A Proof of Weak Termination of the Simply-Typed {$\lambda\sigma$}-Calculus

Abstract : We show that reducing any simply-typed $\lambda\sigma$-term by applying the rules in $\sigma$ eagerly always terminates, by a translation to the simply-typed $\lambda$-calculus, and similarly for $\lambda\sigma_\lift$-terms with $\sigma_\lift$-eager rewrites. This holds even with term and substitution meta-variables. In fact, every reduction terminates provided that $(\beta)$-redexes are only contracted under so-called safe contexts. The previous results follow because in $\sigma$, resp. $\sigma_{\lift}$-normal forms, all contexts around terms of sort $T$ are safe.
Type de document :
Rapport
[Research Report] RR-3090, INRIA. 1997
Liste complète des métadonnées

https://hal.inria.fr/inria-00073601
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:17:40
Dernière modification le : vendredi 1 juin 2018 - 12:02:02
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:51:41

Fichiers

Identifiants

  • HAL Id : inria-00073601, version 1

Collections

Citation

Jean Goubault-Larrecq. A Proof of Weak Termination of the Simply-Typed {$\lambda\sigma$}-Calculus. [Research Report] RR-3090, INRIA. 1997. 〈inria-00073601〉

Partager

Métriques

Consultations de la notice

118

Téléchargements de fichiers

108