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Abstract: We consider aleader election algorithm in which a set of distributed ob-
jects (people, computers, etc.) try to identify one object astheir leader. The election
processisrandomized, that is, at every stage of the algorithm those objects that sur-
vived sofar flip abiased coin, and those who received, say atail, survivefor the next
round. The process continues until only one objectsremains. Our interestisin eval-
uating the limiting distribution and the first two moments of the number of rounds
needed to select aleader. We establish precise asymptoticsfor thefirst two moments,
and show that the asymptotic expression for the duration of the algorithm exhibits
some periodic fluctuations and consequently no limiting distribution exists. These
resultsare proved by analytical techniques of the precise analysis of agorithmssuch
as. anaytical poissonization and depoissonization, Mellin transform, and complex
analysis.
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Analyse d’un Algorithmed’ Election Asymptotique

Résumé: On considere un algorithme d’ é ection dans lequel un ensemble d objets
distribués (personnes, ordinateurs, etc...) essayent d'identifier I’un d’eux comme
leur leader. Le processus d éection est aéatoire, basé sur un jeu de pile ou face
biaisé : achague étape de I’ agorithme, les objets qui ont survécu jusgue 13, passent
au prochain tour s'ils obtiennent pile par exemple. On s'intéressealadistributionli-
mite et aux deux premiers moments du nombre detours nécessaires pour éireun lea-
der. On établit des asymptotiquesprécis pour les deux premiers moments, on montre
que I’ expression asymptotique de la durée de I’ algorithme exhibe des fluctuations
périodiques et par conséquent qu’il n’ existe pas de distribution limite. Ces résultats
sont prouvés par destechniquesd analyse agorithmiquetellesque: poissonnisation
et dépoissonnisation, transformée de Mellin et analyse complexe.

Mots-clé: Algorithmed’ éection; Anayseasymptotique; Analysecomplexe; Trans-
formées de Médllin.



Analysis of an Asymmetric Leader Election Algorithm

1 Introduction

Consider a group of n people (users, computers, objects, etc.) sharing a scarce re-
source (e.g., channel, CPU, etc.). The following elimination process can be used
to find a“winner” or a*“leader” that has undisputed and uncontested access to the
resource (cf. [2, 5, 19]): All objectsinvolved toss a biased coin, and all players to
throw heads are losers while those who throw tails remain candidate winners and
flip the coins again until a single winner (leader) isidentified. If al players throw
heads at any stage, the toss is inconclusive and all players participate again in the
contest. How many tosses are needed to identify a winner? The problem was po-
sed for afair (unbiased) coin tossing process by Prodinger [19] (cf. also [10]), who
provided the first non-trivial analysis. Recently, for the same fair coin model, Fill
et. al. [5] find the limiting distribution for the number of rounds. In this paper, we
analyze the same problem but when the coins involved are biased, that is, the pro-
bability p of throwing ahead is not equal to one half (p # %). In passing, we should
mention that such arandomized elimination agorithm has many applications, nota-
bly in electing a “leading” computer after a synchronization islost in a distributed
computer network (e.g., token lost in atoken passing ring network). We a so remark
that aformulafor the exact distribution has been given by Fill et. al. [5] for the fair
model and by Fill [6] for the biased case.

The above elimination process can be represented as a incomplete trie (cf. [5,
18, 19]) in which only one side of the trie is developed while the other sideis pru-
ned (al those players who throw heads do not participate any more in the process).
Therefore, the number of throws needed to find the winner (leader) is equivalent to
the height in such aincomplete trie. Accordingly, we shall call the duration of the
above elimination process as height, and we study asymptotics of its moments and
the limiting distribution, if it exists.

Trieshave been extensively analyzed in the past including the height. Thereader
isreferred to Knuth [16] and Mahmoud [18] for updated account on recent devel op-
ments in this area. In fact, tries and other digital trees were used as a testbed for
the “precise analytical analysis of algorithms’. Several new analytical techniques
were developed in the process of anayzing different parameters of digital trees (cf.
[4, 5, 10, 13, 14, 16, 20, 21, 22]). Recently, the focus of the research was moved
towards developing analytical techniques that can handle limiting distributions and
large deviations results (cf. [5, 11, 12, 14, 15]).

