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Abstract: The semi-Lagrangian atmospheric model on the sphere based on compact finite
differences is presented. In the two-dimensional case, the potential vorticity is used as one of
the prognostic variables. Fourth-order compact finite differences are used to discretize first- and
second-order derivatives. The results including real data tests presented for 2D shallow water
version with orography demonstrate its accuracy with the time steps several times greater than
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Le modele atmosphérique globale semi-Lagrangien basé
sur les differénces compactes finies et son implantation
sur 'ordinateur parallele

Résumé : Le modele de circulation atmosphérique globale 3D pour simulation de climat et
les etudes des prédictabilité etait développé. Le vorticité est utilisé comme le variable pro-
gnostique. Le modele est basé sur le schéma semi-Lagrangien que permette d’utiliser le pas
de temps 3-4 fois plus que dans le schéma Eulérien. On a utilisé la version 2D sur la sphere
pour développer le schéma numérique semi-implicite semi-Lagrangien en utilisant les différences
compactes finies de 4ieme ordre. Afin d’évaluer la précision du schéma semi-Lagrangien par
rapport a un modele de référence Eulérien spectral, on a fait les tests avec des données réelles.
Les résultats montrent que le modele donne le méme niveau d’erreurs que le modele de réfé-
rence. Du point de vue numérique, la version 3D est une extension du modele "shallow water”
ou on utilise la transformation diagonalisée des modes propres verticaux en ajoutant les équa-
tions de température et d’ humidité. Les premiers résultats pour la version 3D sont présentés.
Le modele est parallélisé en utilisant la conception de mémoire distribuée avec I’aide de MPI
(Message Passing Interface). Deux strategies de parallélization des calculs semi-Lagrangiens et
leur résultats sont comparés.

Mots-clé : Modelisation de climat, schéma semi-Lagrangien, differénces compactes finies,
calculs paralleles
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1 Introduction

Climate modelling is one of the most computer time-consuming problems in geoscience. While
semi-Lagrangian approach (also known as backward characteristics method) allows to use grea-
ter time steps than permitted by CFL number it lacks the formal conservation properties.
The potential vorticity is the global invariant of the atmospheric flow, so while discretizing its
conservation law, one can achieve better conservation properties. This feature is of great im-
portance for long-term integration of the model needed for predictability studies and simulation
of climate. Semi-Lagrangian method is widely used now for numerical weather prediction but
we see only few attempts to use it in climate modelling [3], [24] .

The approach based on semi-Lagrangian advection of potential vorticity was already applied
in [4] for 2D model and has shown good results. In this case, the wind field is expressed in
terms of a stream function and velocity potential. This also allows to use an unstaggered grid
with a single set of trajectories for all variables thus avoiding multiple set of trajectories or
additional interpolations associated with a staggered grid [4].

In the semi-Lagrangian models, the advection part is discretized with the fourth order.
The finite-difference discretizations in the semi-implicit part of the model are usually of the
second order. The compact finite differences used in this study allow to have the fourth-order
discretization in the semi-implicit part thus giving overall fourth-order accuracy while retaining
the simplicity of the second-order solvers. This is achieved by using the Fourier representation
in the longitudinal direction. The latter also facilitates the implementation of the fourth-order
implicit horizontal diffusion.

In this paper, we present the global finite-difference model which is based on the potential
vorticity equation in the 2D case and absolute vorticity equation in the 3D case. The numerical
results are given for both versions of the model. The parallel implementation of the 3D model
on a distributed memory computer is described.

2 Formulation of the shallow-water model

The base shallow water equations on the sphere are potential vorticity equation

dfc+f _0
dt\®—d,)

momentum equations written in the vector form on the sphere

CN> - Vo [kxV
H

dt
and continuity equation
d(® — )

dt

Here ( is the relative vorticity, ® is the atmosphere thickness, @ is the height of the surface,
f - the Coriolis parameter, V - horizontal velocity, D - divergence, d/dt - three-dimensional

dV i . dV
= horizontal projection of | —],
" dt

= (0 —®,)D.

Lagrangian derivative,

dt
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is gradient operator on the sphere, A - longitude, ¢ - latitude, V is the vector of horizontal
velocity with the components v and v in A and ¢ directions respectively, a - the Earth radius
and k is the unit vector in the vertical.

Momentum equations are used only to obtain the right hand side for the divergence equation.

A completely nonlinear discretization of governing equations was used in [4]. Our formu-
lation combines that of [5] without divergence damping and the potential vorticity equation
discretized in a simpler way than in [4] still leading to stable scheme. This means that we can
use linear solver instead of nonlinear multigrid solver thus making the 3D model development
easier.

