de déformation, traitement d’image 3D, grille
déformable 3D, Sclérose en plaque, mesure de volume, tumeur, effet de masse,
stéréologie
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1 Introduction

The precise evaluation of tumor volume variations along time is extremely
important (see for example [WSF92, Thi95]):

e for pharmaceutical research, to compare the effects of new drugs on dif-
ferent populations of patients.

e for clinical applications, to determine the exact time when a potentially
invasive drug is to be given, or surgery is to be performed.

e for clinical follow-up, to quantify the effects of the drug or surgery along
time.

The main source of in-vivo information about tumor growth is 3D Medical
Imaging such as Magnetic Resonance (MR) images. Classical techniques (see
for example [RCGS94, RHPR96|) consist in delineating the tumor in two 3D
images of the patient at two different times ¢; and ¢,, which gives two volumes
Vi = V(t1) and V3 = V(t2) to be compared. The volume variation AV =
Vo — Vi is an index of the tumor evolution.

This measurement is difficult to perform for at least two reasons: the first
one is delineating in 3D, the second one is delineation errors. Because hundreds
or thousands of voxels are to be considered, only (semi-)automatic segmenta-
tion tools can be used for routine applications. Among possible automatic
segmentation tools are the mathematical morphological operators (erosion, di-
lation, connected components analysis, ... ), or the 3D extension of deformable
models (3D snakes, see [CCA92]). In most practical cases however, the a-priori
medical knowledge of the physician is indispensable: most of these methods
incorporate an interactive initialization and a final interactive adjustment tool.
Generally also, the accuracy of the delineation is not subvoxel, hence the un-
certainty oy on the total volume measurement is very often higher than the
volume variation itself (20, > AV).

The main idea in this paper is to use an analysis method based on a volume-
tric deformation field to first detect the active lesions and then to evaluate their
volume variations. In particular, our volume variation measurement necessi-
tates as input only the designation of a region of interest (ROI) surrounding
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Deformation Analysis to Detect and Quantify Active Lesions. .. )

the lesion (for example a sphere), or, when it is possible, a segmentation of
the lesion which is not requested to be sub-voxel. Because we use a precise 3D
rigid registration method, this ROI designation or rough segmentation needs
to be performed only in one of the two 3D images, or one image of the time
sequence to analyze, instead of at each time frame. Rather than a single value
AV of volume variation, our method provides a kind of “signature”, or profile,
associated to the tumor growth, from which we propose to quantify different
effects that we call the tissue transformation and the tissue deformation.

First we give a general description of the method and a definition of the
tissue transformation and deformation effects. Then we concentrate on the
description of the deformation field analysis. We present experimental results
with synthesized images to evaluate the performance and test the robustness
of our method. Lastly, we apply our method to sequences of 3D images of
a patient with a Multiple Sclerosis disease, to evidence and quantify a tissue
deformation or mass effect at the level of the plaques: an effect which, to our
knowledge, has never been quantified in-vivo before.

2 (General description

The method is in four steps (see also figure 1):

e the 3D rigid registration of the two successive images.

e the computation of the deformation field between the two registered
images.

e the detection of evolving lesions.

e the vector field analysis at the level of each detected lesion to quantify
the volume variation.

The most original part of the present work are the last two steps: the vector
field analysis for both the detection and the quantification of evolving lesions.
For the first step, which is the computation of a rigid transformation bet-
ween two 3D images I; and I, we use the automatic rigid matching method
based on extremal points described in [Thi96a]. The accuracy of this method

RR n~3101



6 J-P. Thirion and G. Calmon

has been evaluated in [PT95] and is of the order of 1/10"* of a voxel. We
then re-sample one of the two images (let say I,) into I to make it exactly
superimposable to I; except of course for the regions of the brain which have
changed between the two acquisitions (that is, mainly the lesions).

‘ Riid registration T ‘ Rplinq

!

Imagel’2

Non-Rigid Matching

Jz

[Deformationfield Fj

Jz

Deformation Analysis

\\){ Detection (X,y,zr,...) j

| Quantification (aV,...) |

Figure 1: The general principle of the method

We then compute the non-rigid deformation between I; and I using the
non-rigid matching method described in [Thi96b]. It is a 3D deformable grid
technique which is very close to optical flow when small deformations are
considered. The result is a deformation field F', represented by a 3D array
of displacement vectors, one for each voxel in the image ;. As in many non-
rigid matching methods, the result of the motion field estimation depends on a
parameter o which is a balance between the regularity of the deformation field
and the similarity between I} = F~'(I}) and I;. It is very unlikely to get rid
of this parameter o which is inherent to any non-rigid matching techniques.
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Deformation Analysis to Detect and Quantify Active Lesions. .. 7

For the “snakes” methods (see [KWT87|), it is the balance between “internal”
forces (regularity) and “external” forces (similarity).