In this paper, we continue recent lines of research and establish asymptotic dis-
tribution together with the first two moments of the height. The novelty of thiswork
lies in deriving an asymptotic solution to a certain functional equation that often
arises in the analysis of algorithms and data structures (cf. [4, 21]). Namely, we
consider functional equations of the following type:

f(2) = f(pz) + f(gz)e " + a(z) 1
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4 S Janson, W. Szpankowski

wherep + ¢ = 1 and a(z) isagiven function. The point to observe isthat thereis
acoefficient depending on z in front of f(gz) which makes the problem interesting
(otherwise a standard approach can be applied; cf. [7]). While afirst-order asymp-
totic for asuch equations, when z — oc in acone around the positive axis, is rather
easy to obtain, second-order asymptotics are more challenging. This demands an
evaluation of some constants for which a closed-form solution does not exist. We
provide a quickly converging numerical procedure to assess these constants. We
must mention that functional equations of type (1) could be aternatively treated by
themethod proposedin[4] (cf. [21]), however, it seemsto usthat our method ismore
straightforward. In addition, in [4] the problem of evaluating the constants was not
discussed.

When dealing with thelimiting distribution, we use atwo steps approach recently
advocated in some papers (notably: [5, 11, 12, 14]): That is, we first poissonize the
problem and then depoissonize it. By poissonization we mean to replace the fixed
size population modél (i.e., fixed n) by amodel in which the number of personsin-
volved is Poisson distributed with mean n. Such amodel leadsto afunctional equa-
tion of type (1): More precisaly, for al integer £ > 0

fei1(2) = fe(pz) + €77 fi(gz) .

This equation is solved inside a cone, and then depoissonized in order to obtain an
asymptotic distribution of the original fixed size model. Actually, during the course
of establishing the limiting distribution we realize that its asymptotic expression ex-
hibits some fluctuations leading usto a conclusion that the height does not possess a
limiting distribution. This was aready observed for the height of tries (cf. [3]) and
symmetric (unbiased coin tossing) incomplete trie (cf. [5]).

The paper is organized as follows. The next section presents our main results:
In Theorem 1 we discuss asymptotics of the mean and the variance of the height.
The next Theorem 2 provides an asymptotic expression for the distribution of the
height. We close this section with a brief discussion of main consequences of our
results. Section 3 contains the proofs of both Theorem 1 and Theorem 2. Since, as
we aready mentioned above, we work on the Poisson model instead of the origina
model, we need atool of depoissonization. For the compl eteness of our presentation,
we briefly discuss a depoissonization lemma of Jacquet and Szpankowski [15] in
Section 3.1. Then, Theorem 1 is proved in Section 3.2, and Theorem 2 in Section
3.3.

2 Main Results

In this section, we present our main results. We start with a brief description of the
elimination process, and introduce some additional notation. To recall, n people use
the following randomized elimination algorithm to identify a leader: Players toss
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Analysis of an Asymmetric Leader Election Algorithm

a biased coin, and those who throw heads are losers while those who throw tails
remain candidate winners and flip the coins again until a single winner (leader) is
identified. If all players throw heads at any stage, the toss is inconclusive and all
players participate again in the contest. Let p be the probability of throwing atail,
that isprobability of survival. Wealsowriteq = 1—p. By H,, we denote the number
of tosses needed to identify the winner.

As mentioned before, the elimination process can be represented as an incom-
plete trie. Having thisin mind, one can easily derive the basic recurrence equa-
tion for the generating function of H,,. Indeed, let forn > 1, G, (u) = Eufl» =
> k>0 P(H, = k)z* bethe probability generating function of H,,, whereu isacom-
plex number. We further let G,(u) = 0 for convenience. (This corresponds to defi-
ning Hy = oo; as pointed out by Jim Fill [6], this convention is reasonable since we
never succeed to choose aleader without any candidates.)

