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Abstract: A knowledge representation system (KRs) is made up of both a language to represent
knowledge of a domain and well-defined reasoning facilities to infer new knowledge from known facts.
This paper deals with KRSs close to frame-based systems, that include description logic systems and
object-based systems. In these systems, the main relation that leads to inferences is subsumption.
Knowledge terms are described through roles which refer to either other knowledge terms or data
types. Subsumption between term descriptions is usually interpreted as data set inclusion, where data
is either a knowledge term or an external term (integer, string, etc.). Although subsumption between
knowledge terms is well-defined, its implementation on external data depends upon the host language
since there are actually the data types of the KRS. As a consequence, no KRS is able to integrate a
new data type (e.g. Matrix) such that its values can be safely involved in subsumption and further
inferences. This is the problem addressed in this paper. The proposed solution is the design of a
polymorphic type system connected to both the KRS and the host language. It is designed so that
it can extend the KRs with any data type implementation available in the host language (library,
user-coded). Meanwhile, the values of the new data type get safely involved in the KRS reasoning
processes. The presented type system avoids the incompleteness of subsumption due to its incomplete
processing on external data.

Key-words: Object-Based Knowledge Representation, Subsumption, Data Types, Type Checking,
Sub-typing.

(Résumé : tsup)

* Email : Cecile.Capponi@inrialpes.fr. Projet SHERPA, INRIA Rhéne-Alpes, France. This work has been partly
carried out at Intelligent Software Group, Simon Fraser University, Burnaby (B.C.), Canada.

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Téléphone : (33) 04 76 61 52 00 — Télécopie : (33) 04 76 61 52 52



Conception et Réalisation d’un Systeme de Types pour un Systeme
de Représentation des Connaissances

Résumé : Un systéme de représentation des connaissances (SRC) est constitué, d’une part d’un lan-
gage pour représenter et structurer les connaissances d’un domaine, et, d’autre part, de processus de
raisonnement bien définis pour I'inférence de nouvelles connaissances a partir de celles déja représen-
tées. Ce rapport traite des SRCs issus des systemes de frames, tels que les systéemes de descriptions
logiques ou les systemes a base d’objets. La relation principale qui méne a des inférences y est la
subsomption. Les termes de connaissances sont décrits par le biais d’attributs qui font référence, ou
bien a d’autres termes de connaissances, ou bien a des types de données externes. La subsomption
entre descriptions de termes est souvent interprétée comme l'inclusion ensembliste, ou les ensembles
considérés peuvent contenir a la fois des termes de connaissances et des termes externes (entier, chaine,
etc.). Bien que la subsomption entre termes de connaissances soit bien définie dans le src, sa réalisa-
tion sur des données externes dépend du langage hote puisque les types de données externes utilisés
dans le SRC sont généralement implantés dans ce langage. En conséquence, aucun SRC n’est actuelle-
ment capable d’intégrer de nouveaux types de données (ex. Matrice) de telle fagon que leurs valeurs
puissent étre correctement impliquées dans la subsomption, et, en aval, dans les inférences. Il s’agit
du probleme traité dans ce rapport. La solution proposée consiste a concevoir un systeme de types
polymorphe couplé d’un c¢6té au SRC (pour le typage des termes de connaissances), et de l'autre coté
au langage hote (pour I'importation controlée de types de données externes). Grace a ce systéme, des
ensembles de données pourront étre construits en langage du sSRC & partir de valeurs et opérateurs
de tout type de données importé du langage hote ; puis ces ensembles et leurs valeurs pourront étre
correctement et completement impliqués dans les processus de vérification et d’inférence du SRC par
délégation au systeme de types. Ce résultat obtenu griace au développement du systeme de types
permet d’éviter 'incomplétude de la subsomption inhérente a son traitement sur des données externes
dont 'implémentation était jusqu’a présent une boite noire.

Mots-clé : Représentation des connaissances par objets, Subsomption, Types de données, Vérifica-
tions de types, Sous-typage
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1 Introduction

The development of knowledge representation systems (KRss) aims at helping people in an applica-
tion domain to both organize and describe the knowledge related to this domain. This requires the
development of expressive representation languages. Description logic systems (DLss, also called ter-
minological languages, or KL-ONE family [BS85]) are close to object-based languages, because they
both allow one to identify and describe knowledge as groups and individuals.

1.1 Why do we need a new kind of type system ?

The problem we address is to provide a knowledge representation system with an extensible collection
of computable data types which can be used as parts of knowledge descriptions. Although our solution
is drawn for object-based KRss, it can be easily extended to any KRS stemming from either frame
systems (e.g. KRS [BW77]) or semantic networks [Woo75]. The solution can be especially adapted to
DLSs which also have to deal with a restricted collection of data types.

One may figure out that, in order to provide a KRs with an extensible type collection, it would
be sufficient to connect to the KRS an extensible type system which already exists in the field of
programming languages (e.g. this of ApA [Uni83]). Such a solution is not suitable though, because of
the following specificity of KRss: subsets of values of any available data type are constantly constructed
— or infered during the resolution of constraint satisfaction problems — within a knowledge base.
For example in the simplest case, the age of a person is an integer ranging between 0 and 150, domain
of values which most likely is to be compared with this of the age of a child, i.e. an integer that
ranges between 0 and 14. These subsets of values are then involved in type checking and inference
processes which rely on set-based operations. For example, the KRS requires the type system to be
able to compute the intersection (or inclusion, disjunction, etc.) of two lists of intervals of values that
belong to any totally ordered data type. Yet lists of intervals are the simplest kind of expressions to
deal with. Moreover, there exist many ways in a KRS to express the same subset of values because of
the richness of the knowledge representation language. This compels the system to deal with normal
forms of subsets of values.

As far as we know, no extensible type system designed for a programming language — or for a
database system — is able to manage subsets of values which are explicitly and declaratively main-
tained. Since here is the main requirement of a KRS with regards to type checking, it turns out that
it is relevant to design a type system which could meet that demand. Obviously, if a KRS does not
need neither operations nor checking among represented subsets of values, the type system we present
hereafter is not of interest for such a KRs.

1.2 Where do types arise in knowledge representation ?

Basically, an object-based knowledge representation system (OBKRS) is a frame system [KLW95] that
explicitly differentiates groups from individuals. In OBKRSs, a frame that corresponds to an individual
is named an instance, and a frame that corresponds to a group of individuals is named a class. A frame
is described by means of attributes which are intended to characterize the groups and individuals.

In DLss, groups and individuals are called (generic) concepts and individual concepts, respectively.
They are described through roles (binary relationships that link two concepts), or attributes (to relate
a concept to a data type or a basic value). For example, child is-a (and (person) (age integer) (max
age 12) (all friends child)) means that a child is a person under the age of 12 and whose friends are
only children (child and person are concepts, friends is a role, age is an attribute and integer is a
data type). In the following, the type collection of a KRs means the set of all data types available to
be associated with attributes, which is usually restricted to basic data types.

Concepts can also be linked through subsumption. There exist several definitions of subsumption
between two concepts, whether we consider either extensions (sets of elements) of concepts, or their
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intensions (descriptions) [Woo91]. Intuitively, concept A (e.g. person) subsumes concept B (e.g.
child), written B < A, if all individuals of B are also individuals of A (e.g. any child is a person). This
intuitive meaning of subsumption requires the satisfaction of formal inclusive conditions on involved
term descriptions, leading to the definition of the so-called intensional subsumption. If B < A,
intensional subsumption requires B to be described at least with the same roles and attributes as
A, plus possibly some others, and attributes and roles in B must be more specialized than in A
(e.g. the range of age in person includes the range of age in child). Therefore, the subsumption test
between two given concepts is projected on their roles and attributes. Subsumption between roles is a
system-defined process that operates on terms. Its completeness thus depends on the richness of the
knowledge representation language. Although subsumption between attributes is usually predefined
in the KRs, its implementation still depends on the host language that provides the KrRs with data
types. Usually, the host language is the implementation language of the KRs, which is distinguishable
from the knowledge representation language used to describe knowledge. Since the implementation
of subsumption eventually depends on the structure of host language data types, the KRS cannot
dynamically integrate a new host data types unless there exists a way for the KRS to automatically
generate the code of subsumption among subsets of values of the new data type. This functionnality
does not exist in any KRs so far except in the KRS system [Gai93].

Intensional subsumption in DLSs applies between any kind of concepts, either generic or individual,
whereas in OBKRsSs subsumption is split between two relations, namely specialization (between two
classes: inclusion) and attachment (between an instance and a class: membership). In the following,
susbumption may stand for both specialization and attachment.

Several KRrss allow the user to add new data types in the type collection. This is achieved by a user-
defined predicate between values and the new type (TEsST-H in Crassic [BMPS'91], :predicate in
Loow [ISX91]). This predicate is then used in the description of attributes. For example in Crassic,
the term (TEST-H evenp) is the concept EVEN that denotes the set of all even numbers, where evenp
is a Lisp predicate. Subsumption however cannot be performed on attributes related to the new
data type, so it cannot be completely checked between concepts if such an attribute is a part of their
description. For example, there is no way for CLAssIC to statically detect the inconsistent term (and
STRING EVEN) which may lead to further inconsistencies, although only this syntax allows one to relate
two data types in the knowledge base. This is related to the problems of static consistency checking
arising whenever one tries to build a predicate hierarchy. As a consequence, subsumption is incomplete
as soon as a new data type occurs in a description [RBBT93]. Such an incompleteness does not depend
on the expressiveness of the knowledge representation language, but on the fact that the KRS cannot
reason about the bodies of data type definitions for they are written in the host language. It is
not important as long as the application domain does not require unavailable data types to describe
knowledge. However, some application domains may need some complex data structures to be fully
involved in reasoning processes. For example molecular biology requires the data constructor sequence
as a basis to represent the computable features of genomic sequences. One may figure out that those
complex data structures can be implemented using the knowledge representation language, although
this solution is too complex, and also unsuitable for the knowledge representation language. Moreover,
the processes of the KRS are not suited to fully and efliciently integrate executable programs.