The temporal discretization is based on the two-time level scheme with the extrapolation
of nonlinear term in the continuity equation to the midpoint of the trajectory and linearized
treatment of fast gravity waves (semi-implicit scheme) leading to Helmholtz-type equation to
be solved at each time step. We use temporal uncentering in the momentum and continuity
equations while using centered in time scheme for potential vorticity equation. The reason
of uncentering is the suppression of the spurious orographic resonance intrinsic to the semi-
Lagrangian models [19]

The discretization of the governing equations looks as follows (asterisk denotes the values
at the departure points of trajectories):

Potential vorticity equation:

C+\Y ¢\ 1
675) (o). (ea) & 0

At n
-5
. At ynpl”
L+ 5D

where

ot — @, + ((I)” _ <I>5)

Momentum equations:

n+l n n _
(u) :_(1;6(V<I>+fk><v) wl
H

¥ ﬁ (Ve o))

Here € is small first-order decentering parameter.
Continuity equation:

(CI)’nH—(I)S)—((I)’n—(I)S)*_ N , n+1/2 _
o~ i e e (@ —2)D) "7, (3)

where ® = ® — ®, & is the reference height, M denotes the values interpolated at the
midpoint of trajectory. The values at the intermediate time level n + 1/2 for some function p
are obtained from usual extrapolation p"t'/2 = 3/2p" — 1/2p"~!. Such extrapolation is also
used to obtain the velocity components at time n + 1/2 necessary to find departure points.
We combine momentum equations to obtain the divergence equation:

1 +e¢
2

Dn—l—l —

pc(e)™ 4+ 4, (4)
INRIA
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where the operator L is

[ g 0? 1 @(gF)g_l_ 19 9
©a?cos?p 0N a?cosp Oy 9N alcosy Oy gcoscpaga

and

O )

1 +e¢
2

F =

ot g = (1+FH)7

Ay = a1 R + an R,
Ay = —yRJ 4+ iR,

where R.} and R, are known quantities of momentum equations at the n-th time step and
a1 and ay describe the change of orientation of a vector at departure point as seen at arrival
point [16].

Using (3) to eliminate D"*! from (4), we obtain a single equation for ® to be solved at
each timestep.

One can see that our discretized potential vorticity equation differs from that of [5]. In
particular, we use unmodified potential vorticity equation, while in [5] it was found necessary
to use the linearized treatment of the Coriolis parameter in this equation. We solved this
problem by separating the Coriolis parameter to be estimated at the departure point from the
vorticity. Then we calculate it analytically rather than interpolate it. The other particularity
consists in using the modified height field (2) in the potential vorticity equation. This allows a
better account of nonlinearity of the continuity equation.

The basic fourth-order compact finite-difference formula for the first derivative (Numerov’s
scheme) is written as

L(o¢ 2(0¢) | 1[0¢) _ ¢it1— i 4
6<a$)i—1+3(a$)i+6(a$)i+1_ 2h O )

This scheme can be also obtained from the finite-element considerations on a uniform mesh
(Cullen, 1973). We can see that the Numerov’s scheme differs from the usual scheme in the
averaging of the derivative values, which is absent in usual schemes. In general, compact
schemes possess the following advantages:

e high-order accuracy on the three-point stencil (Numerov’s scheme is 6 times more accurate
than explicit fourth-order central differencing),

e small phase and amplitude errors.

The disadvantage of such schemes is the necessity to solve linear systems with constant tridia-
gonal matrices. The part of this process can be performed in advance.
The fourth-order formula for the second derivative reads

1 (0% 10 [ 0%p 1 (D% Vi1 — 205 + i1
. _ - - _ - r — K3 K3 K3 h4 )
12 (9562)2-_1 T2 (8;172)2. 1 (aﬁ " 2 +O(R) (6)
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Of course, it is expensive to implement this approach in a straightforward way in the multi-
dimensional problem. We use the Fourier representation in longitudinal direction in the semi-
implicit solver replacing compact finite differences in this direction by their Fourier images. This
allows to apply easily fourth-order compact finite differences on an unstaggered grid (6) and (7)
to discretize first- and second-order derivatives everywhere except for the poles resulting in the
same type of tridiagonal linear system for each longitudinal wavenumber as for second-order
central differences. This means that the computational overhead due to high-order approxima-
tion is relatively small. The Fourier representation in longitude also facilitates the inclusion of
the implicit fourth-order diffusion implemented as in [15] using 2 x 2 block-tridiagonal inversion
in latitude.