Then, G4 (u) = 1 andforn > 2

Gn(u) =u i (Z)p’“q”"“Gk(U) + uq"Gn(u) . )
k=0

Thefirst term of the above isaconsequence of the Bernoulli-like split (after the first
round) of n players into those who still stay in the game. Clearly, the remaining
players have H,, — 1 tosses to finish the game. The second term of the above, takes
care of the inconclusive throw (when all plays throw heads).

In this paper, we derive the distribution of H,, aswell asthe first two moments,
that is, EH,, and Var H,,. We use the following abbreviated notation: z,, = EH,
andw, = EH,(H, — 1). Observing that z,, = G/ (1) and w,, = G'.(1), we derive
from (2):

T = 14¢"z, +) (Z)p'“q"’“xk : n>2, (©)
k=0

n

w, = 2(x,— 1)+q”wn+z <k

)pkq”"“wk ,  n>2, (4)
k=0

WIth.T() =z =wy=w; =0.

Inthe next section, we sol ve asymptotically the above recurrence equations using
poi ssoni zation, Mellin transform and depoissonization. Thisresultsin our first main
finding.

Theorem 1 Let P := 1/p and x;, := 2mik/In P. Then:

(i) The mean EH,, of the height admits the following asymptotic formula

1 1—-~v-=T70
Eanlogpn—F——v—l()

5 P + d1(logpn) + O(1/n) (5)
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6 S Janson, W. Szpankowski

wherey = 0.577 ... isthe Euler constant, and

Tr(0) = L (6)

where z,, must be computed from (3) (observe that the series converges geometri-
cally fast). Thefunction ¢, (z) is periodic function of small magnitude (e.g., for p =
0.5 one proves |6, (z)| < 2 x 10"°) given by

6i(z) = = ape >k (7

k#0

where
(14 xu)TOxk) = T7 (Xw)
In P ’

I'(s) isthe Euler gamma function (cf. [1]) and 7} (s) is given by (37).

(ii) Thevariance Var H,, = EH,,(H, — 1) + EH, — (EH,,)? satisfies

/6 — 1 +2(1 = 7)T7(0) = 277(0) = (77(0))* | 277(0) + T5(0)

Var H, = In2 P In P
|
- [+ aloge ) +.0 (22
T7(0) =Y "I =Y " um), ©)
n=2 n. n=2 n

where ¥(z) = I"(z)/I'(z) isthe psi-function. Observe that for natural » we have
U(n) = —y+ Hn,—1 Where #,, isthe Harmonic number. The constant 7’ (0) can be
computed as

oo

T;(0) =Y

n=2

wherew,, isgiven by therecurrence (4). Finally, 6,(x) isa periodic continuousfunc-

Wnq"

n

tion of zero mean and small amplitude. The constant [6%] = 35 |« |* isthe ze-
roth termof 42 (x) and its value is extremely small (e.g., for p = 0.5 one proves that
[0%]o < sup [d1(z)|* < 4 x 10717).

In Table 1 we present numerica values of the constants 77;(0), 77/(0), T5(0),
and the variance Var H,, given by (8) (for large n) asafunction of p. In particular,
we verify that our formula (8) on the variance agrees with that of Fill et al. [5] for
p = 0.5, wheretheexact value1 — v = 0.422... isgiven.

1
12

(8)
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Table 1: Numerical evauation of the constants 7(0), 77/(0), 75 (0), and the va
riance Var H,, for various p € [0.2..0.8]

p || 7r(0) | T7'(0) | T5(0) | Var H,
02| 236 | 2338 | 932 | 583
03| 122 | 109 | 341 | 358
04| 070 | 056 | 1.64 | 297
05| 042 | 030 | 095 | 312
06| 025 | 017 | 062 | 4.07
07| 015 | 0.09 | 045 | 6.68
08| 008 | 0.04 | 035 | 14.84

In order to formulate our next result concerning the distribution of H,, we need a
new definition. Let ameasure . be defined on the positivereal axisasfollows: Parti-
tion the positive real axisinto an infinite sequence of consecutiveintervals Iy, I, . . .
such that I, has length (¢/p)*®*®), where s(k) is the number of 1'sin the binary ex-
pansion of k. Thus, I, = [0,1],I; = [1,1 + ¢/p], etc. Note that the total length
of thefirst 2™ intervals I, ..., Iy=_1 iSp~™, and that these 2™ intervals are obtained
by repeated subdivisionsof [0, p—™], each time dividing each interval in the propor-
tionsp : g. Given these intervals, define i by putting a point mass |1, | at the right
endpoint of I, for each & = 0, 1, ... Note that for p = ¢ = 1/2, u consists of aunit
mass at each positive integer.

