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Abstract: A relatively new branch of computational biology and chemistry has been
emerging as an effort to apply successful paradigms and algorithms from geometry
and robot kinematics to predicting the structure of molecules, embedding them in
Euclidean space, and finding the energetically favorable configurations. We illustrate
several efficient algebraic algorithms for enumerating all possible conformations of
a cyclic molecule and for studying its singular locus. Recent advances in computa-
tional algebra are exploited, including distance geometry, sparse polynomial theory
based on Newton polytopes, and matrix methods for solving nonlinear multivariate
polynomial systems. With respect to the latter, we compare sparse resultants, Be-
zoutians, and Sylvester resultants in cascade, in terms of performance and numerical
stability.
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Résolution d’équations polynomiales : le cas d’une
molécule a six atomes

Résumé : Une branche relativement récente de la biologie et de la chimie algo-
rithmique consiste & utiliser des paradigmes ou algorithmes venant de la géométrie
ou de la robotique et de les appliquer & la recherche de configurations de molécules.
Nous illustrons et détaillons ainsi plusieurs algorithmes de résolution d’équations po-
lynomiales permettant de trouver toutes les configurations possibles d’une molécule
4 6 atomes. Nous nous intéressons également & 1’étude du lieu critique de ces confi-
gurations. De récent travaux en algébre effective sont utilisés, incluant la géométrie
des distances, la théorie des polytopes de Newton et les méthodes matricielles pour
la résolution d’équations polynomiales. Nous comparons différentes approches telles
les résultants « creux », les Bezoutiens et les résultants de Sylvester en cascade, du
point de vue de leur performance et de leur stabilité numérique.

Mots-clé : équation polynomiale, résultant creux, Bezoutien, résultant de Sylves-
ter, valeur propre, valeur singuliére, lieu singulier, géométrie des droites, cyclohexane,
biologie et chimie algorithmiques
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1 Introduction

One branch of computational molecular biology and computational chemistry wishes
to exploit today’s computational power in order to automate and accelerate struc-
ture determination for function identification and drug design. A relatively recent
effort has been the application of successful paradigms and techniques from geo-
metry, robot kinematics as well as vision to predicting the structure of molecules,
embedding them in Euclidean space and finding the energetically favorable confi-
gurations [PC94, Emi94|. The main premise for this interaction is the observation
that various structural requirements on molecules can be modeled as macroscopic
geometric or kinematic constraints.

This work focuses on algebraic algorithms that have been very useful in the areas
mentioned above but are not well-known among structural biologists and compu-
tational chemists. We give a brief introduction to algorithms for studying basic
properties of systems of simultaneous polynomial equations, in particular for fin-
ding all their common roots and identifying their singularities. These methods are
applied to concrete molecular problems, thus providing an illustrated introduction,
while several pointers to specialized publications are provided.

There are two questions studied in depth. The first, in section 2, examines
algorithms to identify all possible conformations of a molecule, given some constraints
on its primary structure. The problem is first translated into algebraic terms. This
is done in sections 2.1.1 and 2.1.2, respectively, by the classical angle formulation
applied in a clever way in order to reduce the problem dimension, and by the more
recent approach of distance geometry. Sections 2.2 and 2.3 respectively, apply recent
advances in computational algebra in order to estimate the number of solutions, and
then compute all of them by reducing the nonlinear problem to a problem in linear
algebra. For algebraists, the principal interest of section 2.3 lies in the comparison
of several alternatives in solving the same multivariate problem, in particular sparse
resultants, Bezoutians and repeated application of Sylvester resultants.

The second problem concerns the singular configurations of the molecule defi-
ned by the given data. Section 3 proposes constructive methods for identifying the
infinitesimally unstable, or geometrically degenerate, situations.

Most of the implementations referred to in this paper are already publicly avai-
lable, otherwise they can be obtained by the authors.

Related work is mentioned in each corresponding context.
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4 1.Z. Emiris €& B. Mourrain

2 Molecular conformations

This section examines the problem of computing all conformations of a molecule.
Conformations specify the 3-dimensional structure of the molecule. It has been
argued by Go and Scherga [GS70] that energy minima can be approximated by
allowing only the dihedral angles to vary, while keeping bond lengths and bond angles
fixed. A dihedral angle is the solid angle between two consecutive planes, each defined
by an atom and its two links. At a first level of approximation, therefore, solving for
the dihedral angles under the assumption of rigid geometry provides information for
the energetically favorable configurations. We consider cyclic molecules of six atoms
to illustrate our approach.

The figure shows one configuration of such a molecule, drawn by IZIC [FKM94|.
The relationship to geometry and robotics is obvious once bonds are thought of as
rigid joints and atoms as the mechanism’s links or articulations. The only movement
allowed is rotation around the bonds’ axes, so the question of identifying a confor-
mation reduces to finding the respective pose. In kinematic terms, the molecule is
equivalent to a serial mechanism in which each pair of consecutive axes intersects at
a link. This connection is spelled out in section 3. This implies that the link offsets
are zero for all six links, which will allow us to reduce the 6-dimensional problem to
a system of 3 polynomials in 3 unknowns. The product of all link transformation
matrices is the identity matrix, since the end-effector is at the same position and
orientation as the base link.

INRIA
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Figure 1: The parameters.