The purpose of this work may be compared to any other KRS extensibility study that means
to improve its expressivity and genericity power. In this connection, PROTODL provides a way to
extend the vocabulary of the representation language [BB92] and the system KRS is designed and
implemented such that new functionalities may be easily added [Gai93].

The problem of the extensibility of the KRS type collection could be solved by providing the system
with the capacity of dynamically building a safe predicate hierarchy, where each predicate is associated
with functions which apply to its value and which manage subsets of its values (inclusion, membership,
etc.). This solution is equivalent to the construction of a dynamic data type hierarchy, where each
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data type encapsulates not only the construction, properties and operations of its values, but also the
management of its powersets.

1.3 Guidelines

We propose here to solve this problem of the extensibility of the type collection, in the particular
case of OBKRSs. For this purpose, a structure is designed which is connected to both the Krs and the
host language. This structure should dynamically provide the KrRs with all type operations required
by subsumption, namely subset inclusion and subset intersection. This structure is a type system; it
is a bridge between data type implementations (host language) and subsumption checking processes
among attributes and thus among classes. We show how each knowledge entity is associated with a
type (or a value) in the type system so that subsumption is performed on types according to a common
set-based semantics, whether types are external or related to knowledge entities.

The paper is organized as follows: in section 2 we introduce the main features of OBKRSs, which
are used further on in section 3 to identify the ways data types are processed in knowledge bases. The
presented results are important to sketch the type system satisfying our purpose. In the section 4, we
present the main organization of the type system METEO we designed for OBKRSs. The main feature
of METEO is its two-level organization, corresponding to the distinction data type / subset of data that
is kept up in knowledge base descriptions. The first level of METEO is directly connected to the host
language; the second level is issued from the typing of knowledge entities. Both levels are related and
cooperate as well. We then present how METEO may be easily and dynamically used to extend the
type collection of the KrRS. Section 5 outlines an example of use of METEO in the domain of molecular
biology. Finally, in section 6, we compare our study with previous results in the area of DLSs.

2 Object-based knowledge representation systems

Object-based knowledge representation systems (OBKRSs) stem from frame-based systems, except
that they distinguish between frames that denote individuals (instances) and frames that denote sets
(class).

2.1 Preliminaries

A knowledge base is made of several families. A family represents a set of real-world individuals it
divides up among groups (e.g.). Groups are implemented as classes. Classes of the same family are
ordered by specialization that represents inclusion relationships among sets of individuals which the
classes denote in the application domain. When a class C' specializes a class C’ (the set denoted by
C'is a subset of the set denoted by C’; C' is then a sub-class of C’ and C” is a super-class of C'). As
inclusion, specialization is transitive. Specialization may be either single or multiple according to the
number of direct super-classes a class is allowed to have. An individual is implemented as an instance,
which belongs to a class of its family or possibly to several classes when multi-instantiation is allowed
in the KrRS. The relation between an instance and a class is called attachment.

Classes and instances are described by means of attributes. An attribute represents one particular
characteristic some instances of a family have.

Each main feature offered by an OBKRS to organize knowledge can be associated with a corres-
ponding feature in description logic systems (DLss). Indeed, both allow users to identify and describe
knowledge as individuals which belong to one or several groups, where the groups are partially orde-
red according to set inclusion. Organizing knowledge according to such a frame leads to the common
identification of both kinds of systems as classification-based systems [Mac91a].
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Figure 1: A class graph in the field of molecular biology. Specialization is a transitive relation,
therefore the instance LacZYIr belongs to all super-classes of REP, such as signal or symmetric.

2.2 Knowledge entities

We talk about (knowledge) entities denoting classes, instances, and attributes: these are the three
main structures used to describe knowledge in an OBKRS.

Each entity is implemented as a structure which is made up of an identifier and which is allowed to
access by itself all the information it contains. Such a structure has two parts: it carries the eztension
of the entity it implements and its intension. When the entity is a class, its extension is the set of
individuals it denotes; when the entity is an instance, its extension is the individual of the real world it
represents. In both cases, the intension is the description of the entity. Hence, an instance [ is a double
(identifier;description) where the identifier is the name of the instance, representing the denoted
individual. A class C'is a triplet ({identifier;identifiers};description), where identifiers are
those of the instances that belong to the class and identifier is that of the class. The description
of any entity is an attempt to represent the properties of the corresponding part of the entity in the
application domain.

Class descriptions are made up of conjunctions of attribute descriptions. An attribute is a double
(name;domain), where name often carries the meaning the attribute gets in the real world (application
domain), and domain is merely a set expression. Hence, two attributes, sharing the same name with
two different domains are two different restrictions on the same feature. An instance of a class contains
a value (possibly unknown) for each attribute of the class it belongs to.

In class descriptions, attributes are firstly given an initial type. Then, their descriptions may be
refined such that their domains are restricted. The domain of an attribute is described by a conjunction
of descriptors. A descriptor is a double (nature;expression), where expression is a set expressed
over a syntax that depends on the nature of the descriptor. The attribute description below

attribute-name set integer card [6;9] among [1;49] except (1, 2, 3, 4, 5, 6)

denotes the whole set of sets containing between six and nine integers ranging from 1 to 49, excluding
the set (1 23 4 5 6). Such a description could for example match this of the bet numbers of a play
(or the result of a draw) at the 6/49 lottery.

Table 1 lists different kinds of descriptors which can be found in OBKRSs in order to describe
class attributes. Only type descriptors are presented. The descriptor compute-with-filter (section
2.4) not only defines an inference mechanism, but it also restricts the type of the involved attribute,
although we do not handle that possibility in this paper.

INRIA
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nature | syntax | semantics

attribute descriptors: specification of the attribute initial type
a T[Cy, -, Cn 7] TG OO [[Call
list T|Cy,---,Chp AT Adi€adin--nlCaln
set T|Cy,---,Chp T} 2UIClin--AliCx])

attribute descriptors
domain UL, Up {vi, -, vn}
except V1, e, Vg UN{v1, -, vn}
value v {v}
attribute descriptors, when initial type is totally ordered
intervals 1,7, 0 [|E1]| U - U|lin]|
except U\l U -+ [inl)
attribute descriptors, when initial type is multi-valued
(prior application of either 1ist or set)

among VU1, , Up ’y{”l""’”"}
forbidden VL, Un U\y{vval
cardinal [e1, 2] {s = {v;} | card(s) € [e1;e2]}

Table 1: Attribute descriptors. Let [|S|| be the subset of values of U denoted by the symbol S;
v € {2, A}; symbols v, v; refer to values of U; symbols ¢,; refer to intervals; 7' is an element of the
type collection of the KRs, that is an available data type; symbols C; refer to classes.

Entities of the knowledge base are given a denotational semantics. The interpretation domain is i;
it contains all type values and instances, which are unit elements, as well as lists and sets constructed
from unit elements. Let us consider an attribute (a;d), where d = 6y, - -
The denotation of the attribute in ¢/ is:

-, 8, (each §; is a descriptor).

Kasd)l[ = llall

1€[1;n]

(see table 1 for descriptor semantics).
The description of an instance is a conjunction of valued attributes, it is written I = {({a;; v;) }ie[1,n)-
The description of a class is written C' = {(a;; d;) };c[1;n]- The denotation of the class C' in U is:

IC|| = {1 = {{ai;vi) iepiym) €U | m < n and Vi € [1;m],v; € ||d;|}

The description below is this of a class that is intended to group all the plays of a 6/49 lottery
draw of a given day:

Class today-play-6/49
Attributes:
numbers set integer card [6;9] among [1;49]
player in Person
compute-with-filter { P Person,
P.age > P.citizenship.majority }
outlay in integer interval [l;4oo]
date in Date value (12,03,1996)
won in integer interval [0;4o0]

where Person is another family of the knowledge base grouping all human individuals, Date is a data
type which may exist in the type collection of the KRS; compute-with-filteris both a way to retrieve
RR n° 3096
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instances of Person that satisfy the condition about the authorized age to play at the lottery, and a
way to restrict — by the expression of a subset of potential instances of Person — the initial type of
the attribute player.

Attributes may be either complex or elementary. An elementary attribute (e.g. numbers or date)
gets its values from an external data type. A complex attribute (e.g. player) indicates that its values
are instances of another family of the knowledge base (e.g. Person). Recursive descriptions, that is a
class referring to itself in its description [Neb91], are not allowed in the kind of OBKRSs we consider
in our study.

Duss share many features of OBKRSs, although both the terminology and the internal implemen-
tation of entities are different. Generic concepts of DLSs are close to classes in OBKRSs. Both generic
concepts and classes are supposed to capture sets of individuals (named “individual concepts” in DLSs)
which are described through attributes (named roles in DLSs). A class (or an instance) in OBKRS, un-
like a concept in DLSs, is defined as an object, therefore its description is encapsulated within the
object. Concept descriptions in DLSs are distributed among two cooperative but different languages,
namely the TBox (terminology) and the ABox (assertions) [BFL83].

2.3 Relations between entities

Two general relations exist among entities. They deal with a specific way of organizing knowledge
that is usual in many application domains. Each relation has a meaning in the application domain
and it induces conditions among entity descriptions.