Now, we are in a position to present our second main finding:

Theorem 2 The following holds, uniformly for all integersk,
P(H, < k) = F(p*n) + O(n 1), (10)
where - -
F)=a [~ e du(t) = [~ e dua(t) (1)
with u,, denoting the dilated measure defined asabovefor theintervalsz /o, z 1y, . . . .

In particular, when & = |log,n]| + k where « is an integer, then for large n the
following asymptotic formulais true uniformly over
o0 K— o] n 1
P(H, < logpn] + ) = p= st [~y 4 0 (ﬁ) NG
0

where {logp n} = logpn — |logpn|.

RR n’3089



8 S Janson, W. Szpankowski

Remarks (i) Limiting Distribution Does Not Exist. Thefractiond part {log , n} ap-
pearing in Theorem 2 isdensein theinterval [0, 1) and does not converge. Thus, the
limiting distribution of H,, — |logp n| doesnot exist. In fact, we observe that:
liminf P(H, < [logpn]| +k) < p’“l/ e " du(t)
0

n—oo

limsupP(H, < |logpn| +k) > p“/ e P du(t) .
n—o0o 0
(i1) Symmetric Casep = g = 0.5. We observe that for p = ¢ = 0.5 we obtain

T
et —1

Y

Flz)=z) 7" =
7=1

and our results coincide with those of [5].

(iii) It is easily seen that lim, ¢ F'(z) = 1 and lim, .., F'(z) = 0. We conjecture
that F'(z) is always decreasing, asit isfor p = 0.5 by the explicit formulain (ii).
If F(x) is decreasing, then F'(p*) is a distribution function, and if Z is a random
variable with this distribution, then (10) can be written

P(H, <k)=P(Z+logpn <k)+0(n").

Hence, in this case, the distribution of H,, iswell approximated by the distribution
of [Z +logp n]; for exampleit follows that the total variation distance between the
two distributionstendsto 0 asn — oo, which is a substitute for the failing limit
distribution.

(iv) It is possible to obtain further terms in the asymptotic formulae in Theorems 1
and 2 using the same methods.

3 Analysisand Proofs

In this section, we prove Theorems 1 and 2 using an analytical approach. In the
next subsection, we transform the problem to the Poisson model (i.e., poissonize
it), which is easier to solve. Then, we apply Méellin transform (cf. Section 3.2) and
a simple functional analysis (cf. Section 3.3) to obtain asymptotic solution for the
poissonized moments and the poissonized distribution for the height. Finally, we
depoi ssoni ze these findings to recover our results for the original model.

3.1 Poissonization and Depoissonization

It iswell known that often poissonization leads to a simpler solution due to unique
properties of the Poisson distribution (cf. [9]). Poissonization is atechnique which

INRIA
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replaces the fixed population model (sometimes called the Bernoulli model) by a
model in which the population varies according to the Poisson law (hence, Poisson
model). In the case of the leader election agorithm, we replace n by arandom va-
riable NV distributed according to Poisson with mean equal ». We shall apply analy-
tical poissonization (cf. [10, 11, 13, 14, 20]) that makes use of the Poisson trans-
form (i.e., exponential generating function as shown below). One must observe,
however, that after solving the Poisson model (in most cases we can only solve it
asymptotically!), we must depoissonize to recover the Bernoulli model results. In
this subsection, wefirst derive functional equationsfor the Poisson model, and then
present agenera depoissonization lemmaof Jacquet and Szpankowski [15] (cf. also
[5, 11, 12, 13, 14, 20]) that we apply throughout the paper.
We now build the Poisson model. Let us define

G(zu) = Y Gn(u)z—,e_z ;
= n!
X = Yae
z) = T,—e ?,
— nl
. oC Z’I’L _
W(z) = > wp—e"’,
= nl

whereG,,(u), z, and w, areexpressed as(2)—(4), respectively. They are poissonized
versions of the corresponding quantitiesin the Bernoulli model.