Extending to molecules with more than six varying dihedrals has been approached
by a grid search of the space of the two last dihedrals, each grid point giving rise to
a six-dimensional subproblem [GS70, MZW94|. For molecules with six free dihedrals
and an arbitrary number of atoms, the problem is identical to the inverse kinematics
of a general serial manipulator with six rotational joints, which is a settled question
for roboticists [MC92].

2.1 Algebraic formulation

The molecule has a cyclic backbone of 6 atoms, typically of carbon. They determine
primary structure, the object of our study. Carbon-hydrogen or other bonds outside
the backbone are ignored. The bond lengths and angles provide the constraints while
the six dihedral angles are allowed to vary.

2.1.1 A formulation using angles

We adopt an approach proposed by Parsons [PC94]. Notation is defined in figure 1.
Backbone atoms are regarded as points p1,...,ps € R?; the unknown dihedrals are

RR n°3075



6 1.Z. Emiris €& B. Mourrain

the angles wy,...,ws about axes (pg,p1) and (pi_1,pi) for i =2,...,6.

Each of triangles T1 = A(p1,p2,p6), T2 = A(p2,ps,pa) and T3 = A(pa, ps, pe)
is fixed for constant bond lengths L1,..., Lg and bond angles ¢1, ¢3, ¢5. Then the
lengths of (pa, ps), (P2, p4) and (p4, ps) are constant, hence base triangle A(pa, p4, ps)
is fixed in space, defining the xy-plane of a coordinate frame. Let 61 be the (dihedral)
angle between the plane of 77 and the xy-plane. Clearly, for any conformation, 6;
is well-defined. Similarly we define angles #; and 63, as shown in figure 1. We call
them flap (dihedral) angles to distinguish them from the bond dihedrals.

Conversely, given lengths L;, angles ¢; for ¢ = 1,...,6 and flap angles 6; for
it =1,...,3 the coordinates of all points p; are uniquely determined and hence the
bond dihedral angles and the associated conformation are all well-defined. We have
therefore reduced the problem to computing the three flap angles 6; which satisfy
the constraints on bond angles ¢2, ¢4, ¢¢.

Hence we obtain polynomial system

a11 + aq2 €cos by + a3 cos 3 + a4 cos By cos 3 + a5 sinfysinfly =

Q91 + g9 cos O3 + aip3 cos 1 + aiy cos B3 cos B + a5 sinflgsinfy =

—~~
—
~—

a31 + a3 cos 01 + aizz cos By + aizq cos By cos By + azssinfysinfy =
cos 0y +sin?0; —1 =
cos? 0y +sin?0, —1 =

cos? 03 +sin?h; —1 =

S O O O o O

where the «;; are input coefficients.

For our resultant solvers we prefer an equivalent formulation with a smaller num-
ber of polynomials, obtained by applying the standard transformation to half-angles
that gives rational equations in the new unknowns t;:

1—¢2 2t;

0;
ti = t —_— 01 = -t 1 01 = Pa—
an 2 COS sin 11 t?

=1,2,3.
1+t?a G y 4y

This transformation captures automatically the last three equations in (1). By multi-
plying both sides of the i-th equation by (1+t;’f)(1+t2), where (4, 7, k) is a permutation
of {1,2,3}, the polynomial system becomes

f1 = Bi1 + Biath + Bisth + Putats + Pistits =
fo =P+ ﬂ22t§ + 523t% + Boatsts + ﬁz5t§t%
f3 = B31 + Baat? + Basts + Baatits + Bastits =

where (3;; are input coefficients.

(2)

INRIA
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2.1.2 A formulation using distances

Another formulation of the problem relying on the geometry of distances is presented
here. It aims to show how Computational Symbolic Geometry can help in easily
deriving constraints for such problems. Another application of this approach can be
found in [Hav91].

Let us first have a glimpse on the space of spheres. A sphere has a unique equation
(up to a nonzero scalar) of the form

up(x? + 92 +22) —2u1 2z — 2uyy — 2uz 2z + ug = 0, (3)
therefore we can identify the space of spheres with a subset of the projective space
P* of classes (ug : u1 :...:uy). We also denote this projective space by S.

Conversely, given a point (ug :uy : ... :us) € S = P4 if ug # 0, the quadric (3)
defines a sphere of center (1, 3%, 22, 32) (or (ug : ++- : ug) in P?) and radius R such
that R% = w where Q(ug, .., u4) = u? + u3 + uf — ugua.

If up = 0, the quadric obtained by homogenization of (3) is the union of an affine
plane and the plane at infinity of P? (defined by ¢ = 0, where ¢ is the homogenization
variable in P3). It corresponds to a “point at infinity” in P*. Moreover, if ug = u; =

. = ug = 0, we obtain the special “sphere” w = (0 : ... : 0 : 1), whose center is
nowhere.

The special spheres of radius 0, will be called point-spheres. To any affine point
A= (1:a1:ay:a3) €A we associate the point-sphere A= (1:a1:a2:as:
a? + a? + a2). This gives an embedding of A® in S.

The space of spheres S has a natural inner-product given by the following formula:
for any spheres S = (ug : -+ : u4), 8" = (ug:---:u}y) in S,

(S|S") = wu) + ugub + uzul — %(uouﬁl + uqup)-
It is not hard to check that if ug = uy = 1, then
(515') = 3 (R + R ~ &*(0,0"))
where R, R’ are the radii of the spheres, O, O’ their centers and d?(0O, O') the square

of the distance between the two centers. Therefore, for two points A, B € A3, the
inner-product is

(A1B) = - 3&(4, B) ()

RR n°3075



8 1.Z. Emiris €& B. Mourrain

and we also have (A|A) = 0. We also check that for any point A € A3

(Alw) = )
(see for instance [MS94| or [DH91]| for more information).