Let us consider the discretization of the operator £ in Eq. (4). First we rewrite the formula
(7) for the second derivative of some function f with respect to A as

Pr\
M(aT) oS (7)

M being tridiagonal matrix with the elements (1/12, 10/12, 1/12).
Expanding f in Fourier series in longitudinal direction, we can rewrite (7) for each Fourier
harmonic f; as
> fi :
~ —(k*
a)\2 < >fk7

where (k*) approximates k% and is the Fourier image of the operator M~'A,,

(k) = sin®(kAN)
AN —1/3sin?(kAN/2))’
A\ is the mesh size in longitudinal direction. Similarly, d/d is approximated by

d fi A
ﬁ~—5<k>fk7

B sin(kAX)
(k) = AN1 —2/3sin*(kAN/2))

and 1 = v/—1.
Finally the discretization of the operator L in (4) for each harmonic fj, with exception for
the pole points is obtained by discretizing

1 d 0
a? cos ¢ Op (g - Q%)
as X X X X
Gi172€08@1172(frjp — faj) — gicijacos @i ayo(fr; — frj1)
a? cos N\ p?

and multiplying all other terms of the operator by Ma? cos p. The result is

a’ cosgo</;(fk)> = —(k*)x

9i-y2 22 (gi—1/2 + Giv/2) giv1/2__;
(24 COS P;_1/2 Jejmr & 48 oS Juj + 24 cos pjq1/2 Fitl

INRIA
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[ LOgl) 100(gF) »  10gF)
L<k>(12 dp If’“f—1+12 dp jf’“f+12 de Hlf’“f“ +

]‘_

L 9417208 Pin1pp(Frjer = Jij) = im1y2 €08 0imapa(Fy = frjm) (s)
Np? '

Here we have to approximate g/ cos ¢ in the first term of the operator L as an average
between adjacent grid points to preserve the symmetry of the discretized Laplacian.

Other terms in the discretized form of (4) are also multiplied by Ma? cos ¢ to obtain the
fourth-order discretization.

At the poles, the integral approach described in [2] is used to obtain the second order
discretization valid at these points. We make use of the fact that the scalar field ®' can
have only zeroth Fourier coefficient not equal to zero at the poles. The resulting tridiagonal
matrix equation with complex unknowns is solved for each ®} using usual tridiagonal Gauss
elimination.

Once @' is known, the divergence D is calculated from (4). This was found to give much
less noisy field than straightforward use of (3). Next step is to obtain ®"t! and then relative
vorticity ("' from (2) and (1) respectively. Now the pair of Poisson equations on the sphere
is solved to find the streamfunction ¥ and velocity potential x:

Vi = (, (9)
Vixy =D. (10)

The discretization of these equations is based on the same approach as for solving (4). The
only difference is that for the existence of the solution we have to fulfil the condition that the
global mean of the right hand sides be zero. This is readily achieved by subtracting these global
mean values from the respective right hand sides (see [1] for details).

Finally the horizontal velocity components u and v are restored using Helmholtz theorem:

1oy 5%
v T ado | acosp N (11)
b 1 oy N 10y (12)

acosp 0N | adp’
We use Numerov’s scheme to discretize these derivatives.

It may seem that the proposed fourth-order algorithm for elliptic-type equations is much
more complicated than the one based on second-order differences. However, as we precompute
all quantities that do not change in time to solve (4) and (9 - 10), our approach requires
only 3 additional arithmetic operations per equation and grid point to apply Ma®cosp to
the respective right hand side terms. However, there is an additional cost in applying the
fourth-order compact differencing to (11-12).

In semi-Lagrangian advection part Hermite interpolation with fifth-order compact differen-
cing (CUD-5) derivatives estimates [21] is used to calculate the quantities at departure points
of trajectories. The algorithm for finding the departure points of trajectories is described in
[16]. We use linear interpolations to estimate extrapolated velocities and nonlinear term of the
continuity equation at the midpoints of trajectories.

RR n" 3080
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Table 1: [, and [, error norms

Order ERR;y FERR.u FRRy;wy FERRy v

second  0.0264 0.057 0.0562 0.11
fourth  0.00932 0.018 0.00861 0.018

3 Numerical results for shallow-water version

First the model problem of restoring velocities from known vorticity and divergence using
Helmholtz theorem was considered (Eqs. (9 - 12)). The velocity field to be restored is the
initial velocity of the Rossby-Haurwitz wave number 4 [22]:

U = aw Ccos c,o(l + cos® p(4sin® p — cos® @) cos 4)\) ,

v = —4aw cos”® psin @ sin 4\

and the associated vorticity and divergence are
(= wsinap(Z — 3Ocos4<pcos4)\),
D=0,
where w = 7.848 x 107°.