Attachment is a binary relation, written €,, defined between an instance and a class. It means that
the individual the instance represents (e.g. Chet Baker) belongs to the group which the class
denotes in the application domain (e.g. Trumpeters). The intensional attachment is defined
on descriptions of involved entities. The restrictions on descriptions are necessary conditions
for the whole attachment to be agreed upon in the knowledge base. Let I = {(a;;vi)}ic1:m]
be an instance. Let C' = {(a;;d;)}ic[1;,) be a class. Then the attachment between two entity
descriptions satisfies the following requirement:

i€, C=m<nand Vi€ [l;m]:v €d;
For example, the instance description below

Instance my-play
Attributes:
numbers= {125323179}
player = Person#12008

outlay = 4
date = (12,03,1996)
won = 0

satisfies the conditions of the description of the class today-play-6/49, because each value of
an attribute given in the instance belongs to the domain of the attribute described in the class.
Thus the instance my-play could be attached to the class today-play-6/49 according to the entity
descriptions.

Attachment is distinct from instantiation as considered in any object language. Instantiation is
the process that creates the data structure of an instance according to the data structure of a
class. Attachment is a relation between any instance and any class, whatever their structures are.
The distinction is essential in OBKRSs, because it permits migration of instances from one class to

INRIA



Pesign and Implementalion of a 1Lype System for a Knowleage nepresentation System J

another, without destroying the instance and having to re-create it. This distinction comes from
the fact that an individual of the application domain (e.g. Chet Baker) exists independently of
the groups of individuals it may belong to during its lifetime (e.g. Chet Baker starts his life as a
child but fortunately he did not die when he became a teenager). Such considerations are close
to these of G. Ghelli who insisted on the difference between both the type creation of a value
and the actual type of this value, in order for the object migration process to get a well-defined
semantics [Ghe90].

When multi-instantiation is allowed in a system, the above conditions are still necessary to check
the attachment between an instance and each of the classes it may belong to. An alternative
is, for each attribute ¢ common to at least two classes of the instance, to compute the final
domain of @ as the result of the intersection of the different domains for a in each class. Thus,
to be valid, the attachment relationship requires that the values of the instance belong to the
intersected domains.

Specialization is a binary relation, written <,, defined between two classes. It means the inclusion
of the group represented by the most specialized class (e.g. Trumpeters) in the group represented
by the less specialized class (e.g. Musicians). As for attachment, intensional specialization leads
to necessary restrictions on involved entity descriptions. Let Cy = {(a;; d1;) }ig[1;n,) and Cy =
{{@i; d2;) }ie[1;n,) e two classes of a same family. Then specialization between class descriptions
satisfies the following requirement:

C1 <, Cy = ny <njand Vie [1;712] tdy; € dy;

In the case of multiple inheritance (e.g. sHIRKA [RU91]), the sub-class must satisfy the above
conditions for each specialization relationship with its super-classes. An alternative, close to that
presented for attachment, is the computation of the intersection of all super-class descriptions,
in order to check for inconsistency and/or to reduce the number of inclusion tests.

Specialization is a system-defined partial order. It is drawn as a class tree, or a graph in systems
which permit multiple-specialization. The inheritance mechanism is processed along the class
tree as a classic object-oriented way to factor the code out. Therefore, the complete description
of an attribute in a class may be split among super-classes; the inheritance mechanism is used
to retrieve its whole description. Some specific algorithms are studied in order to deal with
multiple inheritance, such as linearization of the specialization order [DH91], or the renaming
of attributes in case of a conflict. As attachment, specialization relationships regarding the
descriptions may be inferred automatically.

In DLss, both specialization and attachment are merged towards a unique relation, namely sub-
sumption. As for specialization and attachment, intensional subsumption relationships may be inferred
according to the concept descriptions available in the TBox. The definition of intensional subsumption
is semantically equivalent to the definition of specialization between two class descriptions. Intensional
subsumption inference or checking may be completed using terms of the ABox.

Some DLSs, such as BACK or CLASSIC allows the user to write rules [HKQ193] in order to relate
concepts independently of their descriptions. An equivalent relation exists in the OBKRS TROPES
[Pro95], through the definition of points of view which cooperate by means of bridges [MRU90].

2.4 Inference mechanisms

Any OBKRS is provided with pre-defined inference mechanisms. They are activated either by the user
or by another process, in order to deduce new knowledge according to already represented know-
ledge. Most of these inference mechanisms stem from frame language inference mechanisms, such as
filters, procedural attachments, and default values. Yet the main inference mechanism is the so-called
classification, also defined by DLSs.
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Filters, procedural attachment and default are three inference mechanisms used to compute the
value of an attribute for an instance, whenever the attribute is either elementary or complex.
These inference mechanisms are called local inferences because they are attached to the attribute
in the class, and are activated whenever the value of the attribute is unknown but needed.
Both the activation of each of these mechanisms and the integration of their results in the
knowledge base are totally controlled by the 0BKRS. Among other conditions, the result must
belong to the domain of the attribute the local inference mechanism is attached to. Relevant
information about filters may be found in [Dek94]; [Win85, Rec93] contain information about
procedural attachment; default are presented in [Bra85, Pag92, RN87] among others. Examples
of filters (compute-with-filter), procedural attachments (compute-with), and default values
(default), are given in the description of the class protein-gene, section 5.

Classification of an instance [Nap92, SL83, Mac91b] down a class hierarchy is aimed at finding the
most specialized class the instance matches with. It is an inference process, because the more
the class is specialized, the more there is knowledge about the individuals it groups. Hence,
the lower an instance is attached to a class of the hierarchy, the more the user is provided with
information about that instance. Instance classification is a top-down process. At each step,
the process stops by a class, then descriptions of both the instance and the class are checked for
attachment. If the conditions of attachment are satisfied, then the class is sure for attachment.
If one of the conditions is violated, then the class is marked as impossible. Whenever a piece of
information is missing, é.e. an attribute value, and even if every other attribute value respects
conditions on the corresponding attribute domains, the class is marked as possible but not sure.
Moreover, classification uses rules to propagate marks. For instance, whenever a class C' is
marked impossible for the instance, all the sub-classes of C' are marked impossible as well.

Hence, both relations of an OBKRS are used during classification. Attachment is attempted to
be inferred and specialization is used in order to propagate class marks according to extensional
considerations.

There also exists a class classification process whose aim is to find the right place of a class
description in the class tree or graph, according to the specialization relation. This is achieved
through specialization rather than attachment inferences and tests [Cap94].

Classification in DLSs leads to the inference of subsumption relationships between a given concept
and the existing concepts. Except for some systems such as Loom [Mac91b], classification is a
common process to both individual and generic concepts. However, OBKRSs distinguish between
them, because attachment leads to membership and specialization leads to set inclusion.

Each inference mechanism we presented above involves matchings between attribute values and
attribute domains. In other words, assuming that attribute domains are types, type checking and
type inference exist in knowledge representation systems and furthermore, they are fundamental.

3 Where do types arise in knowledge representation systems ?

Despite some semantic choices or knowledge language expressivity that may differ from DLSs to OBKRSS,
the solution we shall draw to type collection extensibility in the area of OBKRSs may basically be a
solution to the same problem in the area of DLSs, because data types are used on the same way in
both kinds of KRs. In both 0BKRss and DLss, data types are explicitly used to specify an (elementary)
attribute. For example, the alcohol-degree of a drink is a real value that can be specified to belong
to a specific range. Data types arise in class descriptions too, although less obviously. The way types
are expressed and manipulated in an OBKRS is identified below, in order to further outline a sound
and complete solution to the extensibility to the type collection of a KRs.
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3.1 Typed attributes

The description of an attribute is basically the expression of a set of values or instances. We generally
name this set the domain of the attribute. The same attribute name can be associated with many
domains within different class descriptions. The domain of a class attribute is specified in two main
steps.

First, the domain is specified through the initial type descriptor, where the attribute name is
associated with a data type or a class (see table 1). The initial type of an attribute is actually a
reference to a set of elements which some known and accessible actions apply to, whether the initial
type deals with host elements or knowledge entities. Consequently, the user who specifies an elementary
attribute refers to an abstract data type whose specification and implementation is independent of
the KRS features. For example, to choose whether the attribute age is an integer or a string, partly
depends on the existence of a total order on integer and underlying operations, such as successor or
addition, that fit well with the usual and basic way to measure time, whatever the implementation of
integer is. In the case of a complex attribute, the initial type is the description of a set of individuals
that are somehow similar and behave along a common way.

Second, more type descriptors may be applied on an attribute in more specialized classes, in order
to restrict its initial set of values. For instance, in the class beer, the attribute alcohol-degree is a
real value (initial type); in the class trappist (sub-class of beer), alcohol-degree is still a real, ranging
in values from 6 to 15 (application of the descriptor interval). This restriction on the domain of
alcohol-degree goes down the specialization hierarchy. Thus, the class orval, sub-class of trappist,
specifies an unique value 6.2 (application of the descriptor value) for the attribute alcohol-degree.
Whatever the domain of an attribute is, it is always expressed using the knowledge representation
language.

In conclusion, two levels of type references thus appear in the whole attribute description:

1. selection of an abstract data type or selection of a knowledge class
2. expression of subset of values (or instances)

Whatever the initial type is, the attribute domain is involved in usual set operations required by
both specialization and attachment tests. These set operations are mainly inclusion, membership, and
intersection. Hence, whatever the initial type is, operations over attribute domains obey the same
set-based semantics.

3.2 Set algebrae over data types and concepts

Given the definitions of necessary conditions for both attachment and specialization and the way
attribute domains are used, we draw three algebrae which are shown to be closely related.