Let us come back now to the configurations of pi,...,ps and let us denote by L
the list of point-spheres (w, p1,...,pPs). Consider the 7 x 7 symmetric matrix whose
coefficient (i, 7) is the inner-product of the i-th element of £ and its j-th element. It
is the Gramm-Schmidt matrix, constructed with the list £ and the inner-product (|).
It is also called the Cayley-Menger matrix of the points pi,...,ps (see for instance
[Ber77]). The spheres, being represented by a vector with 5 coordinates, it is not
hard to check that this matrix is at most of rank 5 (spheres are represented by vectors
with 5 coordinates). Using the equations (4), (5) and dividing by —%, we obtain a

matrix of the form

W p1r P2 pP3 P4 P5  Ds
w 0 1 1 1 1 1 1
D1 1 0 cap asz w as cag
D2 1 12 0 co3 24 w2 026
D3 1 a3 3 0 ¢34 ¢35 wug
D4 1 w 24 34 0 g5 cap
Ps 1 a5 w 5 cas 0 o6
D6 1 16 c26 us ca6 c56 0

In this matrix, all the coefficients ¢; ; = d(p;, p]-)2 are known from the input parame-
ters L;, ¢; and there are only 3 unknowns uj, us, us (just as in the previous section).
Once these unknowns are known, we can recover the geometry of the molecule (up
to global translations and rotations).

As any 6 x 6 minor of this matrix vanishes, we easily derive new constraints on
the parameters u;. Taking for instance the diagonal minor of column (resp. row)
indices (1,2,3,4,5,6) of this matrix, we obtain an equation Pj(uj,uz) = 0 in the
variables ui, us, which is of degree 2 in u; and us. In a similar way, we can derive a
constraint Py(uy,u3) = 0 (resp. Ps(ug,u3) = 0) of the same type by considering the
diagonal minor of indices (1,2,3,4,5,7) (resp. (1,2,3,5,6,7)). This yields a system
of 3 equations in 3 unknowns

Pi(ug,uz) =0, Py(ug,u3) =0, P3(uy,uz) =0

which has exactly the same set of monomials as system (2).

INRIA
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2.2 Geometric analysis

A first step in the analysis of a polynomial system consists in studying the geometry of
common roots and in finding an accurate bound for the number of common solutions.
We refer here to some recent advances in this area which exploit a priori knowledge
of which monomials appear in the equations. We consider the algebraic closure of
the given coefficient field, which is typically the field C of complex numbers.

The classical theory provides the bound by Bézout’s theorem on the number of
roots in the projective complex space, which is simply the product of the polynomials’
total degrees [Sha77|. The bound given by Bézout’s theorem here is 4 x 4 x 4 = 64.
This bound is too large, for the system has a very special shape. Not all monomials
of degree 4 in the variables t1,t9,t3 are present in the equations and the degree of
each equation in each variable is bounded by 2. In other words, regarding only total
degree overestimates the total number of solutions.

Sparse elimination theory, initiated with Bernstein’s theorem [Ber75], provides
a context for exploiting the monomial structure of the system, when roots at infi-
nity are of no interest. To model sparseness, we regard each 3-dimensional exponent
vector corresponding to a non-vanishing monomial in t,t,¢3 as a point in Z3. The
convex hull of all such points defines the Newton polytope of the polynomial. The
mized volume of 3 polytopes C1,Cy, C3 € R? is a real-valued function that generalizes
Euclidean volume, formally defined as the coefficient of Ay A2 A3 in the polynomial ex-
pressing the volume of A\; C1 + Ay Cy+ A3 C5. More generally, letting V'(-) express the
Euclidean volume function, we have the following definition: For A1,..., A\, € Rxg
and conver polytopes A, ..., A, CR", their mixed volume is precisely the coefficient
of MAz2 -+ A in V(A AL + -+ + A\ Ap) expanded as a polynomial in Ay, ..., Ay.

Equivalent definitions for general dimension, together with an algorithm for com-
puting mixed volumes, can be found in [EC95]. The code is publicly available at
locations http://www.inria.fr/safir/whoswho/emiris/.

In our case the polytopes C; are squares of size 2. Bernstein’s theorem bounds
the number of common roots with no zero coordinates by the mixed volume of the
Newton polytopes. The mixed volume of the present system is 16, so Bernstein’s
theorem says that the number of isolated roots of system (2), counting multiplicities,
with ¢1 # 0,t9 # 0,t3 # 0 is at most 16. In fact, this bound is optimal, as shown in
the next section by exhibiting an example with 16 solutions, which are moreover all
real.

This method is, in our case, equivalent to a variant of Bézout’s theorem for
multi-homogeneous polynomials. If we homogenize each equation with respect to
each variable ¢, %, t3, we obtain a system of 3 multi-homogeneous equations in P! x

RR n°3075
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P! x P! (where P! is the projective space of dimension 1). The multi-degrees of these
equations are
(0,2,2),(2,0,2),(2,2,0).