This parameter o has some influence on the volume variation analysis. It
can be interpreted to some extent as a blurring of the “real” deformation field,
equivalent to a convolution with the Gaussian function e~"*/2* of the vector
field (see [Bur81]). This value o is explicitly defined in the non-rigid matching
method that we are using (see [Thi96b]).

The next sections describe in details the detection of evolving lesions and
the quantification of volume variation. First, we must define precisely the
effects that we want to measure.

3 Tissue deformation and transformation

We distinguish between two different models of tumor growth, real cases being
generally a mix of these effects. Our model is crude with respect to many other
works existing in the medical domain and concerning the biological aspect of
tumor growth (see for example [You59, CWTB95|). In particular, we consider
neither explicitly the elastic properties of the brain tissues (see [Dem81]|), nor
the dynamic aspect of malignant cells growth, but only two fixed time frames,
with no (or very few) biological a-priori knowledge. We will see however that
even with crude assumptions, solving the problem is not an easy task.

What changes can be observed in a medical image of a lesion? A tumor
can be a replacement of cells by another type of cells, an evolution of the mo-
lecular structure of the cells, a growing or destruction of cells, or a complex
combination of those cases, which might, or might not have the same appea-
rance in Magnetic Resonance (MR) images. Basically, we distinguish between
deformation and transformation:

3.1 Tissue deformation

Some tumors can be observed by the way of a large displacement, of the tissues
(Edema or mass effect) without image intensity changes. Additional molecules
or cells penetrate within the tissue, molecules or cells are exchanged with larger
or smaller ones, but it might occur that their appearance (the grey level value)
in the MRI is the same, mainly because their proton density is the same. Hence

RR n~3101



8 J-P. Thirion and G. Calmon

the only visible effect in that case is an expansion, contraction or deformation
of the tissues. We call this effect diffuse deformation. But it can be also the
addition of new untextured material in the central part of the lesion, which
reveals through two effects: the growing of a central spot (the “lesion”), and
the displacement of the surrounding tissues (the deformation). We call this
model central deformation.

3.2 Tissue transformation

To the other extent, a tumor can be observed through a change in intensity
without any displacement of the tissues. The molecular structure of the tissue
is changing, due for example to the replacement of cells by another type of
cells which have not the same molecular content but have the same size: the
tissue itself is not displaced. This type of tumor is of course much easier to
delineate than in the previous case. The “tumor” volume is the area of the MR
image where the tissue has a different composition and therefore a different
color. It is a known phenomenon for the plaques in 7, weighted MR images
of Multiple Sclerosis: the molecular change corresponds to a demyelination of
the axons, and the replacement with molecules with a higher proton density
which induces an hyper signal (i.e. a white dot) in the image. Most of the
classical tumor measurement methods are based on this model and are using
segmentation tools exclusively.

3.3 Defining volume variation measurements

Of course real tumors are always a complex combination of these effects, which
makes very difficult to give a clear definition the tumor volume or tumor
growth. If central deformation and tissue transformation might present the
same appearance in the MRI within the lesion itself (i.e. translates into a
contrasted central region), they have different influence on the nearest sur-
rounding tissues. This leads to the idea of studying a tumor evolution profile
AV (r): a curve representing the volume variation coefficient AV as a function
of the distance r to the approximate center of the lesion P and up to a limiting
bounding radius R. The sphere (P, R) defines a region of interest (ROI) cente-
red on the lesion. By studying the profile AV (r) outside the lesion (but inside
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Figure 2: Two registered slices of a real patient with MS disease, and with a
two months interval, imaged with first echo 7T, weighted MRI.

the ROI), we might be able to distinguish deformation (AV(r) = AV and
||f|| & 1/r? outside the lesion) from transformation (AV(r) = 0 and ||f|| = 0
outside the lesion).

3.4 An ideal mathematical solution

Ideally, if we define a virtually closed surface S in the image space, enclosing a
region R of volume V', we can study the flux of tissues through S, represented
by the vector field F' produced by the non-rigid matching step. Intuitively,
the summation of all that goes out minus the summation of all that enters
in is equal to the “volume” variation, which is a simplified version of the Os-
trogradsky theorem, stating that the integral over a closed surface of the flux
of a vector field is equal to the integral over the encompassed volume of the
divergence of the vector field. In practice, different factors prevent from using
directly this mathematically well defined technique. We list now some of these
problems with some possible (partial) solutions:
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e the vector field F' produced by an intensity-based non-rigid matching is

equally sensitive to a deformation or a simple intensity change (transfor-
mation).

we can study precisely and separately ideal measurement models for tissue
deformation and transformation, test these models on synthetic data, and
compare the profiles with those obtained with real data.

the estimated vector field is inescapably blurred by a regularity parame-
ter o.

we can quantify the effect of this blurring on tdeal models and measure it
wn the synthesized models to extrapolate it to real data.

a lesion can have a shape much more complicated than a sphere.

we can study a family of imbeded closed surface {S;,i € [1..m]}, encom-
passing regions R; of volume V;, ranging in size from the approximate
center point of the lesion to the complete ROI. It defines a “profile” of
the lesion variation {AV;,i € [1..m]}. If the tumor can be approzimately
segmented, we can use a family of imbeded surfaces whose shapes are
much closer to the segmented lesion surface than spherical shells.