First, each data type T'= (V;0), where V is a set of values, and O is a set of operations on these
values, is associated with an algebraic structure over the power set of V. This algebraic structure
specifies the way the KRS operates in a common way on all subsets of any data type. We write this
algebra Ar = (2V; E)r where E is a set of set operations. It is important to notice that because of
the predominancy of Ar in any OBKRS, whereas it is not managed in programming languages, the
way types are managed in an OBKRS is different from the way they are in a programming language ;
checking and inference processes do not rely on the same structures.

Second, each class C' is made up of two parts. On one hand, considering class extensions (namely
set of instances), a class C' = ({/}; O) is the representation of a set {/} of individuals of the application
domain (e.g. Musicians) to which actions O of the application domain may apply (e.g. to win an
award)®. A class is thus associated with an algebra over the power set of its extension. We write

! Actually, we do not consider the possibility of defining such actions within a class of a KRs, because it leads to
considerations which are out of the scope of this paper. The set O of real-world actions has been introduced in order
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this algebra A¢ = <2{I}; E¢) where F¢ is a set of real-world actions that apply to sets of real-world
individuals. Besides some elements of 2t} are represented by sub-classes of C'. Among others, F¢
contains actions that correspond to individual set inclusion, intersection or membership checking (e.g.
Trumpeters are Musicians, Chet Baker is a Trumpeter). We shall focus on these set-based actions
because they are semantically defined by the KRS to perform specialization and attachment. On
the other hand, considering class intensions (namely descriptions), a class is a double C' = (D;Oy),
where D is a namely a set of record values thus represented by a record type, and Oy is a set of
operations manipulating the record values. We then define the algebra over the power set of record
values, written Ar = (2; ER), where 27 is the power set of record values, thus represented by the
set of all record types, and FR is a set of operations manipulating sets of record values, represented
by operations manipulating record types. Among these record operations, sub-typing, membership
and intersection are defined, because they closely match necessary conditions for specialization and
attachment relations.

Together, the two latest algebrae A¢ and Apg define the way classes and instances are organized in
the knowledge base, i.e. according to the main relations defined by a set-based semantics. Fach class
or instance of the knowledge base is an element of each algebra. When an OBKRS does not consider
term descriptions as definitions, the description of a term must at least cover its extension. This means
that Ar and A¢ are not equivalent. In addition, Ag is more likely an inclusive approximation of A¢,
since descriptions of classes are intended to capture their extensions.

It is interesting to notice that if one considers a record type as a particular data type, then Ag
is a sub-algebra of Ap. Besides, operations of Agr may call operations of Ap for elements of Ap
are written from conjunction of labeled elements of Ar. In other words, computations over class
static descriptions (record types) may be performed independently of the Krs provided that A7 is not
implemented in the KRs.

3.3 Implementations of algebrae

On one hand, data types are usually implemented in the host language, while the KRS usually im-
plements Ap using the semantics of descriptors that actually build subsets. On the other hand, the
KRS defines a language to represent both parts (extension and description) of classes, instances, and
attributes by means of objects. Both Ar and A¢ are thus implemented by the KRs, directly on top
of the knowledge representation language.

Since the KRS cannot process on host language programs, the addition of a new data type im-
plemented in the host language leads to incomplete KRS inferences. For example, assuming that
even-integer is a data type implemented in the host language and is accessible in the KRs through
a predicate (i.e. the Loom way to integrate a new data type), let us then consider the four attribute
domains below:

a; in integer interval [0;+o0]
ay in even-integer interval [4;4+o0]
asz in even-integer interval [0;4oc0] except 4 6 8
a4 in even-integer interval [0;2], [10;+00]

The KRs can infer neither ||las|| = ||a4|| nor |Jaz|| C [|a1]|, unless even-integer has been defined as
a sub-concept of integer. Yet in this last case, there is no way for the KRS to check the consistency of
such a subsumption (or specialization) relationship, because the system cannot interpret host language
predicates. Furthermore, the KRS cannot integrate the data type date, for example, together with its
underlying total order and further use this order for the construction of subsets. Indeed, the property
of total order is embedded in the definition of integer in the host language, or in the definition of

to point out the difference between the two cooperating aspects of a class; then, O must be compared to O4 which is
introduced hereafter.
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the concept number in the KRs. Therefore, no data type other than a number can be ordered. This
is due to the fact that the KRS cannot access the specific properties of host data types, therefore it
cannot take advantage of these properties for knowledge description purposes.

The KRS cannot guarantee the safety and the completeness of specialization over subsets construc-
ted from new data types. Thus, specialization tests which involve classes containing these attribute
descriptions are incomplete, so further is the result of a classification process.

3.4 Proposal

Avoiding the above incompleteness requires the KRs to be able to access properties and relevant
features of any new data type. The way the new data type is related to existing data types must
also be known by the KRs. We thus propose to design an extensible type language in addition to
the knowledge representation language, that can express the relations among types and that can be
somehow interpreted by the KRs. The type language is then intended to be the core of a two-level
extensible type system. According to the two levels of types previously extracted through the two
structures 7' = (V; O) and Ay (therefore Ap), the type system must be connected to the KRs on one
hand, and connected to the host language on the other hand. The two levels of the type system are
closely related.

e The first level of types is connected to the host language. It is intended to capture, in a special
format, the implementation of the host language defined data types, i.e. the implementation of

each T'= (V;0).

e The second level of the type system is intended to deal with the implementation of Ap (and
further Ag), for each data type defined at the first level. For this purpose, the second level of the
type system includes an internal type language to express subsets from any type and set-based
operations applying to these subsets.

The second level of types is meant to correspond to the typing of knowledge entities (classes and
attributes), towards a normalized term language. It is the actual interface with the OBKRs, whereas
the first level of types is independent of the OBKRS.

With this solution, the KRs will not have any access to the type language, but it does not need
to. Indeed, all the set operations like inclusion, membership, etc., will be performed on terms of the
second level of types (i.e. subsets) in a homogeneous way, whether the subsets are basic data subsets
or are issued from the typing of the knowledge base.

4 The METEO type system

As pointed out in the previous section, a solution to type collection extensibility in an OBKRS is the
design of a type system where both host data types and knowledge term types are to be handled. The
type system METEO (Module of Extensible Types for Expressive Objects) resulting from our study is
presented in this section. It is made up of two type levels:

o C-lypes are encapsulated and formated implementations of abstract data types (data structures
+ operations)

e S-types are normalized terms. A §-type represents a subset of C-type values. é-types are intended
to capture the result of knowledge term typing.

4.1 C-types as implementations of abstract data types

A C-type is an implementation of an abstract data type. The KRS user does not have access to
implementation details, but he may refer to the signature. A C-type is defined, in a minimal fashion,
by two operations. Let U be the set of universal values.
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e c7:U — {0;1} is the membership predicate, from any value, to the type T
o =7: T x T+ {0;1} is the equality predicate between two values of T’

A C-type is a data type, that is a double (V;O) where V is a set of values and O is a set of operations
applying to values. O must include the two above operations, especially since the membership predicate
actually characterizes V.

METEO contains, in its minimal setting, a whole set of C-types. The extensibility of this set is
detailed in section 4.4.

4.1.1 Operations applying to values

In addition to the minimal operations above, many others may be implemented in the definition of a
C-type, where parameters and/or results have to belong to one of the defined C-types. For example,
the C-type list of METEO contains all the usual operations applying to lists, such as map, union, etc.
We shall see later these operations may be used in a knowledge base in order to compute attribute
values for instances through procedural attachment.

4.1.2 Hierarchical organization

C-types are ordered according to C-sub-typing. It is a set-based partial order. Ty = (V1;01) may be
a C-sub-type of Ty = (V2;03), written Ty < T3, if V1 C V;. A rich hierarchy of C-types is provided by
METEO, as shown on figure 2.

universe

basic-types constructed

‘ enumeratlon‘ t-ordered ‘ ‘ record ‘ ‘ multi-valued ‘

‘ discrete ‘ \

= Sing list(string)| [ set(string) |
bool . . .

Figure 2: METEO C-type hierarchy. Only white C-types actually do exist in the minimal setting of
METEO. Although grey tint C-types do not exist in the minimal setting, they can be easily defined
by the user as addressed further on.

In the C-type hierarchy, middle C-types are mainly used to factor out generic properties about
lower C-types. Hence, operations that are based on these properties are defined within middle types
as second order functions and are inherited along the C-sub-typing order. For example, the C-type
t-ordered factors out all kinds of totally ordered types. It implements some general algorithms, such
as sorting. Then, whatever the total order relation may be, all its C-sub-types (discrete, int, etc.)
inherit these general algorithms.

4.2 Internal language for subset expressions: EOLE

The second level of types in METEO deals with implementing normal forms to express subsets of
C-type values. These types are named §-types. They are intended to capture the results of knowledge
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term typing, that is subsets of values. The way knowledge entities are typed in METEO is addressed
in section 4.3. We focus here on the way METEO manages them.

4.2.1 C-types and é-types

Each C-type T = (Vp;Or) is associated with an algebraic structure Ay = (2V7; F') where E contains
the usual set operations. METEO defines, for each C-type, the implementation of this structure.
5-types are elements of 2V7; they are terms of an internal type expression language named EOLE.