Using Bézout’s theorem in P! x P! x P!, we can bound the number of isolated roots
(not necessarily with no zero coordinates) of this system by the coefficient of hy hy hs
in the polynomial

(2hq + 2h9) (2h1 + 2h3) (2hs + 2h3)

which also yields 16; see [Sha77].

2.3 Solving the equations

This section computes all common solutions for the algebraic system expressing the
molecule, thus yielding all possible configurations. Our preferred method uses resul-
tants in order to reduce the nonlinear problem derived in the previous section to a
question in linear algebra. Matrix computations are then sufficient, for which we can
rely on efficient and stable public implementations.

Let us concentrate on zero-dimensional varieties defined by a polynomial system
of n equations in n unknowns. Let R be the polynomial ring and I the ideal of
R generated by these n equations. It is known that when the number of roots
is finite, as assumed here, the quotient ring B = R/I forms a finite-dimensional
vector space [Sha77]. This implies that defining the various operations in B, most
notably multiplication, amounts to constructing the relevant matrices. Since finding
the points in the variety of I essentially requires being able to compute in B, the
abstract question is to compute the matrices expressing multiplication in B. Hence
we transform the solution of the given polynomial system into an equivalent linear
problem.

The crucial step is to define the matrix expressing multiplication by a variable in
the quotient ring B. The matrix of multiplication by this variable has the property
that each eigenvalue is equal to the coordinate of a solution vector corresponding
to the variable of multiplication. Therefore an eigenvalue computation yields one
coordinate of every solution vector. The rest of the coordinates are obtained by
the eigenvectors of the multiplication matrix. Root finding is therefore reduced
to an eigenproblem and then existing algorithms are employed from numerical li-
near algebra; sometimes this problem is regarded as the generalized eigenproblem
or the problem of computing the matrix kernel vectors. It is not a new result in
computational algebra, but it has not widely been used for practical purposes; the
interested reader may consult any of [EC95, CM96, Emi9]. An important feature

INRIA
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of our method is precisely that it reduces to matrix operations for which powerful
and accurate implementations already exist in the public domain, such as [ABB*92]
which is used in the sparse resultant solver implemented in C and available from
http://www.inria.fr/safir/whoswho/emiris/.

There are several algorithms to construct the matrices whose eigenvalues will give
us the roots. A first class of methods is based on Macaulay-type matrices which rely
on the idea that the system is generic in some sense [Emi94|, and whose entries are
linear in the polynomial coefficients. In the classical context, the resultant’s degree
is a function of the classical Bézout bound, i.e., the product of total degrees. The
Macaulay matrix is defined for homogenized polynomials, and its size depends again
on Bézout’s bound.

In sparse elimination, the sparse resultant has degree dependent on the mixed
volume of the Newton polytopes of the equations [GKZ94, PS93|. The sparse re-
sultant approach generalizes the well-known Sylvester resultant for two univariate
polynomials into several multivariate polynomials as well as Macaulay’s algorithm
for dense polynomials (see [Mac02]). Algorithms for constructing sparse resultant
matrices (also called Newton matrices), whose determinant is a nontrivial multiple
of the sparse resultant and which express multiplication in the quotient ring, can be
found in [CE93, CP93, EC95|. The size of the Newton matrices scales with mixed
volume [Emi96]|. Linear algebra methods for reducing the matrix size and removing
some genericity requirements, can be found in [Emi94].

The second class of methods relies on the theory of residues, and does not assume
that the system is generic,but only that it is a complete intersection (the codimen-
sion of the set of solutions is the number of equations). The constructed matrices
generalize the constructions proposed by Bézout for the resultant of two polynomials
in one variable ([Béz79], see also [Dix08]) and are typically smaller than sparse resul-
tant matrices but the coefficients are no longer linear in the coefficients of the input
polynomials. This technique can be used for homogeneous or sparse polynomials. Tt
relies on compression algorithms, reducing the size of the matrix to the optimal size
(i.e. the number of roots, counted with multiplicity). The connections between alge-
braic residue theory and matrix methods for polynomial system solving are another
interesting feature of this approach (see for instance [CM96], [EM96]).

Thirdly, we simply apply Sylvester’s resultant successively until all but one va-
riables are eliminated. All three algebraic methods are illustrated in the next section,
for the particular instances described below.

We treat three systems of type (2), and detail, in the specific context, the three
matrix methods for system solving.

RR n~°3075
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1. For the first one, we consider the cyclohexane molecule which has 6 carbon
atoms at equal distances and equal bond angles. Usually noise enters in the
process that produces the coefficients. To illustrate this phenomenon, starting
with the pure cyclohexane, we randomly perturb the data by about 10% to
obtain 3;; as the entries of matrix

—310 959 774 1389 1313
—365 755 917 1451 269
—413 837 838 1655 1352

In this case, we find the following 4 solutions, visualized by IZIC [FKM94]. A
chemist will immediately recognize two chair and two twisted boat, or crown,
configurations

corresponding to the roots

1 to i3
0.3684363946 0.3197251270 0.2969559367

- 0.3684363946 - 0.2969559367 |.