F is not a continuous field, but is sampled for a regular 3D grid (the
voxels): it is unclear how to integrate a discrete flow field over a sampled
closed surface.

we develop in this paper a stochastic method to integrate the volume va-
riation from a discrete deformation field.

the displacement of surrounding tissues induced by a lesion evolution
decreases in (1/r%) outside the lesion, and the vector field evaluation
is inherently corrupted by measurement errors and discretization, hence
the evaluated flow becomes meaningless very rapidly when we get farther
from the lesion. Besides, there might be several active lesions, as in the
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case of MS disease.

high frequency noise is eliminated by the reqularization of the vector field,
but we must keep close to the lesion boundary for meaningful measure-
ments.

e different pathologies exist corresponding to different models of lesions.

measurements have to be proved useful discrimination tools for each speci-
fic type of disease through in-vitro studies and through clinical validations
(coherence of the measurements along time, coherence with traditional
clinical tests based on external symptoms, coherence with histology, ... ).

As we can see, the problem of defining and measuring a precise tumor
volume variation is much more complex that simply counting voxels. But even
if no complete mathematical formulation is at hand, the precise quantification
and its impact on the development of new drugs is too much important to
simply give up in front of the difficulty: for the example of multiple sclerosis,
there are hundred thousands of patients throughout the world and the cost of
a therapy based on (-interferon is very high (nowadays, about $10000 per year
per patient). We describe now the current solutions that we have explored to
detect and quantify the evolution of such lesions.

4 Detecting evolving lesions

4.1 Segmentation

As we said previously, detecting lesions in medical images is traditionally per-
formed by segmentation and therefore relies on the local analysis of the in-
tensity or texture in static images. Unfortunately, the intensity is generally
not enough specific to automatically characterize a lesion and in most cases
several modalities must be used to image the same brain. By combining those
different images, for example the first and second echoes of T, weighted MR
images, it is sometime possible to characterize the lesions in a more robust way,
for example by a component classification method (see [GKKK89, CLKJ90]).

RR n~°3101



12 J-P. Thirion and G. Calmon

Once the lesions are characterized in each time frame, it is then possible
to analyse the whole sequence of segmented images as a 4D image (3D +
time) and extract and analyse the lesions as 4D connected components (see
[MKGV92, KGMW96|). On one hand, this allows to extract static as well as
dynamic lesions. On the other hand the motion information is not taken into
account in the detection itself.

In the case of Multiple Sclerosis, there are several serious drawbacks in
using segmentation methods. In 75 weighted MR images, the boundary of
an MS plaque is fussy, and sometimes surrounded by a halo, hence it is very
difficult to segment. The intensity of the plaque is also very close to the in-
tensity of the gray matter, and also of the cerebro-spinal fluid (CSF) of the
ventricles. In [KGMW96/, this problem is partially overcomed thanks to mas-
king. Besides, thresholding and connected component analysis tools are very
unstable operators. For example, an active plaque can merge with a neighbo-
ring passive plaque during the expansion: the estimated volume is suddenly
and artificially increased due to the capture of the passive plaque or of ano-
ther brain structure. This prevents from studying precisely and automatically
the evolution of individual plaques with segmentation, although it might be
possible to obtain some global measurements. Even manually, segmentation is
very hard to perform in many cases. At last, the mass effect is totally ignored
by segmentation.

4.2 Segmentation of image differences

We propose to use directly the motion in the temporal sequence to charac-
terize active lesions. A simple way is to consider the difference between two
consecutive 3D images (see figure 3). When a lesion is characterized by an
hypersignal, that is, with an intensity locally larger than the intensity of the
surrounding tissues, then a growing lesion appears as a white annulus in the
difference of two consecutive images and a shrinking lesion appears as a black
annulus. Provided an almost perfect registration of the images, the annulus
can be isolated more easily in a difference image than a lesion in a single static
image (compare figures 2 and 3).

INRIA
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.J.

Figure 3: Left, subtraction image: the growing lesion appears as a white
annulus. Right, the subtraction image is inverted and a small shrinking lesion
can be seen (up right).