Remark If z > 0, then é(z, -) isthe probability generating functionof H ), where
the population size N(z) is random with the Poisson distribution Po(z). Note, ho-
wever, that because of our convention Gy = 0 (or Hy = o0), G(z,-) is a defective
probability generating function. This could be rectified by instead defining Hy = 0,
but our choice is more convenient for us. Similarly, X(z) = a%é(z,uﬂu:l is for

z > 0 the expectation EH . of the height when the population is random Po(z),
provided we here use the convention H, = 0.

To see the achieved simplifications, we observe that the recurrences (2)—(4) now
become:

G(z,u) = @(pz, u);|— uG(gz, u)e P + (1 — u)ze * (13)
X(z) = X(pz)+X(gz)e”+1—(1+2)e ", (14)
W(z) = W(pz)+W(gz)e™ +2X(2) +2 ((e‘z -1)+ ze_z) (15)

for acomplex z. The above functiona equations have asimpler form than their cor-
responding Bernoulli model equations, but they arefar from being trivial. Themain
difficulty liesin the fact that there is a factor e™* in front of G(qz,u), X(¢qz) and
W (qz). Observe that in the symmetric case (i.e, p = ¢ = 0.5) these functional
equations reduce to the one analyzed in Szpankowski [22] (cf. dso [5, 7, 16]). We
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10 S Janson, W. Szpankowski

solve these functional equations asymptotically (see the next two subsections) for z
large and real. The next step is a depoissonization of these results, and we present
now ageneral depoissonization result of Jacquet and Szpankowski [15] that genera-
lize previous depoissonization lemmas of [11, 12, 13, 20]. Recall that a measurable
function 1: (0, 00) — (0, 00) isslowly varying if ¢ (tz)/¢(z) — 1 asxz — oo for
every fixed ¢t > 0.

Lemma 1 [DEPOISSONIZATION LEMMA] Assume that G(z) = $°°, gnire 7 is
an entire functions of a complex variable z. Suppose that there exist real constants
a<1,p8,0€(0,7/2),ci, o, and zg, and a Slowly varying function ¢/ such that the
following conditions hold, where S, isthe cone Sy = {z : |arg(z)| < 6}:

(1) For all z € Sy with |z| > 2,
G(2)| < e1]2Py(|2)); (16)

(O) For all z ¢ Sy with |z| > 2,

1G(2)e?| < el (17)

Thenforn > 1,
gn=G(n)+0 (nﬁ_llﬁ(n)) : (18)

More precisely,
gn = G(n) — InG"(n) + O (nﬁ_zdj(n)) : (19)

The “ Big-Oh” termsin (18) and (19) are uniformfor any family of entire functions
G that satisfy the conditions with the same a, 3, 0, ¢1, ¢, 2o and 1.

3.2 Analysisof Moments

We now prove Theorem 1 using the Mellin transform and depoissonization tech-
niques. We thus begin by studying the functions G(z, u), X(z) and V(z) defined
above, which satisfy the functional equations (13)—(15). Wewrite f*(s) or M(f, s)
for the Mellin transform of afunction f(z) of real parameter z, that is,

F(s) = M(f.5) = [ fla)rdo

INRIA
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provided the above integral converges. A beautiful survey on Mellin transform can
be found in [8], and we refer the reader to this paper for details concerning Mellin
transform. N N

The Poissonmean X (z) and second factorial moment W (z) satisfy function equa-
tions (14) and (15), respectively. We observe that from the recurrence equati ons(3)
and (4) we immediately prove that z,, = O(In(n + 1)) and w, = O(In*(n + 1)). It
followsthat X and 77 are entire functions. Moreover, it follows easily that X (z) =
O(In(z + 1)) for > 0. In order to apply the depoissonization lemma we have to
extend this estimate to complex argumentsin acone Sy.