- 0.3197251270

0.7126464332

- 0.01038413185

- 0.6234532743

- 0.7126464332

0.01038413185

0.6234532743

INRIA
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2. The second instance has the maximum number of roots, namely 16, and fur-

thermore, they are all real. The f3;; coefficients are given by matrix

-13 -1 -1 24 -1
-13 -1 -1 24 -1
-13 -1 -1 24 -1

Among the 16 real roots, four correspond to eigenvalues of unit (geometric)
multiplicity, while the rest form four groups, each corresponding to a triple
eigenvalue. For the latter the eigenvectors give us no valid information, so we
recover the values of t1,t by substituting ¢3 in the original system and by

solving the resulting univariate equations.

tq

to

t3

10.85770360

0.7795480449

0.7795480451

- 10.85770360

- 0.7795480449

- 0.7795480451

0.3320730984

4.625181601

4.625181601

- 0.3320730984

- 4.625181601

- 4.625181601

0.7795480449

0.7795480449

0.7795480451

0.7795480449

10.85770360

0.7795480451

0.7795480440

0.7795480457

10.85770360

4.625181601

4.625181601

4.625181601

4.625181601

0.3320730984

4.625181601

4.625181600

4.625181613

0.3320730984

- 0.7795480440

- 0.7795480457

- 10.85770360

- 0.7795480449

- 0.7795480449

- 0.7795480451

- 0.7795480449

- 10.85770360

- 0.7795480451

- 4625181600 | - 4.625181613 | - 0.3320730984
- 4.625181601 | - 4.625181601 | - 4.625181601
- 4.625181601 | - 0.3320730984 | - 4.625181601

3. The third system is defined by the following matrix of j3;;.

_Vv3 1 1 V3
2 2 2 2
_¥3 1 1 V3
2 2 2 2
V3 1 1 V3
2 2 2 2

It is not a 0-dimensional system for it is the union of a curve of degree 4 whose
projection on the coordinnate plan are defined respectively by the equation

RR n°3075
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p1 =0, p2 =0, p3 = 0 and of 16 points. Among these 16 points, 4 points on
the line ¢; = t3 = t3 are isolated (2 are real) and the other 12 are embedded

in the curve. Here is a picture of the projection of the curve on any of the
coordinate planes:

The system that we consider is obtained by taking the approximations of the
coefficients with 5 digits. The roots that we obtain are

t £ t3
0.5176444559 | 0.5176444559 | 0.5176444563
-0.5176444567 | -0.5176444567 | -0.5176444555
0.5176444559 | -1.931851652 | 0.5176444563
-0.5176444567 | 1.931851652 | -0.5176444555
1.931851652 | -0.5176444567 | -0.5176444555
-1.931851652 | 0.5176444559 | 0.5176444563
0.5176444561 | 0.5176444561 | -1.931851652
-0.5176444561 | - 0.5176444561 | 1.931851652

The 6 last points are not almost embedded in the curve.

We describe now the methods that we have used.

INRIA
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2.3.1 Sparse resultants

Sparse multivariate resultants eliminate one fewer variables than the number of poly-
nomials, all at once, and exploit any a priori knowledge on certain coeflicients being
zero. Since not all the monomials of degree 2 are present in the given equations, the
sparse resultant has lower degree, and hence reduced complexity compared to the
classical multivariate resultant (see [Mac02], [VdW48]). We apply this approach to
all three systems and report on experimental results in section 2.3.4.

e The first approach in applying resultants for solving well-constrained systems
“hides” one variable in the coefficient field. If we consider variable t3 as part of
the coefficient field, the 3 equations can be viewed as bivariate:

fi = ci+ ety +czti =0,
fo = c21+ coaty + coztt =0, (6)
fs = e+ ngt% + c33tito + 63475% + C35t%t% = 0.

The resultant matrix of this system has dimension 16 and its entries c;; are
naturally functions of ¢3; in fact, they are quadratic polynomials in ¢3. The
sparse resultant has total degree in the coefficients equal to the sum of the
mixed volumes of the bivariate well-constrained subsystems. Each of the 3
mixed volumes (in ¢1,t9) is equal to 4, therefore the sparse resultant degree
is 12 in the variables c; ; and the size of the constructed matrix will be at
least 12. The shown 16 x 16 matrix M, is the resultant matrix constructed
by both greedy and incremental algorithms, respectively described in [CP93]
and [EC95|.

Matrix M, expresses a quadratic matrix polynomial in t3, therefore its deter-
minant is quadratic in ¢3 and a multiple of the sparse resultant. Solving this
determinant for t3 gives us the values of ¢3 at the roots, while the kernel vectors
correspond to the values of t1,ts. More specifically, each kernel vector expresses
the evaluation of the following vector of monomials at the roots of #1,¢2. The
monomial vector is precisely the sequence of monomials indexing the columns

of Mj:
(1,10, 83,83, 11, trta, tr 83, 1185, 13, g, 1343, 4343, 43 131y, 1343 1343 .