4.3 Flow field analysis

We found another, more efficient way to characterize the evolving lesions than
image differences: we analyse the deformation field F' computed between two
consecutive images I; and I, (see figure 4). F' is represented by a discrete
function f(z,y,z), where f : (u,v,w) is a 3D displacement vector defined
at each voxel (z,y,z) of I;. More precisely, F/(P) being the position in I,
corresponding to a point P : (x,y, z) in I;, we have:

z +u(z,y, 2)
F(P): | y+ou(z,y,2) (1)
z+w(z,y, 2)
We are interested by places presenting large deformations (||f|| large), and

also, as MS plaques have generally a rather spherical shape, places where
the divergence div(f) = Ou/dx + 0v/dy + Ow/dz is large (see figure 5). In

RR n~°3101



14 J-P. Thirion and G. Calmon

Figure 4: The 3D deformation field measured between the two 3D MRI of the
same patient, at the level of the lesion (this lesion is visible in figure 2).

some places ||f|| can be large and |div(f)| low (in case of a translation, for
example) or |div(f)| can be high and ||f|| low (in noisy regions), but as the
feature “high magnitude, high divergence” is more specific to evolving lesions,
we have tested successfully the following operator ||f||div(f). Besides, the sign
of div(f) characterize growing lesions from shrinking lesions. This operator
makes active lesions very easy to detect (see figure 5). In addition, in the case
of MS plaques, we can use a mask representing the white matter in the brain,
because MS plaques appear only in the white matter. We use thresholding
and connected component analysis to finally extract automatically the centers
and the approximative radii of the active lesions.

INRIA
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Figure 5: Top left: difference of intensity. Top right: vector field norm ||f||.
Bottom left: divergence div(f), Bottom right: ||f||div(f). Each step corres-
ponds to an image easier to segment automatically.

5 Measuring the volume variation profile

For now, we assume that the approximate center P and radius R of an active
lesion is determined and that we are looking for a precise volume variation
measure.

RR n-°3101
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5.1 The method of concentric spheres

In this section, we consider a family of n spheres S; of increasing radii { (P, 7;), 7;

[0..R]}.

5.1.1 Integrating the divergence

A first idea is to compute the integral of the divergence within each sphere S;,
or the integral of the flux on the surface of the sphere which is theoretically
equivalent (n is the normal to the sphere).

AV () = /S f-ndS = /V div(£)dV 2)

For a growing lesion, AV (r;) must increase when ¢ is increased, up to
when the lesion is entirely included into (P, r;): at that point AV (r;) remains
constant. Up to now, however, we didn’t get good results in practice with
such methods, probably because the noise in the vector field is amplified in
the computation of the divergence which necessitates a differentiation.

5.1.2 A stochastic computation

We have then switched to a stochastic method to evaluate the volume variation
which is the following.

Assume a shape S, for example a sphere, a cube, or any shape defined by
a closed oriented surface in image I. Assume also a regular grid G (see figure
6, left). The number of grid nodes times the volume of a single voxel V (vozel)
is an approximation of the total volume V' (S) of S which tends to the exact
value when the grid get thinner. This method is close to stereological methods,
which are used to quantify the volumes of static lesions (see [RBBK94]). In
the same way, the number of nodes of the regular grid G within the deformed
shape F1(S) gives an approximation of V(F~1(S)) (figure 6, right). We note
that computing the number of nodes of G within the deformed shape F~'(.9)
is equivalent to computing the number of nodes of the deformed grid F(G)
within the original shape S (figure 6, middle), which is computationally much
easier because the deformation F' is sampled for each node of G and there is
no need to compute the deformed shape F~(S5).

INRIA
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As F7!(S) is the image in I; of the shape S in I, AV(S) = V(S) —
V(F~(S)) is the volume variation between I, and I, of the shape represented
by S in I, (or by F7!(S) in [;).

The method that we propose is fairly simple, but against the intuition:
compute the number Ng(G) of nodes of G within S and the number Ng(F(G))
of nodes of F(G) also within S. The volume variation AV (S) for the shape S
in I, is approximately Ns(G) — Ng(F(G)). This approximation tends to the
exact value when the grid get thinner. If the volume variation is requested
for a regular shape within I; instead of within I, it suffices to use the same
method with the inverted transformation F~! obtained for example by the
exchange of I; and I, within the non-rigid matching algorithm.