SOK
NS

™ 552
\ 4
e

Figure 1: Rossby-Haurwitz wave initial state.

Table 1 presents the [, and [, error norms of u and v for the conventional second order
and fourth-order compact finite-difference solvers with the resolution 2 degrees in longitude
and latitude. As expected, the fourth-order compact finite-difference approach was found to be

more accurate than second-order finite differences.
INRIA
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Figure 2: Evolution of Rossby-Haurwitz wave after 7-day integration.

Further tests were conducted with the 2D version of the model with the resolution 2 degrees
in longitude and latitude and the time step 1 hour. The digital filter initialization [13] with the
cutoff period 6 hours was applied in all cases. The standard polar numerics test and Rossby-
Haurwitz wave number 4 test described in [4] were successfully passed by the model. The model
was found to maintain the initial shape of Rossby-Haurwitz wave for at least one month. The
initial wave and its shape after seven and 14 days of model integration are shown in Figs. 1-3
respectively. See [6] for a discussion about shape of Rossby-Haurwitz wave in different models.

080N}

NTe}
(CCCCC,

Figure 3: Evolution of Rossby-Haurwitz wave after 14-day integration.

The three real data shallow-water tests without orography from [22] were carried out. The
global normalized RMS errors for the height field with respect to the high-resolution (T213)
spectral Eulerian model solution [23] are given in Fig. 4a. We see that these errors are not worse

RR n" 3080
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than these of solutions obtained with spectral Eulerian model with a little bit higher equivalent
resolution (T63, 1.875 degrees) and the time step four times smaller ([23], Fig. 5.11).

Normalized RMS height errors
x103 x10°3

‘ '] 21 December 1978 360

21 December 1978

16 Janvary 16797 340 16 January 1979

H
@
3

T T T 1T T 1T 1T 1T T T T T T T T TT

\ \ \ \ \ \ \ Hours \ \ \ \ \ \ \ Hours
000 2000 4000 6000 8000 10000  120.00 000 2000 4000 6000 8000 10000 12000

Figure 4: The global normalized RMS errors of the height field as functions of the forecast time. Hermite CUD-
5 interpolation (first-order decentering parameter ¢ = 0.01, horizontal diffusion coefficient Kp = 5 x 1013m?*/s,
® = 10* m) (left); the same but for cubic Lagrangian interpolation (right).

For comparison, we also present RMS errors for these cases obtained with our semi-
Lagrangian model but using conventional cubic Lagrangian interpolation to estimate departure
point quantities (Fig. 4b). One can see that these errors are greater in the case of cubic
Lagrangian interpolation. Further analysis has shown that the most significant response to
the change of interpolation is observed in the discrete potential vorticity equation while other
equations are sensitive to the type of interpolation to a smaller extent.

It is interesting to note the straightforward use of ®”"t! instead of ®"! (2) in the potential
vorticity equation (1) results in a growth of errors which is 8 % on average on the fifth day.

For one of these cases, namely for the initial data of 0000 UTC 21 December 1978 we also
present the initial height field, the reference solution of T213 model and the solution given by
our model (Fig. 5).

Fig. 6 shows the geopotential field on the second day for the initial data of 12 February 1979
for the version with the orography. The resolution was 1.2 degrees and time step 1.5 hours,
the orography was taken from [19] and the value of decentering parameter ¢ in momentum
and continuity equations was 0.25, the potential vorticity equation being centered in time. We
observe that spurious orographic resonance is well suppressed without degrading the accuracy
of the solution (see [19] for discussion and reference solution).

The behaviour of global invariants was studied in the two months simulation with 2 degrees
resolution starting from 21 December 1978 real data without orography. The relative change
of mass during the period of integration was 0.04 %. The total energy after weak oscillations
during first 10 days decreases with a small rate while the potential enstrophy steadily decreases
starting from the beginning of the run, the values of total energy and potential enstrophy after
two months being about 8 % less than initial values. In the absence of orographic forcing, the
dissipation included in the model (due to interpolation and parametrized diffusion) must lead
to a decay of total energy and potential vorticity.

INRIA
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Figure 5: Reference high-resolution solution at the fifth day (left) , solution of the model on the fifth day
(right) and the initial field (below) for 21 December 1978 case. Decentering parameter ¢ = 0.01, diffusion
coefficient Kp =5 x 10*¥m*/s.

RR n" 3080
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Figure 6: The part of the global 48 hours forecast height field from the initial data 12 February 1979, orography
included (first-order decentering parameter ¢ = 0.2, horizontal diffusion coefficient Kp = 1 x 10*°m?*/s).