To recover the value of t1,t2 at the roots, it suffices to divide certain vector
entries. To find, for instance, the value of t5, we divide the second entry by
the first, i.e., to/1. However innocuous this operation may seem, the choice
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rc11  ci2 €13 0 0 0 0 0 0 0 0 0 0 0 0 0
0 c11 €12 €13 0 0 0 0 0 0 0 0 0 0 0 0
c31 0 c32 0 0 c33 0 0 c34 0 e35 0 0 0 0 0
0 c31 0 c32 0 0 c33 0 0 c34 0 c35 0 0 0 0
0 0 0 0 c11 c1a  ci3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c11 c12  c13 0 0 0 0 0 0 0 0
0 0 0 0 c31 0 c32 0 0 c33 0 0 c34 0 c35 0
0 0 0 0 0 e31 0 c32 0 0 eca3 0 0 c3s O c35

Mo = co1 0 0 0 ¢33 O 0 0 ¢33 O 0 0 0 0 0 0
0 eo1 0 0 0 oo 0 0 0 co3 0 0 0 0 0 0
0 0 ca1 0 0 0 caa 0 0 0 ca3 0 0 0 0 0
0 0 0 ca1 0 0 0 ca2 0 0 0 c23 0 0 0 0
0 0 0 0 e 0 0 0 con 0 0 0 co3 0 0 0
0 0 0 0 0 o1 0 0 0 can 0 0 0 c3 O 0
0 0 0 0 0 0 eo 0 0 0 con 0 0 0 ca3 0
0 0 0 0 0 0 0 co1 0 0 0 can 0 0 0 a3

of which entries to use is an important numerical issue that has to be studied
further. Results vary significantly according to this choice, and certain simple
strategies examined do not work. We have, namely, tried averaging over several
ratios, e.g. (t2/1 + tit2/t1)/2, or taking roots, e.g. \/t3/1.

For the second system the specialized determinant is of degree 24:

186624

oo (13" — 22857 + 13)% (132 +1)* (t5* — 11845 + 13) .

e The second way to define an overconstrained system from the given one is to

add to the given system any polynomial of our choice. This gives the u-resultant
approach if the extra polynomial is linear in the variables with indeterminate
constant term w. This method distinguishes among all simple roots at the
expense of increasing the problem’s dimension by 1.

If we choose polynomial a + bt1, with a, b indeterminate, the mixed volumes of
the 3-polynomial systems are 4, 4,4, 16, hence the sparse resultant degree is 4
in the variables 3;1,..., 85, 16 in the variables a,b and its total degree is 28
The incremental algorithm was applied and the smallest matrix found is of size
48. Its determinant, which is a multiple of the resultant, when specialized to
the coefficients of the second system, yields the following polynomial of degree
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22:
3869835264 b (a* — 118b%a + 13b%) (4a® +2)” (a* — 220%a® + 134%)°

The mixed volume information indicates that the degree of the specialized
sparse resultant in each of a,b is 16. In fact, the specialized sparse resultant is

(a* — 11852 + 13b%) (a* — 220%a® + 1354,
which shows that 12 roots will come in triplets with ¢; constant.

In the rest of the section we report on the application of the public-domain solver
http://www.inria.fr/safir/whoswho/emiris/, in conjunction with hiding ¢3 in the
coefficient field. This solver is in C therefore it runs faster than the MAPLE solver
examined in detail below. It constructs the matrix by the incremental algorithm
with generic coeflicients, therefore independent of the instance and the precision.
The time for constructing the resultant matrix is less than half a second on the DEC
AlphaStation of section 2.3.4. Then, the program constructs a 32 x 32 companion
matrix whose eigenvalues and eigenvectors are the t3 values and the kernel vectors
of M. Since there are 32 eigenvalue and eigenvector pairs, exactly half of them will
not correspond to solutions. The program applies the standard eigendecomposition
routines of [ABB*92] over double-precision floating-point numbers, which have 53
binary digits reserved for the mantissa. It yields the following results on the first
two instances; more information is included in [Emi94].

1. For the first system, after rejecting false candidates, the recovered roots cause
the maximum absolute value of the input polynomials to be 107>. We check the
computed solutions against those obtained by an exact Grobner bases compu-
tation over the integers and observe that each contains at least 8 correct digits.
The total CPU time on a SPARC is 0.2 seconds on average for transforming the
matrix and computing its eigenvalue-eigenvector pairs.

2. For the second system, the computed roots evaluate the input polynomials to
values no larger than 10~% and, compared to the exact roots, they are correct
to at least 7 decimal digits. The average CPU time for computing the roots
from the resultant matrix is 0.2 seconds on a SPARC.

2.3.2 Bézout’s resultants

We consider here two methods, analogous to those of the previous section.
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o —14¢%2 — 13 — ;4 242 -1 — 1% 24t + 24,3 0
3 4 2 2
—74881t1 — 864t 0 312 4+ 2414 + 336t 7488 tq
24t; + 24,3 0 —14¢12 — 13 — 114 11414 — 13 — 2,2
2 4 _ 3
—240t12 + 24¢,% + 312 0 0 288 1
M, =
b 2 4 B 2 1., 4 _ 3 _ _ 3
13822412 +11¢% — 13 14412 — 13 — 13 552413 — 264 ¢1 7488t — 864t
3 3 4 2 4 2
—552t1% — 264 ¢ 24ty + 24t 24 +24t1% — 5281, 312 4 24 £1% + 336 ¢4
24ty + 24413 0 —2172 —1— % —14¢2 — 13 — ¢
L —576t12 0 24ty + 2413 24413 43124
0 0 0 0 7
24113 4312, 11614 — 13 — 2442 —2881¢1° —14t12 — 13 — 14
24t 4+ 24t,° —24 — 2447 — 4812 24t; + 24143 0
—14t12 —13 — 114 24ty + 24,3 11414 — 13 — 2492 0
—576¢12 24t; + 24,3 —240t12 +24¢,* + 312 24t + 24,3
24t; + 24143 —14t12 —13 — 114 0 —2t12 -1 -1,
0 0 0 0
—2t12 -1 — 12 24ty 4+ 2413 —14t12 — 13 — 1% 0 ]

e First, we consider t3 as a parameter and compute the Bezoutian of the 3 poly-

nomial in the variables t1,t5. It yields the shown 8 x 8 matrix, whose entries
are polynomials of degree < 4 in t3. For the second system, we obtain the
matrix My given below:

The determinant of matrix My is of degree 32:
186624 (t3* — 118452 + 13) (t5* — 2245 + 13)° (t2 + 1)°

The correct candidates for the solutions of the system are given by the roots
of the first two factors. Four of them will be of multiplicity 3. This is the
formulation used in the experiments reported in section 2.3.4.