Thusfix 0 = 7 /4, say; we claim that

1X(2)| = O(In(|2] + 1)), z €Sy (20)

Thisis proved by induction along increasing domains (cf. [14]) asfollows: Let p =
max(p, q)~' > 1. Supposethat R and A are such that

X (z)| < Aln(|z]), z€ 8y, 2<|z| <R. (21)

If now z € Sy with R < |z| < pR, then the recursion relation (14) yields, provided
Rmin(p,q) > 2,

‘}Z(ZN ‘Y(pz)‘ + ‘:}Z(qz)‘e_ﬂﬂcosO +14 (1 + ‘ZD@—\Z\COSG

<
< Aln(|z]) + Aln(p) + Aln(R)e PR + 2 4 (cosf)'. (22)

Now choose Ry > 2/ min(p, ¢) such that In(p) + In(R)e PEes? < —§ < 0 for
R > Ry. If A > 3/6cosf and R > Ry, then (22) shows that (21) holds also for
z € Spwith R < |z| < pR. Since clearly (21) holdsfor R = R, and a suitable
large A, (21) holds by induction for R = p" R, for every n > 0 (with the same A)
and (20) followsfor |z| > 2; for small |z| weuse X (z) = O(|z|?), |z| < 2, because
o =x1 = 0.

Similarly one proves, using (15) and (20),

W (2)| = O(In%(|z| + 1)), z € S,. (23)

In particular, (20) and (23) hold for real z > 0. It followsthat the Méllin trans-
forms X*(s) and W*(s) exist (and are analytic) in the strip —1 < s < 0. (In fact,
sincex; = w; = 0, they exist for —2 < Rs < 0, but we do not need this.)

Let us now concentrate on the first moment. Define

Ti(z) = Y(qz)e‘pz i (24)

Then, T (z) is an entire function and the Mellin transform 77 (s) exists at least for
—2 < Rs < oo. Indeed, since every z,, > 0, we have

X (2)e”] < X(J2])e” (25)

RR n’3089



12 S Janson, W. Szpankowski

and thus | X (z)| < X (|z|)e*I=®*. Hence, if z > 0 and |z — z| < pz/4,

T1(2)] < X(al2)e”™ ™ < X(glz])e® "+ < X(g|z])e P/ = O(e P/ In(1+2)).

Thus, by Cauchy’s estimate, for every m > 0,
T (z) = O(z e P*/?In(1 + z)), x> 0.

Since further 7™ (z) is bounded for 0 < z < 1, the Mellin transform T,™"(s)
existsat least for 0 < Rs < oo, and isbounded on each lineRs = o > 0.
Integration by partsyieldss(s+1) --- (s +m—1)T}(s) = (—1)mT1(m)*(s +m)
and thus the estimate Clom)
" V< o,m
Ty (0 +i1)| < 7(1 )
foreschm > 2 and —2 < ¢ < 00; C'(0, m) isbounded for o in acompact interval
of (-2, 00) andm fixed. Inparticular, T} (o +i7) isintegrablein 7 for each o > —2.
We re-write (14) asfollows:

(26)

X(2) = X(p2) + Ti(z) — (€72 — 1) — ze™>.
Taking the Méellin transform of the above we have, for —1 < Rs < 0,
X*(s) =p°X*(s) +T7(s) = I'(s) = T'(s + 1), (27)
where I'(-) is the Euler gamma function. Now, we can solve (27) to get

[(s)+T(s+1)=T(s)

X*(s) = , -1 < Rs <0. (28)

) (i/p —1
Theright hand side extendsto ameromorphic functioninthe haf plane—1 < Rs <
oo, with polesat x, = 2mik/In(1/p), k= ...,—1,0,1,2,.... All polesare simple

except theone at O (£ = 0), which isdouble.