4 Three-dimensional model

The governing equations for the moist atmosphere are written in the vertical o-coordinate
(0 = p/ps, where ps is the surface pressure). The absolute vorticity is used as a prognostic
variable rather than potential vorticity, keeping in mind that the latter is very difficult to use
with o vertical coordinate. Later, with the introduction of the hybrid o — 6 coordinate, we plan
to switch to the potential vorticity equation.

The equation of absolute vorticity (see, for example, [12])

d v 0ln pg v 0ln p,
%(C+f)=—(§+f)D— Ry (8T6 ps O0T,0 p)_

a?cosp\ ON do Do O
1 do v dc du
_ 99N o229 4 . I:
acosga(a)\ do COS@@@ 80) T (13)

Horizontal momentum equations (used to produce discrete divergence equation)

AV
(E) = —V®— R/T,VInp, — fk x V + Fy, (14)
H

Hydrostatic equation

0P
= —R,T,. 1
dlno B (15)
Continuity equation
dln p; do
D+—=0 16
dt T do ’ (16)

Thermodynamic equation

d_T R,T, i_l_dlnps _F
dt el + (06— Ngl\o ' dt )

(17)
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Specific humidity equation
dq
—=F, 18

The system of equations is closed by assuming periodic boundary condition in longitude
and imposing upper and lower boundary conditions

o =0; o=or,l.

Here p is the pressure, p; - surface pressure, D - divergence at o surface, R; - dry gas
constant, 7' - temperature,q - specific humidity, 7}, - virtual temperature (7, = T(1 + 0.61¢)),
k= Ry/cpa, ¢pa - specific heat of dry air at constant pressure, d - the ratio of specific heat of
moist and dry air, o7 - value of o at the top of the model atmosphere and Fv,, Frp, F}, describe
sources and sinks of momentum, heat and moisture respectively due to subgrid scale processes.

We disretize the absolute vorticity equation in time as

(C+ 077 = G e = =5 Dt + o)

Hleps fu (0TOlp OTOlup, 1 (000 050u)"
a?cosp \ 0N Jy dp 0O acos N0\ do COS@@@@U
Ry, (9T dlnp, 9T dlnp, 1,96 dv 96 duy |2
+{§D a2cosap<a)\ do Do I acosgo(@)\aa_coscpagaaa) . otk (19)

Here we have used, as in the discretization of the 2D model, a centered time approxima-
tion, while other equations use first-order time uncentering to suppress the spurious orographic
resonance.

Other equations are discretized in time as in [4].

vl _ oy 1+ ntl 1 n
(T)H:_< ~ (VG + frx V) it 26(va+kav)*)+

1—c¢
2

I+
_I_

: (Nv)n+1/2 +

(Ny )2 L Fy, (20)

G =®+ RI'Inp,,
Ny = —-Vo¥ — RT'V(In py),

or = RS (T, — T);,A o,

i=k

T = T(0) is the reference temperature profile and 7/ =T — T

In(p,)™*! — In(p,)%, 1+ """ 11—« oo \"
= - D+—] - D+ — 21
ai 2 \" " % 2 \" s, (2)
1 [(T T "
il {7 mnt) = (7o) |-
1 1

1
.—I— e(NT)n+1/2 +

§[(1 +&)(D6)™ + (1 — ) (T'o)"] +
RR n"° 3080
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where

G )

Finally, the specific humidity equation is discretized as
¢ = (¢+ F,At); (23)

Here ( )**! denotes a value at an arrival point at the new time level, ( )* is a value at
the corresponding departure point (determined by a 3D trajectory), and ( )7, — a value at the
corresponding “departure” point (determined by the horizontal projection of the 3D trajectory)
at the old time level. The subscript H in (20) denotes a horizontal projection of the vector
quantities.

Horizontal discretization of the above equations is based on the same compact finite diffe-
rences as in 2D version. However, a care is taken to obtain consistent discretization of nonlinear
terms in Eqs. (20) on a unstaggered horizontal grid. It is well known that the straightforward
approximation of these terms would lead to nonlinear instability (in the case of Ny also to
false representation of the orographic forcing). Basically, we follow the “pseudostaggering” ap-
proach proposed in [7], using fourth-order compact differences for derivatives and second-order
averages. For example, the part of Ny term for u-component is discretized as follows:

Jd1n p; 1 _ -
[qu I\ ] T Z((qui—m + Téij)A/\l(S/\ 1HPs¢-1/2,j + (quz’+1,j + ijij)A/\l(s/\ 1np5i—|—1/2,j)a
]

where A'A\ is a symbolic representation of the fourth order compact differencing on stag-
gered grid and the operators A and A acting on some grid function f are defined as