5.1.3 Practical computation of the profile

Suppose now that we have a family of imbeded shapes S;,i € [0..m] such as
for example a family of spheres (P,r;) with increasing radii r;. We propose
an optimal algorithm (i.e with a linear complexity ) to compute the volume
variation profile. Suppose that we have defined a region of interest (P, R)
containing n grid nodes of G:

e we define two arrays of numbers { M} and {MZ-F(G)}, initialized to zero.

e for the n nodes P; : (z,y,2) of G, we determine the index 4 of the shell
corresponding to the spheres (P, ;) and (P, r;4+1) which contains P; (resp.
F(Pj)). i can be obtained in constant time with the distance d(P;, P)
and a lookup table. For each P;, we increment the corresponding bucket

ME (vesp. M.

e once the arrays {MF} and {MiF(G)} are computed, we compute incre-
mentally the arrays N& = Y0 0 M& and NF©@ = Yt M @)

e at last, we compute the volume variation profile AV; = (NF — NZ-F(G)) X
V(vozel)

The computation complexity of the arrays { M, i € [0..m—1]} and {Mz-F(G),i €

(2

[0..m — 1]} is O(n), as for the derivation of {N¢} and {N/ @} from {MF}

RR n~3101
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Image 2 Image 1
il <&
]
INEN
G V(S-21 FS) — V(F(S)~9

Figure 6: Stochastic computation of the volume variation. The main idea
is that the stochastic computation of the volume of a shape F~!(S) with a
regular grid G (right) is equivalent to the stochastic computation of S with a
deformed grid F(G) (middle).

and {MiF(G)}, hence the whole computation of the volume variation profile
{AV;,i € [0..m — 1]} is linear (O(n)).

We shall note that this computation can also be performed with random
positions P; throughout the region of interest instead of with the nodes of a
regular grid G.

5.1.4 Computation of a single value of volume variation

AV; must remain constant and equal to the searched AV as soon as r; is larger
than the maximal extent of the lesion. However, because of the noise, AV;
moves with a Brownian motion around the true AV (each new error increment
or decrement the estimated value randomly), which means in practice that AV,
oscillates around AV with larger and larger amplitudes when i is increased.
To avoid this phenomenon, we remove from the computation the effect of very
small displacements (when ||f|| < threshold we impose f = 0). With this
constraint, the noise is very reduced and AV; tends to zero when r; becomes
large.

INRIA
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In order to get a single value of volume variation, we compute the maximal
value AV of {AV;,i € [0..m — 1]}, which approximates the real AV. We have
extensively validated this method with synthesized data, which constitutes an
important part of the present paper.

5.2 Computing AV; with iso-intensity surfaces

_>

Gaussian
filtering

Figure 7: Automatic computation of imbeded surfaces from an approximative
segmentation of the lesion.

This method can be improved seriously if we can take into account an
approximative shape of the lesion. If the lesion is sufficiently contrasted, it
can be segmented as a set of labeled voxels R in image I,. In the previous
algorithm, we have replaced the spheres (P, r;) with a family of imbeded closed
surfaces S;,7 € [0..m]. A simple way to obtain this family of surfaces is to
consider a digital 3D image Ir where the voxels are labeled 0 if they are
outside R, or 1 if they are inside. We then blur this image with a Gaussian
filter. The iso-intensity surfaces for a set of increasing intensity constants
{C;,i € [0..m], C; € [0, 1]} have the requested properties (closed and imbeded),
and furthermore, the intensity I(P;) of Ir at a point P; gives directly the index
i of the shell [S;, S;;1] which contains P;. Another equivalent solution is to pre-
compute a 3D distance map from R, using for example the chamfer distance
(see [BTBWT77]). The rest of the algorithm is exactly similar to the case of the
imbeded spheres, and therefore the whole algorithm has still a linear (O(n))
complexity (a few seconds of computation on a workstation).

RR n~°3101
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The segmentation of R should be distinguished from the precise segmen-
tation used to evaluate the volume variation in traditional methods: it can
be much less precise (because it is then blurred), and besides, it must be per-
formed only in one of the two images. If the tumor is well contrasted, using
shells around a segmented lesion rather than simple spheres gives more reliable
results, because of the fast decrease (1/r?) of the deformation magnitude. Of
course, a better segmentation leads to a better deformation analysis. We have
verified this assumption with synthetic data.

6 Synthetic experiments

6.1 Tissue Transformation

We suppose (see figure 8) that the tumor evolution is simply a change of
intensity without tissue displacement. Another assumption is that the image
intensity saturates at the level of the lesion, that is, textural information are
lost in those regions.

Tissues
lesion transformation
texture

Figure 8: Tissue Transformation: intensity change without tissue displace-
ment.

To produce a synthetic lesion, we have measured the average intensity of
plaques in a real MRI, selected a region where the white matter of the brain
is homogeneous, and implanted spherical synthetic lesions of known radii in
it (see figure 9). The boundaries of the synthetic lesions are blurred to give
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a realistic appearance to the false MS plaque. In this model, the deformation
field measured by our method is strictly due to intensity changes and not
to tissue motion. We have compared the volume variation obtained by our
deformation field analysis method based on imbeded spheres, imbeded iso-
surfaces and also with segmentation (see table 1).

Figure 9: Left to right: original image, synthesized lesion with radius Ry (1),
synthesized lesion with radius Ry (I3), subtraction I, — I;.