In other words, each C-type T' = (V;0O) is associated with a part of METEO that both defines
the syntax of EOLE terms by taking into account the specific properties of T for a more optimal
representation and implements set operations over this syntax. The set operations are mainly:

e Ss57:2Y x T+ {0;1}, checks the membership of a value to a d-type

o <57 2V x 2¥ 5 {0;1}, checks whether the first é-type is included in the second

o Msp: 2V x 2V 5 2V computes the greatest lower bound of any two é-types (intersection)
o sy : 2V x 2V 2V computes the least upper bound of any two §-types (union)

e \s57:2Y x 2V 5 2V computes the result of the first §-type minus the second (difference)

These operations are implemented for each C-type, but they have the same set-based semantics.
Moreover, each C-type must define the normalization operation used in order to ensure that two
different §-types from the same C-type, denote two different sets of values (section 4.2.3).

4.2.2 FEoOLE terms

EOLE terms are §-types intended to express subsets of values. A d-type is a double 8t = (T';¢e(T))
where T is the C-type the é-type is attached to and e(7) is a syntactic expression representing the
set denoted by &¢. The expression e(t) is a normal form, i.e. that two different §-types from the same
C-type will never denote the same set of values.

The syntax of EOLE is given for each C-type. It takes into account the given specific properties
of the C-type that are useful in order to make the syntax optimal. For this purpose, C-types are
grouped into classes of C-types, according to the useful properties they share. It is a second criterion
for the C-sub-typing, the first criterion being set inclusion. For instance, discrete is a C-sub-type of
t-ordered because both are totally ordered sets, but discrete is more specialized than t-ordered
because it defines predecessor and successor operations, leading to a more optimal way to express
subsets of values. They both belong to the same class of C-types which could be named totally
ordered types. Actually, C-types could be compared somehow to the type classes as implemented in
Haskell [HJe92, PJ93]. Indeed, a C-type captures the (extensible) way its §-types — subsets of values
— and the é-types of its C-sub-types can be both represented and handled according to the properties
and operations of the values.

EOLE terms express subsets through dynamic combinations of statically filled fields. Both the
nature and the number of these fields depend on the properties of the C-types. For example, d-types
from the C-type discrete are made of a single field named domain that is filled with an ordered
list of closed-bound intervals. Then, the set denoted by such a é-type is merely the set denoted by
the union of the intervals. This representation for §-type is then inherited by all the C-sub-types
of discrete. Hence, (int;[6;18]4[45;+00;,t]) is a d-type from the C-type int, whose denoted set
is obvious. Note that each C-sub-type of t-ordered must define or inherit its own management of
bound (maybe infinite) values.

The EOLE syntax concerning constructed C-types is far more complex. Indeed, several fields
are used in order to guarantee that the d-types are normal forms, while preserving the expressivity
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of knowledge representation language descriptors. For example, the syntax of any e(record) is made
up of three fields: (ref-typ ¢, ; dom dy ; dom-c d3), where ¢, is an actual record structure (set
of labeled §-types [CMO91]), and d; and dy are explicit enumerators of record values. The way the
three fields are combined for §t = (record;e(record)) is defined by the following resulting set: ||6¢]| =
INRATAINEAR

The complete syntax and denotational semantics of EOLE are formally described in [Cap95].

If 75 <717 in the C-type hierarchy, then fields of T3 include those of T} and perhaps some additional
ones as well. For instance, fields for record are inherited from constructed, although the field
ref-type of constructed does not refer to a record type structure, but to any data structure. §-
types from list are expressed through the three fields of constructed, plus the field card that
provides information about the cardinality of lists belonging to each d-type. The d-type ( list; x(
int; [2;8] ); T; {(4, 5, 6) (4, 5, 7) }; [2;400]) represents the set of all lists of at least two integer
values which range between 2 and 8, excluding lists (4, 5, 6) and (4, 5, 7). Note that, for each C-type
T = (V;0), the symbol T represents the powerset 2V.

4.2.3 Normalization of EOLE terms

Normalization is an operation that computes the normal form 6tV associated with any newly created
d-type 6t. A normal form is itself a §-type. METEO deals only with normal forms. The normalization
operation is used to guarantee that two different é-types from the same C-type denote two different
subsets of values as formally expressed below.

VoY = (Tien(T)), 66 = (T ea(T)) : ea(T) # ea(T) <= |66} # 166 |

Since EOLE is distributed among C-types, the normalization operation is defined for each class of
C-types, according to each syntax. Normalization is achieved through a syntactic rewritting system
which is fully presented, as well as proven sound, complete, and confluent in [Cap95].

The normalization of METEO and the normalization in DLss [Neb90, BPS94] both have the same
purpose. However, normalization of DLSs is performed on knowledge entities while normalization of
METEO is utterly independent of the KRS.

4.2.4 4-sub-typing and §-type lattices

d-types from the same C-type T = (V;0) are partially ordered according to d-sub-typing. &-sub-
typing means subset inclusion. It is then directly issued from the operation <57 of A (section 4.2.1).
Like normalization, the §-sub-typing is implemented according to the distributed EoLE language,
i.e. for each class of C-types. dé-sub-typing is then locally performed by combinations of the fields
describing §-types. For example, §-sub-typing between two discrete §-types leads to the computation
of inclusion between two ordered sets of closed-bound intervals. §-sub-typing between dé-types from
constructed is obviously less simple since §-types are expressed through three fields, and four in the
case of 1ist or set. Let dt; = (constructed;[t;; D;; Ci]), ¢ = 1..2, be two d-types from constructed,
where Vi = 1..2,¢; = (I'; ¢;(T")). Then, §-sub-typing among constructed é-types is defined as follows:

t1 <51 tg and
oty Sé,constructed Oty & if v € Dy then v € Dy and
if veCythenveCrorvdg Dyorvdsr ity

é-sub-typing is fully presented, as well as proven sound and complete according to set-based semantics
in [Cap95]. In other words, the following result has been demonstrated.

Theorem 1 For each C-type T, Véty, 8ty € A(T), t1 <571ty <= ||t1]] C ||t2]]
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Let us recall that V¢,||t]| is the set denoted by ¢, and A(T') is the set of all possible d-types of the
C-type T. if T = (V;0), A(T) is merely the implementation in METEO of the powerset 2V

As METEO implements §-sub-typing between §-types of each class of C-types by combinations of
o-type fields, operations Mg and Us 7 are defined. This allows METEO to manage homogeneously a
é-type lattice under each C-type, using a generic and dynamic process.

4.2.5 ~v-sub-typing

In order to be able to check set inclusion between two d-types from different C-types (e.g. int and
even) which are related by C-sub-typing, é-sub-typing is extended as y-sub-typing. For this purpose,
property 1 has been established. It shows that there exists a non-strict set-preserving mapping between
é-types from different but related C-types. The proof of this property is then presented for the reader
to understand the way the mapping can be computed.

Property 1 Let 11,15 be two C-types such that Ty < Ty. There exists a homomorphism h : A(Ty) —
A(T3) such that
Vi, th € A(Ty) such that t; <sr, 1],

h(ty) € A(Ty), h(th) € A(Ty) and h(ty) <sm, h(t))

Let us define h such that [|h(t1)]| = ||t1]|\{e € ||t1]| | € & ||T%||}. Therefore, the homo-
morphism A may be seen as a projection. Since h(¢;) must be an expression that denotes
only elements of T3, h(ty) is expressed through the syntax defined for 75. For the same
reasons, k(]| = [#1INe € 210 | e & [ITall}. Since &1 sz, &, then [ia]] € [14]], thus
{e€|lti]| | e € | T2/} C {e € ||ti]| | € & ||T2||}- As a consequence, h(t;) C h(t}); according
to the theorem 1, we thus prove that h(ty) <s1, h(t}).

The homomorphism A represents, through the syntax defined for §-types of Ty, the set of values de-
noted by any 6t of 77 without values that do not belong to 75. For example, if (13 =even)=<(1; =int),
if 6t = ( int;[11;32]4[51;90]) then h(dt) = (even;[12;32]4[52;90]). Yet, as defined above, h does not
always preserve the strictness of a d-sub-typing relationship. Indeed, in the worst case, a strict §-sub-
typing between ¢; and ¢{ is mapped towards an equality, since elements may be removed during the
mapping. For example, if ¢; = (int;[2;8]) and ¢§ = (int;[2;9]) then obviously, {1 <s7, t; whereas
h(t1) = h(ty) = (even;[2;8]).

Property 1 is interesting because it shows that any two d-types from related C-types may be
compared according to set inclusion. Therefore, it is a first step towards the definition of a sub-typing
that mixes both d-sub-typing and C-sub-typing. This broader sub-typing is named 7-sub-typing and
is defined in definition 1.

Definition 1 (vy-sub-typing) v-sub-typing is a relation that links two -types from different C-types.
It is computed by the combination of both C-sub-typing and §-sub-typing. Let t1 = (T1;e1(T1)) and
ty = (Ty;e2(13)) be two §-types, and Ty < Ty. ~-sub-lyping belween ty and ty is wrillen as ty <., {4
and is defined as follows:

Ty=T,=T and ty <57t
Iy < 1 & 1 2 2 Ss1 1
or Ty < Ty and ty <5, h(ly)

where h is the homomorphism previously defined.

Due to the v-sub-typing, any two é-types can now be compared according to subset inclusion,
provided that the required homomorphisms are defined. Yet, whereas §-sub-typing and C-sub-typing
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are explicitly handled and maintained by METEO, y-sub-typing relationships are only computed upon
request, provided that required homomorphisms are defined.

~-sub-typing has been defined in METEO in order to avoid any incompleteness in subsumption
checking which would result from the non-assertion of actual inclusion links between involved data
types. As a consequence of y-sub-typing, the incompleteness of subsumption related in section 3.3,
between attributes a; and as, does not hold anymore, since data types may be safely related in METEO
by inclusion through C-types and further their é-types are related by v-sub-typing.