It followsfrom (28) and (26) that for every o € (—1,0)U(0, 00), | X*(o+i7)| =
O((1 + 7*)~") € L'(dr). The Médllin (Fourier) inversion formula thus yields for
x > 0 thefollowing.

X(z) = — /I/QHOO:E_SX*(s)dS. (29)

211 J-1/2—ic0

Shifting the line of integration to s = R > 0 (using the Cauchy residue theorem)
we obtain for any large R,

X(2) = 0@ ™) = — 3" Res,, (¢ X" (s)). (30)

INRIA
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Let o = Res,, X*(s). If £ # 0, then

ar = (14 x6)L' k) — 17 (xx))/ In(1/p);
in particular thisimplies o, = O(|k|~") for each n > 0. Moreover, for k # 0,
Res,, (1 °X*(s)) = 2 *Res,, X*(s) = ape 2"Fo81/p ™,

For &k = 0, we obtain

Reso(z °X*(s)) = —In(z)/In(1/p)+Reso X*(s) = — 10g1/p$_%+ In(1/p)

Consequently, for every R > 0,

SN 1 1-9-T7(0) R
X(z) = logy, T + 5 —ln(l/p) + 51(log1/p x)+0(x ), (3D

where 0, (1) = — Y420 e *™* isaperiodic function with mean 0.

We now apply the depoissonization lemma. We have already verified condition
(1)in(20), with 3 = 0 and¢)(z) = In(z+1). Condition (O) can beverified smilarly,
but it is also possible to avoid induction and use the recursion just once as follows.
First, by (25) and (20), | X (2)e?| < X(|z|)e”?! < Ce/*'In(|z| +1) for every z. Next,
(14) can be written

X (2) = ePeP* X (pz) + e X (qz) + ¢ — 1 — 2,
which thusyields
€ X (2)] < CIn(1 + |2]) (P H% 4 1%} ™= 1 4 2],

and (O) follows.
Depoissonization Lemma now gives immediately, by (18), the first moment

1 1—y—T"
EHn=xn:10an+——7—1(0)

2 5 +0i(logpn) + O(Inn/n).  (32)

The error term can be improved to O(1/n), whichyields (5), by instead using (19)
and verifyingthat X" (z) = O(z™%), z > 0. Thelatter estimateis easily obtained by
differentiating (29) twice (moving the derivativesinside theintegral) and estimating
theintegra by residue calculus as above. The details can be found in [14, 15].

Now, the second moment. Let 75(z) = W(qz)e ?*; then the Méellin transform
Ty (s) existsfor —2 < Rs < oo and (15) yields, for —1 < s < 0,

W*(s) =p~"W*(s) + Ty (s) + 2X"(s) + 2I'(s) + 2I'(s + 1), (33)

RR n’3089
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and thus
Wels) = f{;s) N 2I'(s) + 21F(_s]—:? + T5(s)
—2I'(s) —2I'(s +1) + 277 (s) _ 2I'(s) + 2I'(s + 1) + T3 (s) (34)
(1/p)s —1)? (1/p)s — 1

Asabove, we can obtain an asymptotic expansion of W(z) by finding theinverse of
the Méllin transform. Thus, the Poisson variance V' (z) = W (z) + X (z) — X%(2)
becomes, after some lengthy but elementary calculations,

- 1 2TH0) + T3(0)

V@) = Gt wmag)
n -1 -2T7(0) + 2(11;;)711*(0) — (77(0)) + 53(10g1/p z) + O(«(35)

where d3(t) = d,(t) — [07]o isasmall fluctuating function. Applying now the De-
poissonization Lemmato W (verifying (O) as for X), we easily obtain (8). In fact,
it follows as above, using (19), that w,, = W(n) + O(Inn/n) ((18) would give
O(In® n/n)), and thlstogether with thealready proven z,, = X (n) 4+ O(1/n) yields
Var H, = w, + z, — 22 = V(n) + O(Inn/n) (cf. [14, 15]).
To compl etethe proof of Theorem 1, we need amethod of eval uating the constants
T7(0), T5(0), and 77/(0). Let again z,, = EH,, which we can compute for any n

from therecurrence above. Weneed an evaluation of theMellinof X (z) = Yonso Tnige”

sincexy = x; = 0. Thusnoting that M(e~*,s) = I'(s) for ®(s) > 0, and further-
more M(z"e %, s) = ['(s + n) for R(s) > —n, weimmediately derive

X*(s) = Z%M e, Z T'(s+n) (36)
n=2 :

provided R(s) € (—2,0). Observe that the series converges absolutely in thisrange
by the estimate of z,, above.