The profile AV; for the sphere and for the iso-surface method is presented
in figure 10. Note that AV}, which should be zero outside [Ry, Ry] is in fact
non-zero because of the regularization of the vector field. The measure which
is finally retained is the maximum of AV, which in that case is a slight overes-
timation of the real value AV. Segmentation seems to perform slightly better
than deformation field analysis in that case (see table 1).

6.2 Mathematical model of the expansion field

We now suppose that the lesion is growing in a limited spherical region of
radius Rjesion, Wwhich means that inside this region, the Jacobian determinant
J is larger than one. We suppose also that the surrounding tissues are incom-
pressible, which is reasonable for the brain, hence the Jacobian is 1 outside the
lesion (J = 1). With this model, the expression of the synthetic field is:

f( ) B \S/j.T.Il ifr < Rlesion
x,Y,z) = \3/(J _ ]_)R?’ —+ rn ifr > Rlesion

(3)

lesion
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Figure 10: Profile of AV for tissue transformation: with imbeded spheres (left)
and with iso-surfaces (right).

Ry Ry AVch AVsphere AViso AVseg
0 3.97 | 262 245 241 213
0 5 524 375 374 484
0 7.21 | 1571 880 892 1691

3.97 5 262 314 324 271
5 7.21 | 1047 1307 1321 | 1207

3.97 | 7.21 | 1309 1435 1404 | 1478

Table 1: Experiments for tissue transformation: real volume variations
(AVi), spheres method(AViypere), iso-surfaces method (AVj,) and segmen-
tation (AVe).

The theoretical volume variation is then:

4
(J - l)gﬂ-R?esion (4)
The invert field (contraction) can be computed from this expression by
replacing J with 1/J and Riesion With v/JRiesion. This computation is valid

only in dimension 3. The norm of the vector field ||f|| is mathematically
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equivalent to 1/ r? outside V/J Rjesion. It should be noticed that in a 2D world,
this field would only decrease in 1/r, which can contradict our intuition when
looking at a 2D slice of a 3D image. We must also remember that we choose
to keep the Jacobian constant inside the lesion, but in real cases, the Jacobian
could have a complicated profile J(r) with respect to r and can be specific to
each pathology.

6.3 Central deformation

Here we suppose that the tumor evolution is the addition of untextured extra-
material to the disk of the lesion (see figure 11), therefore, on the contrary to
tissue transformation, the lesion is pushing the surrounding tissues.

inflation

lesion \/

texture

Figure 11: Central deformation: addition of new material in the center of the
lesion

To generate synthetic data, we have inlayed a synthetic lesion in the first
image (central spot of radius Rjesion), computed a synthetic deformation field
with a known Jacobian within Rj.s;,, and finally applied this field to the first
image with a re-sampling algorithm (see figure 12). In the difference image, we
note a small motion at the boundary of the brain due to the expansion. This is
the only noticeable visible difference with the case of the tissue transformation
(compare figure 9 and 12).
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Figure 12: Left to right: original image, synthesized central spot (I;), synthe-
sized deformation is applied (I5), subtraction I, — I;.

Table 2 presents experimental results comparing real and measured va-
riations with imbeded spheres, imbeded iso-surfaces and segmentation. The
segmentation underestimates the volume variation because the synthetic lesion
is fussy: the intensity of its boundary is very similar to the one of the under-
lying image. In that case, the deformation field method gives slightly better
results than segmentation. Figure 13 presents an example of measured profile.

Jacobian | AV, AVsphere AViso AVseg
0.5 —262 —265 —270 | —258
1.5 262 231 249 200

2 524 454 466 410
3 1047 958 969 872

Table 2: Synthetic experiments for central deformation.

6.4 Diffuse deformation

In this last case, we apply a synthetic deformation field in a region of the image
which doesn’t present a particular intensity (see figure 14). No segmentation
method can be applied at all: the lesion is invisible, even in the subtraction
image. Only a slight displacement at the boundary of the brain can be observed
(see figure 15). This small shift is the only evidence of an deformation of the
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Figure 13: Profile of AV; for central deformation: imbeded spheres method
(left) and iso-surfaces method (right). The upper curves are obtained with the
synthetic deformation field and the lower curves with the retrieved deformation
field and show a slight underestimation.

diffuse
expansion

lesion \/

texture

Figure 14: Diffuse deformation: deformation of the tissues without intensity
changes.

tissue, which, as we can see, can be partially retrieved thanks to the motion
field analysis.
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Figure 15: Left to right: original image ([;), synthesized deformation (I5),
subtraction I, — I; and at last a detection of the lesion is possible thanks to
the operator ||f||div(f).

Table 3 shows that the measurements with the deformation field techniques,
although underestimating the real volume variation, are interesting indexes to
evidence this type of deformation otherwise invisible. Figure 16 shows the
associated profile and figure 17 presents the retrieved deformation fields for
both central and diffuse deformation.