Secondly, we consider the variables t1,ty,t3, but we add a generic linear form
a + bty and we compute the Bezoutian of these 4 polynomials. We obtain a
32 x 36 matrix, whose rank is 20. Using Bareiss’s method, we obtain on the
last row, the polynomial of degree 20 :

—2579890176 b* (13b* — 1185%a” + a*) (13b* — 225%a + a*)°.

This is a multiple of the resultant, which has degree 16. The sparse resultant
method, described above, had given another multiple of degree 22.
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The time for computing the roots from the Bezoutian (by compression and ei-
genvector computations) is 0.1 seconds on a SPARC. We have used the library ALP
(http://www.inria.fr/safir/SAM/ALP/, still under development).

2.3.3 Sylvester resultants

A simpler approach applies Sylvester’s resultant in cascade. This is the resultant of
two univariate polynomials and is implemented in most modern computer algebra
systems, including AXIOM, MAPLE and MATHEMATICA.

The cascade method applies Sylvester’s resultant several times, each time elimi-
nating one variable. In general it produces matrices larger than with the multiva-
riate resultant, which eliminates all the variables in one step. The example at hand,
though, is favorable for this algorithm since each polynomial is independent of one
variable. We can, thus, define Sy3 as the Sylvester matrix of fy and fs3, regarded as
univariate polynomials in ¢; in the second instance of system (2),

[ —1—1t32  24t3  —13 —t3? 0
0 —1—1t3° 24 t3 —13 — t3?
Sz = ) )
—1—ty 24ty —13 —ty 0
0 —1—t2 24ty —13—1y? |

so the determinant Ra3(to,t3) = det Sy is a polynomial in ty, t3:

576 19t — 1152193153 + 576 t92t5* + 144 54
—8064 t5°t3 + 15840 t52t5% — 8064 tots® + 144 ¢3* + 7488192 — 14976 tots + T488 t5>.

Then, the Sylvester resultant of Ry3 and fi, regarded as polynomials in t9, is a
polynomial in ¢3 and a multiple of the resultant of fi, fo, f3. Letting S be the last
Sylvester matrix and R its determinant,

R = 186624 (13" — 1181437 4+ 13) (t3* — 22832 + 13)°,

we can solve numerically for ¢3, thus obtaining a superset of the values of t3 at the
common roots of the original system. Thanks to the special shape of this system,
in this special case we get exactly the minimal condition in t¢3, i.e., R above is the
sparse resultant within a scalar factor. However, this is not usually the case. Recall
that the sparse resultant has degree 16; note that the Newton and Bézout matrices
have, respectively, led to nontrivial multiples of degrees 24 and 32.
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S1 Sa Sa
D Ty T Ty 5 Ty T T, c 7 T, T, <
7.97 7.44 774
5 0.13  1.33 0.31 0.18  1.70 12.61 0.35 0.85 4111073
10 0.08 1.35 2.1510~7 0.30 1.67 1.14107% 0.28 1.17 4171073
15 1.38 1.48 1.4910~ 11 0.22 1.68 1.5510° 0.38 1.13 4171078
20 1.67 18.92 5.5810716 0.25 17.07 7.5110715 1.23  10.88 4.171073
30 1.27  21.68 1.87107 25 0.25 19.37  2.731072% 0.80 11.75 4.171073
50 0.20 26.17 1.9310~%° 0.30 23.87 3.5110"%* 0.55 15.28 4.15107°
Table 1: Time and accuracy with sparse resultant matrices (method 2.3.1)
S1 So S3
D 1 T, Ts 5 Ty T Ty 5 Ty T, T 5
5 019 2.0 035 0.18 0.21 0.72  2.05 0.32 0.30 2.82  0.43 210~%
10 || 0.18 2.05 0.50 106 0.20 0.88  1.92 9107 0.25  3.15 1.0 1.4810°%
15 0.18 2.02 0.50 3.110" 11 0.35 0.68 1.87 3.010~12 020 2538 1.02 1.4810"%
20 || 020 2.02 427  4.510716 0.22 0.88 13.05 6.5107 16 0.20 800 7.83 1.4810~*
30 || 0.37 2.04 5.02 3.910726 0.35 0.70  14.32 9.010— %6 0.20 3.10 4.30 1.4810~%
50 0.37 2.12 6.45 2.110—46 0.20 0.88 16.63 4.410746 0.22 2.90 5.57 1.4810~%

Table 2: Time and accuracy with Bézout’s matrices (method 2.3.2)

For each root of R, we compute the kernel of S, yielding the corresponding values
of to at the roots. Knowing t9 and t3, we recover t; by computing the kernel of Sss.
This is the approach on which we present experimental results in section 2.3.4.