4.3 Connecting METEO to the OBKRS through J-types

The METEO design is independent of the KRS, yet d-types are the results of the typing of knowledge
entities. In other words, METEO can be instantiated by the typing of a knowledge base. The typing
of a knowledge base is thus the core of the interfacing between the KRS and METEO. This section
outlines the features of this interface.

4.3.1 Typing of knowledge entities

Let us recall that each knowledge term is made of two components, its intension and its extension.
é-types of METEO have been designed in order to capture normal expressions of knowledge term
intensions. The typing of a knowledge term is made up of three steps. Only the first step takes part
in the interface between the KRS and METEO, while the two others are internal processes of METEO.

1. Translation from the knowledge representation language to EOLE. It is relevant to point out here
that EOLE has been designed in order to be able to be at least as expressive as the knowledge
representation language of the system we considered in our study (namely TRoOPES [Pro95]). It
means that any subset of value expressed through the TROPES language can also be expressed in
EOLE. As a consequence, FOLE may not be suited to more expressive knowledge representation
languages for this could lead to unsafe further computations.

e Whenever the knowledge term to be typed is an attribute, the translation needs to interpret
the knowledge representation language descriptors towards fields of a §-type. The C-type is
chosen according to the initial type of the attribute (table 1). For example, if the attribute
identified by age is firstly defined as an integer in a class, then it is typed by a §-type of the
C-type int. Any farther new description of age in a sub-class then will be typed towards
a d-sub-type or a y-sub-type.

e If the knowledge term to be typed is a class, it is typed towards a é-type from record. The
labels are the attribute identifiers and their associated types are §-types corresponding to
attribute typing results. Indeed, as pointed out in section 3.2, class descriptions may be
viewed as record types, and instances descriptions are record values.

2. Normalization of the resulting é-type.

3. Insertion in the corresponding d-type lattice. This step is achieved only if the knowledge term
does not lead to an inconsistency with regard to its relationships with other knowledge term
types, and if it is validated in the knowledge base.

Figure 3 shows the dynamic links that exist between the knowledge base and the §-types. These
links allow 8-type lattices to be built and to evolve according to the evolution of the knowledge base,
without any redundance or lack of information.
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Figure 3: A specialization tree on the left; two §-type lattices on the right. This picture shows both the
links that exist between knowledge entities and METEO terms (dashed thick lines), and the internal
links between METEO terms that stand for subordination of §-types to others (dashed thin lines).
For example, in the case of §-types of 1ist(int), the first field of the J-type syntax is an explicit
reference towards an existing d-type. Such a reference (which is called subordination) is written TR
on the picture.

4.3.2 TIsomorphism between é-types and knowledge term descriptions

Due to the typing of the whole knowledge base, each knowledge term is associated with a §-type. The
set-based operations applying to d-types are equivalent to the set-based operations of the KRS which
are used to handle main relationships between knowledge entities. Consequently, each operation which
manipulated knowledge term descriptions is now associated with a semantically equivalent operation
in METEO that manipulates §-types. For example, §-sub-typing between record §-types is equivalent
to specialization between class descriptions. In other words, the OBKRS now delegates to METEO all
its intensional operations, that is operations applying to knowledge term descriptions.

Since §-types are normal forms, operations applying to §-types rather than to knowledge term
descriptions are more efficient. Indeed, the normalization is performed only once and the syntax
of EOLE is more optimal than the syntax of the knowledge representation language which must be
expressive, therefore permissive.

Since METEO carries out the intensional operations of the KRS, it also interferes with all the
processes of the KRs which deal with entity descriptions. FError handling, explanation, knowledge
base merging, knowledge base comparisons, management of the knowledge base dynamic evolution,
categorization, and constraint management, are all examples of processes which somehow have to be
connected to METEO and which take advantage of its properties.

Figure 4 shows where does METEO take place, as a bridge between the host language (where data
structures are actually implemented) and the knowledge representation system (whose entities are
typed towards §-types which are manipulated by relations equivalent to specialization and attachment).

4.4 Extensibility of METEO

One main interest of METEO is its extensibility capacity that is independent of the KRs it is intended to
be dedicated to. This section addresses the way METEO fully deals with type collection extensibility,
as a new tool for the development of knowledge representation applications.
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Figure 4: Connection of METEO to the knowledge representation system and to the host language.
METEO gets the implementation of C-types from the host language (part V' of each data type), and the
implementation of é-types is defined (or inherited) by each C-type (part §t). é-types capture the types
of knowledge terms. Operations on values of C-types may be used by the knowledge representation
system through local inference mechanisms. Main relations among objects (specialization and attach-
ment) are delegated to the type system which implements them as y-sub-typing and membership on
C-type values and é-types.

4.4.1 Adding a new data type

Due to the C-type hierarchy, METEO is both a polymorphic and a extensible type system. Adding a
C-type may be achieved dynamically by the user. First, the user must select a C-super-type. Second,
he must declare links towards required operations that are implemented in the host language. Let us
recall that these operations are mainly the membership and equality predicates, plus possibly some
specific operations that represent properties required by the C-super-type. Once the previous two
steps have been achieved, the new C-type is fully and immediatly integrated into METEO, as any
other predefined C-type. The function used to link a host language data type to METEO is named
create-adt. For example, adding the C-type date, as a discrete C-type, is performed by executing
the following code:

(create-adt ’date ‘’discrete
equal: ‘’dateq

member: ’datep
order: ’ldate
succ: ’+day
pred: ’-day )

where the quoted symbols are names of functions implemented in the host language. The user must
define the order function on date values because it is required by the given C-super-type t-ordered.
Similarly, functions pred and succ are required by the C-super-type discrete. Indeed, these three
functions are mandatory for they allow é-types to be fully, and in an optimal way, represented by
means of lists of closed-bound intervals. In addition, the user may define any other function applying

to date values that would be used in the knowledge base.
The formated implementation of the C-type date is then generated by METEO by setting up
dynamic links between METEO predefined modules and the actual implementation of the data type.
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This implementation may be either written by the user, or retrieved from a programming library.
Basically, METEO encapsulates this implementation. The new C-type then inherits everything from
its C-super-types. For example, the sorting operations defined in t-ordered do not have to be defined
by the user for the new C-type date, for these operations are mostly generic. It is an illustration of
the inclusion polymorphism of METEO.

Once the new data type is encapsulated in METEO, the resulting new C-type is considered as
any other C-type of the hierarchy. In the case of the addition of a basic C-type, METEO generated
automatically the C-types resulting from the application of each unary constructor to that new C-type.
In the example above, METEO would generate two other C-types, namely 1list(date) and set(date).
Similarly, the addition of a new unary constructor (e.g. sequence) leads to the creation of all the
C-types that result from the application of the constructor to the basic C-types.

Any data type introduced in METEO as a C-type using create-adt is associated to the KRS
through its name and the name of its C-super-type. The descriptors authorized for the new data type
are these which are authorized for its C-super-type.

4.4.2 Extensibility and §-types management

This section addresses the actual capacity of METEO as a type system for an object-based knowledge
representation system. Indeed, the two connected levels of METEO allow to strenghten its extensibility
capacities. Let us recall that the C-type hierarchy has been designed from two main criteria:

e the set of values of a C-type is included in the set of values of any of its C-super-types,

e a C-type gets all the properties of any of its C-super-types; it may add some other properties
which may represent the core of the way EOLE is designed.

Due to the second criterion, the extensibility of METEO is protected along §-type management.
Indeed, whenever a user adds a new data type, he does not have to define the EOLE sub-language
associated to the new type; the syntax of d-types is inherited from the C-super-type, as well as all the
set-based operations applying to them. This possibility is due to the generic way these operations are
defined from basic predicates over C-type values. In other words, for any new implemented data type
T, the powerset algebra Ar is automatically generated. Therefore, the user does not have to deal with
é-type management and further attribute domain management, such as attachment or specialization
tests. Nevertheless, the user must provide METEO with an appropriate link to the codes of operations,
as previously indicated. If he does not, they will be inherited from the C-super-type, without any
compatibility checking performed by METEO.

In the previous example of the new C-type date, assuming that a date value is a int triplet
(dd,mm,yyyy), the user can now express any subset of date values by using knowledge representation
language in order to specify domain of so-typed attributes. For example, the knowledge representation
language expression:

exam-period a date interval [ (13,05,1996);(20,05,1996)[ except (18,05,1996), (19,05,1996)
is typed in METEO by the EOLE term (4-type):
(date ; [ (13,05,1996);(17,05,1996) ])

Any attribute typed by date is associated with a é-type from the C-type date. Therefore, the
set-based management of the attribute domain is performed by METEO through its associated §-
type. In particular, specialization checking or inference involving attributes typed by date are fully
handled by METEO, according to a semantics common to every data type. As a consequence, classes
and instances that contain descriptions of this attribute can then be involved in specialization and
attachment checking processes.
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As previously said, no KRs is able to deal with the example page 12 (section 3.3) in a sound manner.
With the connection of METEO to the KRs, not only the new data type even-integer can be added,
but this addition goes with the automatic generation of all set-based operations that manage subsets
of even values. The normalization process is one of these operations. Hence, METEO computes the
type of all four attributes:

type (a1) = ( integer ; [0;+004nt] )
type (ag) = ( even-integer ; [4;4+00gyen-int] )
type (as) = type (a4) = ( even-integer ; [0;2] + [10;+0gyen-int] )

Then METEO is syntactically able to infer that ||as|| = ||a4||, thanks to the normalization process
which ensures a synctactic equality over é-types whenever (and only when) there is a semantic equality.
Moreover, y-sub-typing is used to check whether or not ||az|| C ||a1||, where A is the homormorphism
that translates d-types of integer towards d-types of even-integer:

h( type(a1) ) = ( even-integer ; [0;+oCgyen-int] )

Then, using §-sub-typing among §-types of even-integer (which is automatically generated by ME-
TEO using the basic set-based operations of the new data type even-integer), it is straightforward
for METEO to conclude that

h( type(az) ) <seven-int type (a1)

i.e. according to the definition of y-sub-typing, type(az) <, type (a;) meaning ||az|| C [|a1||. As far as
we know, no other KRs is able to check such a sub-typing relationship — although it is necessary to
get a complete subsumption checking process — because both subsets are initially constructed from
values and operators of different data types. Yet this is possible in METEO because of the hierarchical
organization of C-types which permits polymorphism not only of operations among values of C-types,
but also of operations among subsets of values.