Moreover,
Ty(2) = X (qz)e P = => =z n => xn('] Z"e”?
n>2 n! n>2 v
and thus, similarly,
Ti(s) = 3 “T(s +7) (37
n=2 -
provided —2 < R(s) < oco. In particular,
7)== Tn) =3 =, (38)
n=2 n. n=2 n

z
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which has an exponentia rate of convergence.
Now, we can move on and estimate 7', (0). Taking thederivativeof (37) at s = 0
and arguing as before we arrive at the following formula

T0) =Y ) = 3 T g (), (39)

|
n=2 n. n=2 n

where ¥(s) = I'(s)/I'(s) isthe Psi function; recall that for n > 2 we have ¥(n) =
—v 4+ H._1 (Where H,, here is the Harmonic numbe).
Of course, T3 (0) can be computed in asimilar fashion.

T;00) =Y L, (40)

This completes the proof of Theorem 1.

3.3 Analysisof the Distribution
We now prove Theorem 2. We start with the functional equation (13). After defining
H(z,u) =G(2,u)/(1 —u) weobtain

H(z,u) = uH(pz,u) + uH (gz,u)e ™ + ze™* . (42)

Let now Gi(2) = X220, P(H, < k)Zre~. Then, H(z,u) = Y52, u*Gy(2) and an
identification of the coefficients of » in (41) yield
Go(z) = ze*
Gri1(2) = Gi(pz) +e 7 Gi(gz) k > 0. (42)
We claim that the above functional equation for G/, (z) is solved by

Gil2) =p'z [ e du(t “3)

(where 1 isdefined just above Theorem 2). Infact, thecase k = 0 issimple, because
p restricted to [0, 1] only consists of a point mass at 1, and thus the integral equals
e~*. For k > 1, we use the fact that the measure i on (p=*, p~*~1] is obtained from
pon (0, p~*] by atransglation and dilation, so that for every function f,

[ soa="["" 16+ Laute

and thus

RR n’3089



16 S Janson, W. Szpankowski

It isnow easy to seethat (43) satisfies (42).

Moreover, (43) trivially holds also for £ < 0, with both sides zero; hence (43)
holds for al integers k.

We next observe that, with F'(x) defined in (11),

Gu(n) = F(pn)| =pn [~ eP™ap(t) <pn [~ e Mar = (49
A

+ pk

when k > 0, and similarly |Gi(n) — F(p*n)| = F(p*n) < pFne " + e <
(n+1)e”™ when k& < 0. Thus, to complete the proof of Theorem 2 it sufficesto ap-
ply Depoissonization Lemma, provided we verify conditions (I) and (O) uniformly
for al £ (and some fixed 6), with 5 = 0 and ¢» = 1. This can be done as above
using induction along increasing domains, but we give asimpler argument. Indeed,
in order to verify (I) we can use the exact formula (43) and observe that for any de-
creasing function f > 0 on (0, 00), [5° fdu(t) < [5° f dt; henceif Rz > 0,

Gul2) < pHlel [~ e M ap(e) < g [ e ar = L
0 0 Rz
Consequently (1) holds, uniformly in &, for any 6 < /2.
For (O) wefirst observe that
2] — el

e*Gi(2)] <

= n!
Hence (42) yields, for k& > 0,
€2Gry1(2)] < [€7]|eP*Gr(p2)| + |e*Grlqz)| < e FPll 1 edlzl < eal]

for somea < 1and z sufficiently large. Sincefurther |e*Go(z)| = |2/, dso (O) holds
uniformly in k. This completes the proof of Theorem 2.
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