Jacobian | AViy | AViphere | AViso | AVieg
0.5 —262 =77 —84 0
1.5 262 142 157 0

2 524 331 365 0
3 1047 720 745 0

Table 3: Synthetic experiments for diffuse deformation.

6.5 Robustness with respect to the approximative center

A very interesting feature of the spheres method is that it is not very sensitive
to the precise location of the center P, because, once the sphere is larger than
the lesion, the value AV is theoretically constant (but more and more noisy in
practice). We have shifted the center P up to a 3 voxels distance (for a lesion
with a diameter of 10 voxels) and measured the performance for the case of
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1000.0 -

volume (mm3)
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— — - Spheres Method
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Figure 16: Profile of AV; for diffuse deformation (left:

surfaces).

5.0 10.0
radius (mm)

volume (mm3)

1000.0 -

500.0

—— Synthetical data
— — - Isosurfaces Method

0.0
0.0

1
0.2

. .
0.4 0.6 0.8 1.0
Intensity

spheres, right: iso-

Figure 17: ||f||div(f) computed from the deformation fields. Left to right:
synthesized field, retrieved from central deformation images, retrieved from
diffuse deformation images. Motion field analysis makes diffuse deformation

clearly visible.

central deformation. The results are degraded progressively, but the volume
variation measurement is still valuable (see table 4).
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Distance d (mm) | A(v)wn | A(V)sphere
0.5 524 454
1 524 440
1.5 524 416
2 524 432
2.5 524 410
3 524 414

Table 4: Robustness with respect to the displacement d of the center

6.6 Robustness with respect to shape

It is not an easy task to derive the theoretical deformation field of complex
shapes. We have performed experiments with only ellipsoidal lesions and for
central deformation, with volume V = 4/37R,R,R,. In that case, the results
are much better for the iso-surface technique than for the spheres, as one would
expect (see table 5).

R:EvRy (mm) R, (mm) A(U)th A(U)sphere A(Qf)iso
4.368 6.552 524 393 451
3.969 7.937 524 402 484
3.684 9.210 524 343 469

Table 5: Robustness with respect to shape

6.7 Conclusion on synthetic experiments

Segmentation is probably best suited for pure tissue transformation, that is,
when the tissues are not displaced, but this model is unlikely to be realistic for
actual lesions. When there is a deformation, we can have a continuous variation
of cases in between central and diffuse deformation. For central deformation,
our method relying on deformation field and a segmentation method can give
comparable results. However, the deformation field method becomes much
better when the deformation is more important than the intensity changes: in
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that case, segmentation underestimates much more the volume variation than
the deformation field method, up to the point when segmentation cannot be
used anymore (no visible intensity changes).

Hence in real cases, we can expect that if, for a given lesion, the volume
variation obtained with the deformation field analysis is much more important
than the one measured by segmentation, this is an evidence of a deformation of
the tissues, or mass effect, larger than the visible spot which can be segmented.

7 Measurements on real Multiple Sclerosis images.

A close inspection on real MS plaques reveals that, in addition to a clearly
visible bright spot in the center, some lesions are surrounded by a cloudy
halo, whose intensity can hardly be distinguished from the surrounding white
matter. This strongly suggests that MS plaques are in fact larger than their
visible central spots.

Another clue for this hypothesis is provided by dynamic sequences of ac-
curately registered 3D images. We have perfectly registered the 3D images of
a time sequence of 24 time frames (courtesy of Dr. Ron Kikinis, see figure 18)
and we have been able to evidence visually a deformation of the surrounding
tissues induced by the lesion. The gyri of the brain are pushed when the le-
sion is growing, and come back to place when it is then shrinking (growing
and shrinking is a normal course for active plaques). What is surprising is
that this displacement is visible even very far from the central spot (up to 10
voxels). Because the deformation effect decreases in 1/r? in 3D, the central
spot alone cannot explain visible displacement that far from the center. It can
be sensitive only 2 or 3 voxels apart and the only explanation that we found
is that a diffuse deformation, much larger in extension than the visible spot is
responsible of these displacements of tissues.

To give quantitative grounds to this assumption, we have compared the
volume variation obtained by segmenting the plaque visible in the 20 images
of figure 18, with the results of the spheres and the iso-surfaces method (see
table 6 or figure 19). The variations obtained by the deformation field methods
are much larger (about twice) than the ones obtained by segmentation, which
justifies our hypothesis. We can see also that the spheres and the iso-surfaces
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Figure 18: The same region of interest in the 20 successive images of the same
patient.