4.5 About the implementation of METEO for the KRS TROPES
METEO has been implemented for TRoOPEs [Pro95] with the programming language ILoG-TALK
[ILO94]. TLoGg-TaLK is a Lisp-like language, provided with an object management module, ILOG-
TALK is therefore close to Common-lisp.
4.5.1 Implementation features
C-types of METEO are implemented as classes whose attributes are

e the fields describing é-types

e the d-sub-typing relationships (§-type lattices are implemented as adjacency lists)

e the links between TROPES entities and d-types

d-types are obviously instances of these classes. Values are usual, possibly constructed, Lisp values.
Values may also be instances from a TALK class, if this class is used as a C-type membership predicate.
Methods of C-type classes are, on one hand operations of the algebra Ar plus the normalization
process, and, on the other hand, they are any user-defined functions associated with C-type values,
including membership and equality predicates. Inheritance between classes stands for C-sub-typing.
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4.5.2 METEO and other features of TROPES

TROPES is a multi-point of view OBKRS: a family, called a concept in TROPES, is split into several
points of view. A point of view focuses on one aspect of the individuals which the concept denotes
according to a given set of relevant properties. A point of view consists of a tree of classes ordered
by single specialization. An instance belongs to exactly one class in each point of view. Classes
from different points of view may be related by bridges [MRU90]. A bridge is a relationship between
several different classes not linked by specialization: a bridge from classes C, - - -, C, to class C' means
that whenever an instance belongs to every C; (¢ € [1;n]), it necessarily belongs to C' as well. Like
specialization or attachment, a bridge must obey set-based restrictions on term descriptions. Thus, as
METEO sub-typing is intended to represent specialization between term descriptions, METEO defines
another operation that is equivalent to the bridge checking [Cap95].

Since METEO carries out the intensional operations of TROPES, it has a strong impact on the whole
internal organization and implementation of TROPES. METEO then cooperates with all inference and
checking processes of TROPES, as well as with error handling or knowledge dynamics maintenance
[CE96].

METEO is used during instance and class classifications [CEG95] through the checking and the
inferences of membership and inclusion relations. It is also useful to process symbolic categorization,
because similarity measures are defined within the definition of C-types, according to their specific
properties [VE95].

At last, METEO weakly cooperates with MICRO, the constraint management system of TROPES
[Gen95]. Constraints may apply to attribute domains and class extensions. In addition, constraints
may also exist between attribute domains. Many predefined constraints apply to domains that are built
from any existing initial data type, such as list or int. Although the existence of dynamic constraints
in TROPES prevents the METEO static type checking from being sound and complete, METEO and
MICRO cooperate in order to reduce dynamic constraint checking. Indeed, MicrRoO performs domain
reductions by means of specific operations associated with the different kinds of predefined constraints.
The typing process is thus completed by the integration of the results of attribute domain reductions
computed by MiCro. For example, let mic-eq(mic-add(a,b),c) be a class constraint defined among
the three attributes a, b, and ¢, meaning a + b = ¢, where the domains of these attributes are integers
ranging respectively in intervals [0;6], [8;19] and [-2;29]. Then Micro reduces the domain of ¢ from
[-2;29] to [0+8;6+19], i.e. [8;25]. This reduction is performed using Mi1cRO predefined rules which call
METEO operations on C-type values and é-types. The final §-type associated with the attribute c is
the result of the intersection Ms;,¢ between its initial é-type (int;[-2;29]) and the temporary é-type
(int;[8;25]).

5 Example

This section outlines an example of the usefulness of METEO extensibility during the design of complex
applications. Here is addressed the field of molecular biology where biologists aim at representing the
phenomenon of protein synthesis. The modelling of this phenomenon is described step by step, through
the attributes of the class protein and protein-gene (figure 5).

The characterization of any gene is its associated, unique DNA sequence, usually represented as a
sequence over the alphabet A’ ’C’ G’ T°. The characterization of any protein is an unique sequence
of amino-acids, represented as a sequence over an alphabet of twenty characters. The protein synthesis
from a gene requires the production of messenger RNA, represented as a sequence over the alphabet
A’ ’C’ ’G’ "U’. The protein synthesis is formally represented by the composition of several functions
over sequences.
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DNA .. . ATCGTCAGTATTGAACCGATAAAACGT TEAGGTTACATAG . .
(initiation codon) TCA| GAG (termination codon)
DNA coding sequence GTATTGAACCGATAAAACGTT
c
8
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C->0G 8
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protein sequence KPME oMY
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Figure 5: Simplified model of protein synthesis from DNA.

But the KRS does not provide the user with the implementation of the data constructor sequence,
while it is rather useful to the description of protein gene and protein. There exist three ways to define

such a data constructor.

1. The user may use the knowledge representation language. However, the data constructor
sequence may not represent a direct and unique element in the application domain, namely
molecular biology. The same sequence of characters could stand for both a RNA and a protein,
which could be ambiguous, thus resulting in further erroneous computations of the Krs about
these sequences and about what they mean to represent.

2. The user may create the new data constructor (C-type) sequence, as a C-sub-type of 1ist, such
that it inherits the syntax and handling of §-types from 1list.

3. The user may use the host language to fully implement the data type sequence. Yet, this
solution does not allow further attribute domains to be involved in KRS inferences and checking

processes, such as specialization or attachment.

The second solution is obviously the most appropriate here, especially since operations over se-
quences can then be implemented and because é-types from sequence will type attribute domains
which then will be involved in set-based processes. When creating the C-type sequence, METEO
automatically creates sequence(char). The user can either use it or create C-sub-types of it for a
better fit with alphabets which sequences of its application are constructed over.

Classes protein-gene and proteins are partly described below, using user-defined C-type and user-
defined functions defined within new C-type definitions, which are used to infer unknown attribute
values for particular instances of the classes (section 2.4).

Class protein-gene a-kind-of gene
Attributes:
promoter in sequence(char) among ‘A’ 'C’ ’G’ 'T’ card [2;6]
gene-type in string domain (“CDS” “ORF” “URF”) default “CDS”
DNAseq in sequence(char) among 'A’ ’C’ G’ T’
coding-seq in sequence(char) among A’ 'C’ °G’ T’
compute-with mt-extract-maxseq (

* DNAseq,
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(T A ),
(T Q)
prot-seq in sequence(char) among ['A’;’Z’] forbidden 'B’°J’ ’O’ 'U’ "X’ °Z’
compute-with mt-transcript (

mt-traduct (*.coding-seq ) )
protein in string
compute-with-filter { P proteins, P.name:
P.AAseq = *.prot-seq }

function in string domain (“catalytic” “storage” ...“inhibitive”)

rbs in RBS

where compute-with-filter corresponds to the filtering mechanism and compute-with is namely
procedural attachment (section 2.4). Both are mainly ways to compute (or retrieve) the values of the
attributes they are associated with. In the above example, RBS? is a class of the knowledge base.
Functions prefixed by mt- are defined in METEO within the C-type sequence(char) and using the
host language. They apply to particular sequences and correspond to basic manipulations of sequences
such as extraction of sub-sequences, transformation from an alphabet to another, etc. These functions,
when applied together in a particular way, represent the phenomenon of protein synthesis; the coding
sequence of DNA is extracted from the whole DNA sequence of the gene, which is part of the process
represented by attributes DNAseq and coding-seq. Then RNA is obtained through the application of
transcription to the coding DNA sequence (represented by attribute prot-seq), and finally the protein
associated with the gene can be retrieved using a filter which looks at all the proteins of the class
proteins and keeps the names of those whose proteinic sequence corresponds to prot-seq of the gene.
The class proteins is partly described below:

Class proteins a-kind-of biological-object
Attributes:
AAseq in sequence(char) among ['A’;’Y’] forbidden 'B’ 'J’ 'O’ U’ ’X’
name in string

Since METEO manages d-types as attribute types, set-based relationships between attributes typed
by sequence can now be soundly checked. For instance, the domains of both attributes A Aseq of class
proteins and prot-seq of class protein-gene are not expressed in the same way using the knowledge
representation language. The KRS cannot find out by itself that these domains actually denote the
same set of values. Among other consequences, this does not allow the KRs to check the soundness of
the filter that computes the value of the attribute protein in the class protein-gene. However, these
domains are typed in METEO by the same é-type, using typing and normalization processes of the
C-super-type 1list which are parameterized by sequence C-type mandatory specific functions:

( sequence(char); ( char;A’;A’|+['C;T]+..4+YY']); T;[0;+00] )

Hence, the two domains are recognized to be equivalent. This would not have been possible
without METEO which provides the new C-type sequence with all required set-based operations.
Since even the attribute typed by a newly defined data type may be involved in set-based checking
and inference processes through a sound and complete way, the classes that contain them can in their
turn be involved in these processes. This is one of the main consequence of delegating KRS intensional
operations to METEO.