1 22 1
Af=57ficn + ﬂfij + ﬂfi—l—l,ja

24
Wfixry2 = (fiyr; — fis)/ Dz,
1 22 1
A,f = ﬂfmq + ﬂfzj + ﬂfi,j-l—lv

Opfijyrye = (fijrr — fij) ] D,
Vertical discretization. We use staggered Lorenz grid in o coordinate, so that all variables

except for vertical velocity ¢ are defined at full levels k and ¢ is defined at half levels k£ 4 1/2.
The values of o and ¢ at full level are computed as

Ok—1/2 T Okt1/2

O =

2 bl
Gy = Ok—1/2 + O'k+1/27
2
and
Alnoy, :1H(0k+1/2/0k—1/2)7 AJk:Uk-|-1/2—Uk—1/2-

This gives the following expression for geopotential ® at the vertical level k:
INRIA
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1
(I)k = _—RdiAth'k ifk = NLEV,

NLEV
P, = —RdiAan'k + Ry Z Tk/Aank/ = RdZTkAan'k, 1 <k< NLEV,
=k+1

The vertical velocity at the time level n is obtained from the diagnostic relation which is

similar to the ECMWF model formulation [18], [11]:

“n Okt1/2 — 0T { Olnp, ! k " .
Oky1/2 = — —;/_UT ( o ) —Z D;4+V,; -Vinps| Ao, (24)

i=1

where

A\ n NLEV n
(algtps) = — Z [D]- +V,;: Vlnps] Ao.
7=1

It was shown in [4],[9] how to obtain the system of two equations for the N LEV dimensional
vectors of divergence D and generalized geopotential G at time level n + 1. First we rewrite
equations at each vertical level k£ as

. 1+ e)A\t . ~
4 LE OB gy - 4, (25)
T 1+ e\t . it . 1+t -,
B e o B Tt
T 2 ’ 2
1 —e)At, ~
+7( ;) (NIt 2 1 <k < NLEV, (26)
where - | A
— t
Br = T klIn(ps) — %Fd,
: 1 4 ¢)A¢ NLEV : NLEV i
(1 - UT) hlp 1 ‘|‘ % Z Dk/-HAO'kI = Z (BL)*Z]{;‘AO-]{:’) (27)
k= k'=1
where ( A 5
1 —e)At o
By=lnp,————|D+—],
L np 2 ( + 80)
L+e)At ., 14+ At F n+l
%U;ﬂﬂ/g ((Uk-|—1/2 - UT) Inp; + % E Dk’Aak’) +
E=1
k
+ Z(BL)ZZQ’]C/AO']C/, 1<k NLEV —1, (28)
k=1
GPtl =0, + Rdz T" "' Alno)y + RyTplnpt*t, 1<k < NLEV. (29)

We use (26), (27) and (28) to eliminate (7%, In py, 0 y1/2)" " from (29), giving

RR n° 3080 k=1



M. Lolstyrh

The My are functions of the standard temperature profile T'(o) and of the vertical discretiza-
tion increments Aoy, Alnoy and the Hy are known quantities given by

7 1+ o)At -
H, =, + RdZTk’[(BT): + —I_%(NT)WH/Q—F
k
1 —e)At - NLEV
‘|‘%(NT)Z+1/2L€,A1HW + E Mo (Br)% -
k'=1

Finally we arrive to the system of two equations for N L EV-dimensional vectors which can
be conveniently written in the matrix form as

(1 +e)At
2

UHI9Buh _h, (32)

D+ L(G) = A, (31)

G+

¢

Here £ and A are operators defined in Egs. (4), M is a NLEV x NLEV matrix with the
elements M. After diagonalising linear transformation applied to matrix M, the resulting
Helmholtz-type equations to be solved at each time step at each vertical level have the same
form as (4) (see [4] for details).

We use trilinear interpolations at midpoints of trajectories for extrapolated velocities ne-
cessary to find trajectories. At the departure points, we use tridimensional tensor product
interpolation which combines Hermite CUD-5 interpolation [21] in horizontal planes and cubic
Lagrangian interpolation in the vertical direction. There is also an option in the model to use
the so called non-interpolating scheme in the vertical [17], but this option was not used in the
experiments described below.

90N
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5200 = : ,
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605 {——
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Figure 7: Analyzed 500 hPa surface height for 0000UTC 21 December 1978.
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Figure 8: Analyzed sea-level pressure for 0000UTC 21 December 1978.