methods give coherent results and that, like in synthetic cases, the iso-surface
variations are generally slightly larger. The profiles AV; obtained in the real
case nicely follow the theoretical ones (see figure 20) which is an additional
confirmation of the validity of our model. As the lesion is not spherical, we
believe that the iso-surfaces measurement method is the most reliable. In fact,
even a volume variation twice as large as what is measured by segmentation
seems to us insufficient to fully explained the visual effect in the dynamic
sequence. We saw previously that the iso-surfaces method underestimates
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T,to Iisr | 1 2 3 ] 4] 5 | 6 | 7 8 9 10

AVieq 738 | 876 | 674 | 593 | 356 | 40 |-339 | -499 | -384 | -387
AViphere | 1451 | 1356 | 915 | 1114 | 1594 | 608 | -895 | -1792 | -812 | -1044
AViso 1486 | 1415 | 1057 | 1175 | 1528 | 572 | -837 | -1880 | -1027 | -1136

t; to tit1 11 12 13 14 15 16 17 18 19

AVieq -342 | -312 | -432 | -174 | -308 | 69 | -181 | -143 | -100
AViphere | -617 | -403 | -455 | -334 | -189 | -319 | -153 | -162.5 | -232
AViso -738 | -351 | -583 | -386 | -182 | -87 | -141 | -183 | -161

Table 6: Measurements of the volume variation with a real plaque (results in
mm?), for the time series of 20 3D images, represented in figure 18.

pure diffuse deformation in synthetic experiments (about a factor 2), hence we
believe that the value which is provided by our method is a lower bound of an
even larger diffuse deformation.

By integrating the volume variation (see table 7 or figure 21), we can esti-
mate the absolute volume from both the spheres and the iso-surfaces measure-
ments and compare it to segmented volumes. Of course, as for any integration,
the error grow each time a new volume difference is taken into account, be-
cause the errors are additive. In our experiments, a striking result is that the
final error is very reduced. Visually in our time sequence, we start and end
with a very small lesion, hence the integral of the volume variation should be
close to zero, which is the case in practice, with a final variation of less than
500mm? after the summation of 20 volume variations, to be compared to the
7500mm? of the largest extension. The volume profile obtained from the seg-
mentation and from the deformation field methods are very coherent except
for a multiplicative factor, which tends to confirm also that the mass effect is
larger than the volume of the spot visible in the MR images.

8 Conclusion

Thanks to an highly accurate 3D registration algorithm and time sequences of
3D images, we had visually observed a diffuse deformation or “mass effect” in
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Figure 19: Temporal volume variation (dV/dt) with a real plaque, for the time
series of 20 3D images (results in mm? per day): comparison of segmentation,
spheres method and iso-surfaces method.

the Multiple Sclerosis disease (the eye being a precious tool to perform optical
flow analysis). To our knowledge, it is the first attempt to quantify the mass
effect in vivo for the MS disease. This first result is extremely promising to
better understand the MS disease. Our detection and quantification methods
can help also to quantify more precisely the impacts on the MS disease of new
drugs (such as [-Interferon) which are now tested in many ongoing clinical
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Figure 20: Profile of AV; for real images. Left: measured with the spheres.
Right: measured with the iso-surfaces (computed between frame 1 and frame
4).

Image # 1 2 3 4 5 6 7 8 9 10
Vieg 350 | 1088 | 1964 | 2638 | 3231 | 3587 | 3627 | 3288 | 2789 | 2405
Viphere 350 | 1801 | 3157 | 4072 | 5186 | 6780 | 7388 | 6493 | 4701 | 3889
Viso 350 | 1836 | 3251 | 4308 | 5483 | 7011 | 7583 | 6746 | 4866 | 3839
Image # | 11 12 13 14 15 16 17 18 19 20
Vieg 2018 | 1676 | 1364 | 932 | 758 | 450 | 519 | 338 | 195 95
Viphere 2845 | 2228 | 1825 | 1370 | 1036 | 847 | 528 | 375 | 212 | -19
Viso 2703 | 1965 | 1614 | 1031 | 645 | 463 | 376 | 235 52 | -109

Table 7: Estimation of the volume with a real plaque (results in mm?), for
a time series of 20 3D images, represented in figure 18. Note that for the
deformation field analysis techniques (spheres and iso-surfaces), this value is
obtained by integration from the first value given by the segmentation, hence
can be subject to increasing errors.

trials. The application of our tool, however, is not limited to Multiple Sclero-
sis plaques, but might be applied to the study of many other types of lesions

RR n~3101

1.0



34 J-P. Thirion and G. Calmon

7500.0 - ﬂ i
- $ @ @ Segmentation
6500.0 [ W B B Spheres .
\ Isosurfaces
5500.0 \

4500.0

mm3

3500.0

2500.0

1500.0

T S T T S T S [ T[S S S SO A
0.0 280 56.0 84.0 112.0 140.0 168.0 196.0 224.0
days

Figure 21: Volume of a real plaque for the time series of 20 3D images: com-
parison of segmentation, spheres method and iso-surfaces method

such as cancer tumors.
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