6 Related works

The type system METEO contributes in two different area. With regards to other type systems, the
contribution of METEO is its ability in dealing with arbitrary subsets of values (4-types) in an extensible
way. Then METEO must be compared to works carried out in the area of knowledge representation.

2 Ribosome Binding Site
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6.1 DMETEO vs. other type systems

The design of a type system dedicated to a language is not original at all. Besides a type system is one
of the most basic components of programming languages or database systems. Yet no type system has
been designed so far to deal with the specificities of a KRS that stem from frames. Those specificities
come from the expressiveness of the knowledge representation language which complicates all type
checking processes. Indeed, subsets of values of any data type can be constructed by the user — or
by an inference mechanism — then are involved in type checking processes related to subsumption
(section 2.3). One of the most expressive type systems dedicated to an object-oriented programming
language is the type system of ApA [Uni83], which both permits and processes type definitions such
as subtype young-age is integer range 1..18. Although, such a type definition is not usual in
programming languages. It means exactly the same as the following expression of an attribute domain
in an OBKRS: young-age a integer interval [1;18] (according to the syntax we used so far). Yet
there are three main differences between the ways AbA and an OBKRS deal with types.

1. The type system of ADA does not permit to compare two types that are not related by the
subtype relation. For example in ADA, values of the type young-age defined above are not
comparable to values of the type defined as subtype old-age is integer range 1..150, al-
though the set represented by the type young-age is included in the set represented by age.
Such a comparison, which could be viewed as the inference of a sub-typing relationship, may
be performed at any time in an OBKRS in order to check specialization relationships. Besides,
all KrRss permit it; METEO permits it through §-sub-typing and/or y-sub-typing. ADA cannot
permit such sub-typing inferences because it does not distinguish between a data type (values +
operations) and a set of values by itself. METEO does distinguish between both notions through
d-types and C-types.

2. Not all predefined data types of ADA can be restricted as integer can be. Besides only the
descriptor range can be applied to type in order to define a sub-type (strictly, a subset). For
example, if one wants to create the type of roman numeral, he or she cannot specify it as a
sub-type of character through the enumeration of the relevant characters 'I’, °V’, ’X’, etc. As
a consequence, he or she cannot use input/output operations that apply on characters. The
example of section 5 shows that it is necessary to have that possibility in knowledge representa-
tion because of the complexity of the structures that capture the knowledge. To be more general,
we can say that despite its important expressivity, ADA is not expressive enough for its type
system to be adapted to the knowledge representation requirements.

3. Since there is only one descriptor in ADA that allows one to restrict the set of values of a data
type, the type system of ADA does not contain any way to add a normalization step during
(or before) type checking. Because an OBKRS requires a deeper expressivity, the underlying
type system must fully integrate normalization in order to ensure both the soundness and the
completeness of both type checking and type inferences.

In order to compare the requirements of an object-oriented programming language and these of an
OBKRS regarding type management, we chose ADA because it comes with one of the most expressive
type system. Other type systems such as these of Simula or C++ perform type checking but they do
not allow one to build subsets of values as domain of the attributes without having to program a class
that would be the implementation of the sub-type. Consequently, those type systems do not handle
the dimension corresponding to subsets of values (§-types) of usual data types (C-type), whereas it is
one of the specificities of METEO. This lack of subset management explains why we did not use an
existing type system to be adapted and connected to the KRs.

Type systems are the basic of almost any system in computer science. Most of the theoretical
proposals and system implementations of object-oriented data models are restricted to the possibility
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of defining only enumerated sets [BKKK87, LR89]. However, the object-oriented data model TM
[BdBZ93] is the first that is formally capable of dealing with arbitrary set expressions and powertypes
in the context of sub-typing and multiple inheritance. For such a purpose, TM permits arbitrary set
expressions (enumerated sets and predicative sets defined as {z : o|¢(x)}) as well-typed expressions.
Therefore, METEO is comparable to TM. Indeed, METEO deals with predicative sets too — with
enumerated sets as well —, through both the typing of filters and the storage of domain reductions
computed by the constraint management module MIcrRO (section 4.5.2). The specifities of METEO
which distinguishes between C-types and d-types could actually be adapted to an object-oriented
database system whose designers would like to integrate more expressive ways to specify the features
of object classes.

6.2 METEO vs. KRS similar abilities to manage types

Type collection extensibility is still a problem in most KRSs in the area of description logic systems,
for example. Despite some incomplete solutions, such as TEST-H in CLASSIC or :predicate in LooMm,
only two systems provide the user with type collection facilities in such a way that type checking
remains sound. The TEST-H predicate of CLASSIC is currently studied in order to deal with concept
subsumption [BIM96].

The system K-REp [MDWO91, OMW96] provides the user with a partial type collection exten-
sibility, although no type system is associated with K-REP. In order to add a new data type, the
user must define around fifteen functions within the Krs. These functions basically correspond to the
handling of subsets of values of the new type that can be constructed with the knowledge represen-
tation language. Once these functions are written by the user, the new data type is connected to
K-REP. Relationships such as subsumption can then be soundly checked or inferred. The manner in
which K-REP integrates new data types is the result of the modular organization of the whole imple-
mentation of the KRS, that leads to the dynamic creation of links between host language programs
and the KRrs-defined checking processes. With this solution, the user must still program set-based
operations, whereas both the hierarchical organization of METEO’s C-types and the implementation
of powerset algebrae as §-types permit the inheritance of those operations. With METEO, only the
basic operations have to be defined by the user. Besides the user can directly reuse existing programs
from programming libraries, without any further adaptation.

The design of METEO has been achieved according to formal observations close to those B. Gaines
reported in [Gai93] regarding data type extensibility and KRrss. Starting from the knowledge repre-
sentation server KRS [Gai91], B. Gaines pointed out that descriptions of concepts in DLS may be
considered as a specific kind of record types. Some set-based constraints which apply to this type,
may be resolved using its basic operations. Individuals are then considered as variables ranging in
record types. This approach is similar to the one of METEO which manages instances as values of
statically constrained record types. Besides, B. Gaines pins down concept description management
onto the same abstraction level of the management of any subset of values taken in a data type that
is associated with a constraint algebra. In METEO, these data types are C-types, while the subsets,
which are ideals in KRS formalism, are é-types.

The description logic system PROTODL provides the user with the ability of soundly defining
new type descriptors. To add a new descriptor, the user has to write the code of some specific
normalization operations. The extensibility property of METEO is comparable, in some extent, to the
descriptor extensibility of PRoToDL [BB92]. Indeed, both systems are aimed at providing the user
with a customizable representation language, thus improving its general expressivity according to the
specific requirements of an application domain. Descriptor extensibility could be achieved with the
presence of METEO, but not along the same way it is done in PROTODL. Indeed, normalization is a
process of METEO, rather than a process of the Krs. Therefore, to add a new descriptor would require
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the modification of the typing process (interpretation of the KrRs towards fields of é-types) instead of
the addition of some normalization operations.

7 Conclusion

The usual data types available in a knowledge representation system, namely the type collection of
the KRS, are not always sufficient, especially for the development of knowledge bases that require the
handling of complex data structures (e.g. molecular biology). This problem relies partly on type
checking and completeness of inference processes within the knowledge bases.

The type system METEO has been designed and implemented in order to provide an object-based
KRs with full type collection extensibility. This is achieved through the two cooperative levels of ME-
TEO. The first level (C-types) deals with data types implemented in the host language. The second
level (0-types) deals with subsets of values that are built in the knowledge representation language then
involved in the KRS checking and inference processes. This second level of types actually distinguishes
METEO from all other type systems designed for programming languages. It corresponds to the result
of the actual typing of a knowledge base. Its implementation is distributed among C-types according
to their specific properties for the expression of subsets.

On one hand, METEO is a polymorphic type system due to the hierarchical and generic organization
of C-types. This means that new C-types may be added through dynamic predefined links that ME-
TEO sets up between the implementation of the data types in the host language and the TROPES
KRS. When a new C-type is added in METEO, the handling of its computed §-types is fully and
automatically generated by METEO.

On the other hand, we pointed out the existence of an isomorphism between the é-type level
of METEO and the intensional part of the KRS, which deals with representation and reasoning on
descriptions of entities. Indeed, through d-types as knowledge entity types, METEO carries out the
whole intensional part of the KRS, except for dynamic constraint checking.

As a consequence of the two connected levels of METEO, knowledge entities that are typed using
a new C-type can be soundly and completely involved in the KRS checking and inference processes.
It is one of the most important originalities of METEO, because no existing KRS is able to warrant
the completeness of set-based reasoning processes as soon as a new user-defined data type is used
in the knowledge base. The KRs, together with METEO, is now able to provide users with a way
to design knowledge bases using both knowledge representation and programming language facilities
and libraries (executable programs), in a safe and complete way. These results have been empirically
tested through the implementation of METEO for the OBKRS TROPES.

The type system METEO could be adapted to any description logic system, provided that the
translation from the knowledge representation language, namely the TBox, to EOLE remains complete.
Yet, EOLE has been designed with the same expressive power as that of the TROPES representation
language. The adaptation of METEO to a more expressive knowledge representation language may
thus lead to a non-sound typing, unless EOLE gets extended appropriately. The important point is
that the main organization of METEO can be safely of use to DLS.

Many extensions of METEO are in progress. Among them, METEO is currently extended in order
to integrate the management of recursive definitions and regular expression. In addition, a deeper
cooperation between METEO and the constraint management system MIicro [Gen95] is planned which
will allow MICRO to benefit from the extensibility property of METEO.
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