The model includes the parametrizations of subgrid-scale processes (dry and moist convec-
tion, planetary boundary layer, shortwave and longwave solar radiation) developed in the Insti-
tute of Numerical Mathematics, Russian Academy of Sciences. For the moment being, physical
parametrizations are plugged into the model using time-split approach, i.e. after each dynamical
time step the fields are updated with the output tendencies of parametrizations. The radiation
parametrization is called each three hours, but its tendencies are used at each time step. Also,
the vertical diffusion parametrization (which was developed, as other parametrizations used,
for Eulerian model) is called twice during each time step.

5 Test of the 3D model

The model was tested with the real data analysis of 0000 UTC 21 December 1978 by the
European Centre for Medium-Range Weather Forecasts. The initial fields of 500 hPa height
mean sea-level pressure are presented in Figs. 7, 8. This real data case caused difficulty in
the developing early semi-Lagrangian model since there is a strong flow over the Northern pole
[16].

The resolution was 2.5 degrees in longitude, 1.98 degrees in latitude and 16 irregularly
spaced o-levels and the time step was equal to one hour. The unusual resolution in latitude is
explained by the desire to have good load balance in parallel computations. Initial condition
of the model were obtained with the help of diabatic digital filter initialization [14] with the
cut-off period of 6 hours.

Given the quality of initial data for horizontal velocities in high latitudes (not shown) and
model resolution, we cannot expect a good forecast, but we can verify if the model demonstrates
realistic behaviour.

The model was integrated for one month. The value o7 was 0.0005 and the reference
temperature profile was taken constant T'(c) = 280 K. The forecasted field of 500 hPa height
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Figure 10: Forecasted 500 hPa surface height for 0000UTC 24 December 1978.

after 72 hours of integration is shown in Fig. 9, while the analyzed field of the corresponding
date is depicted in Fig. 10. The forecasted and analyzed mean sea-level pressure field is depicted
in Figs. 11 and 12 respectively. We can see that apart form high latitudes the model gives
realistic field of 500 hPa height, while surface pressure forecast is not so good. This is explained
(at least partially) by the fact that the model currently uses quite crude climatological surface
fields (surface temperature, sea-land mask etc.) interpolated from the model with twice coarser
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Figure 12: Forecasted sea-level pressure for 0000UTC 24 December 1978.

resolution. This will be corrected in the future version of the model. However, the pressure
field is free of noise.

The relative change of the mass of the atmosphere during one month integration was less
than 0.02 %.

Of course, more tests are needed, including climate simulation for at least 10 years. This
would require the increase of the vertical resolution to at least 21 level to prevent the smoothing
of the tropopause [8] and more realistic parametrizations of the subgrid-scale processes. Such
tests are very expensive so the parallelization of the model becomes a crucial issue.

RR n" 3080



M. Lolstyrh

6 Parallel implementation

The code is written in Fortran 77 with the Fortran 90 extensions available in many compilers.
There is an option to use the main routine written in Fortran 90 which allocates dynamically
the necessary parts of big arrays depending on number of processors used. The current version
of the model comprises about 30000 Fortran lines in 250 routines.

The parallelization strategy of the model assumes the distributed memory architecture. The
MPI (Message Passing Interface) [10] is used to handle communications between processors.
Besides being portable to many computer systems with both distributed and shared memory,
MPI has an advantage to allow the communications to overlap computations. Everywhere
when possible such asynchronous communications (MPI_Isend, MPI_Irecv) are used. We use
the single program — multiple data (SPMD) approach with the master process also carrying
out I/O and some additional computations.

i+8
G J Jl/i
._8 ”' r
J [
|
]
[
I .
| Latitude
| ,°
] d
(i
1 == HHI|- -
'
'
’ /
I, "
,/ '!
4
I'd
4
4 /
“ >
Longitude

Figure 13: Domain partition in the grid-point computations.

Let us consider the computational structure of the model. First the right hand sides of
equations (19-23) are computed. This includes the calculation of prognostic variables tenden-
cies due to parametrizations (terms Fv, Fir, F, and F; ) and calculation of terms at time levels
n and n 4+ 1/2 in dynamics equations. Here we have high degree of parallelism, since these
computations for a given grid point do not require adjacent grid points in longitudinal and lati-
tudinal directions, only vertical columns are needed (with a small exception for the calculation
of nonlinear term Nvy). One should note that these computations represent about half of all
computations in terms of the CPU time.

The next step is to find departure points and interpolate the right hand sides to them. This
part is responsible for about 30 % of CPU time per time step. The Hermite CUD-5 interpolation
requires 14-point stencil in longitudinal direction and 10 point-stencil in latitudinal direction.
Besides, departure points of the neighbouring arrival points do not necessary lie close to each
other. Departure point can lie at several grid intervals from the arrival point. The maximum
width of the dependency domain can be obtained from the mesh size, time step and maximum
wind speed in the atmosphere (about 110 m/s). Typical half-width of the dependency domain
in our model for given resolution is 8 points in each horizontal direction. This means that for
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moderate number of processors available (10-30) and a computer with significant latency time
it would be beneficial to restrict ourselves by the 1D partitioning of the computational domain
so that each processor performs computations in some band of latitudes (Fig. 13). Clearly, 2D
partitioning is more general and allows to use much higher number of processors. However, it
also results in a greater number of exchanges between processors. We will demonstrate now
that on the given computer it is beneficial to reduce the number of exchanges, while the volume
of the transferred data is only secondary concern.

|
1
1
1
1
[
: Latitude
1
1
1
)
4

Longitudinal wavenumber

Figure 14: Domain partition in the Fourier space computations.

Indeed, before making interpolations we need to transfer the values of the computed right
hand sides from adjacent latitudinal rows if these rows are computed by other processor. To
interpolate quantities at departure points for one longitudinal row, we need to have data of at
least 8 rows from both sides of this row. We have to transfer the data from latitudinal rows
which are located in other processors. One approach to do this is to send the row once the
values of the right hand sides are computed and to overlap computations of the quantities of the
next row with the transfer of the already computed precedent longitudinal row. This results
in a big number of exchanges. Another approach is to transfer the necessary rows after all
these computations are completed. In this case the number of exchanges per processor is much
smaller. The resulting parallel speedup for both strategies (in terms of the wall clock time) is
depicted in Fig. 15. One can see that the second approach gives a better parallel speedup.

Once interpolations and direct fast Fourier transforms in longitude are finished, we have to
redistribute data for Fourier space calculations. The calculations for each longitudinal wave-
number require the values of all latitudes (Fig. 14), so we need to provide each processor with
the corresponding data. This is called data transposition. We perform it by first collecting all
the data to the master processor and then sending the parts of arrays to the corresponding
processors using asynchronous communications.

The computations in Fourier space involve the calculation of the RHS for the divergence
equation, solution of the systems of equations (31-32), horizontal fourth-order diffusion and
calculation of horizontal velocity components from Eqs. (9-12). These computations are per-
formed in parallel for each longitudinal wavenumber. After Fourier-space calculations we need
again to perform data transposition since we need all longitudinal wavenumbers to perform
inverse Fourier transforms.
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Parallel speedup
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Figure 15: Comparison of two approaches for parallelization of semi-Lagrangian computations.

Practical parallel computations were conducted on Silicon Graphics Power Challenge Ar-
ray. This computer has four nodes with up to 16 processors each connected via fast HIPPI
crosshar. Each node has common memory for its processors. The implementation of MPI on
this computer makes use of this architecture.

With the current resolution, the model can use up to 30 processors. Practical parallel
computations were performed with the number of processors varying from one to 15 in the
non-dedicated mode. Only numbers of processors providing good load balancing were selected.
In our case, these numbers corresponding to 90 grid points at the latitudinal direction were 1,
2,3,5,6,9, 10 and 15.

Parallel speedup of our model is depicted in Fig. 16. There are two curves: for the time
step with the call of solar radiation parametrization and without this call. We can observe
that increasing the volume of computations in the first part of the time step results in the
increased parallel efficiency. Hence one can expect that advanced (more time consuming)
parametrizations of the subgrid-scale processes to be implemented in the next version of our
model will improve the parallel efficiency of the code.

7 Conclusions

The global semi-Lagrangian atmospheric model based on fourth-order compact finite differences
was described. The results presented for 2D shallow water version with orography demonstrate
its accuracy as well as capability to maintain reasonable behaviour of global invariants. The
accuracy of the shallow water version of our model verified our approach and enabled the
development of the three-dimensional version. The 3D model presented here was validated
using real data forecast and further one-month integration. It is considered as the first version
only. However, with our experiment we demonstrated that the approach, based on fourth-order
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Parallel speedup
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Figure 16: Comparison of parallel speedup during the time step with a call of radiation parametrization and
an average speedup.

compact finite differences on unstaggered grid combined with the use of vorticity as prognostic
variable, works. Further tests of the model with higher resolution are in course.

The first results of the parallel implementation on the Silicon Graphics PCA parallel com-
puter were presented and demonstrated reasonable parallel speedup. There is still a room for
further improvement of the parallel efficiency, which will be carried out in the next version of
the model in the framework of the existing code.

Future development of the model will include, among other improvements in the discrete
formulation, hybrid vertical coordinate and more realistic parametrizations of subgrid scale
processes.
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