If we wish to avoid solving univariate polynomial R(t3) (which is a rather unstable

operation), we may build the companion matrix of S and compute its eigenvalue-
eigenvector pairs. In practice, the kernel can be computed by a Singular Value
Decomposition (SVD) of a singular matrix, namely S with ¢3 specialized to the roots
of R. These are essentially the pairs of eigenvalues and kernel vectors of S, and we
obtain again the values of ¢1,ty. The same limitation as with resultant matrices in
the previous subsection is also present here concerning eigenspaces of high dimension.

2.3.4 Results

We report on experimental results obtained on MAPLE V, on a DEC AlphaSta-
tion 200 4/233 with Spec ratings 157.7 92Int, 183.9 92FP and 96 MBytes of me-
mory. All relevant MAPLE code is available by the authors or publicly available at
http://www.inria.fr/safir/whoswho/emiris/,
http://www.inria.fr/safir/whoswho/Bernard.Mourrain/. Several C programs used
in this work can also be found in these locations.

e D is the number of decimal digits used in the computation. (precision),

INRIA



Polynomial system solving: the case of a siz-atom molecule 21

St So S3
D 1 Ty T5 < T1 T T5 < T1 Ty T3 €
5 0.45 0.08  0.48 0.025 0.20 0.10 1.4 0.23 0.55 0.15 042 1.310° 3
10 || 0.40 0.083 0.32 4.9107° 0.18 0.12 1.5 810~ 7 0.55 0.17 0.43 1.510%

15 0.60 0.10 0.30 4.810™° 0.18 0.13 1.4 221079 058 0.82 0.28 1.510™%
20 || 0.43 0.083 2.4 1.810~8 0.37 0.15 6.9 5.210713 0.38 033 1.8 1.510%
30 || 0.42  0.10 2.3  8.61071° 0.38 0.15 81 5.310"2* 0.38 0.15 2.3 841073
50 || 0.62 0.12 2.7 2610738 0.20 0.17 9.5 7.610~%* 0.40 4.6 2.9 22107°

Table 3: Time and accuracy with Sylvester resultants (method 2.3.3)

e T is the time for constructing the matrix(ces) in seconds, including simplifying
these matrices through either Gaussian or Bareiss’s fraction-free elimination
and, finally, computing the determinant as a univariate polynomial. For the
sparse resultant method this includes 6.12 seconds for building the generic-
coefficient matrix, once for all systems.

e T, is the time for solving the univariate resultant polynomial in the hidden
variable t3 (in this case with fsolve) in seconds.

e T3 is the time for computing the matrix kernel and then the other coordinates
of the roots, or directly the latter, in seconds.

e ¢is the maximal absolute value of the input polynomials at the computed roots.

For the method of sparse resultants, the matrix is computed only once by the
greedy algorithm, for generic coeflicients, in 6.12 seconds; this, obviously, does not
depend on the chosen precision. For every system the coefficients are specialized,
respectively, to integer polynomials in the hidden variable t3. The time 77 in the first
line of table 1 includes the 6.12 seconds to construct the generic matrix, and the time
of Gaussian elimination on the specialized matrix, which yields the determinant. The
incremental algorithm for sparse resultant matrices is expected to be considerably
faster in constructing the generic matrices, i.e. with respect to the timings in column
T1, which correspond to the original subidivision-based algorithm. Our preliminary
Maple implementation suggests that this time would be less than half of the reported
running times. This is intuitively obvious because the main step in the incremental
method is a rank test on the resultant matrix, which takes about 2 seconds.

Gaussian pivoting is slightly slower than fraction-free elimination, but does not
increase the size of the entries, so that the triangular matrix may be used in compu-
ting the kernel. To increase accuracy, the kernel is computed for the original matrix,
which leads to an increase in running time.
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In all three methods, we solve for the real roots of the univariate polynomial
expressing a multiple of the resultant. We use the maple command fsolve, whose
efficiency can probably be ameliorated. It takes about 2 seconds to solve a polynomial
of degree 16 and for the last system, with 15 digits, more than 25 seconds. This
strange variation is probably due to testing out several methods (by try and error)
in the function fsolve. For each root, we substitute in the matrix and compute its
kernel vector by SVD. When the root projections on the t3-axis are not simple, the
vectors do not necessarily correspond to the values of ¢1,¢5. In this case, we substitute
t3 in the original system and solve the equations in ¢; and t9 only. Some experience
is required in choosing the threshold value that decides whether the vectors are valid.
If not, we substitute directly in the original system and solve the resulting equations.
Then a second threshold is used for deciding which candidate solutions to keep.

In conclusion, we observe that the Sylvester cascade method is fastest for the
particular problem. This is explained by the equations’ structure. However, it is not
expected to happen in larger systems, unless they possess some similar strong struc-
ture. Nonetheless, the Sylvester method offers no advantage in terms of accuracy.
The Bézout’s matrices method yields smaller matrices, which are easier and faster
to manipulate than the sparse resultant matrices, Accuracy of Bezout’s method is
slightly but not significantly better than the sparse resultant method on the example.
On the other hand sparse resultant matrices are easier to instantiate than the Bézout
matrices. The higher running times of the sparse resultant method are due to the
large matrix size.

3 The critical locus

Obviously, there exits an analogy between molecular configurations and robotics or
mechanics. Various structural requirements on molecules can be modeled as geome-
tric or kinematic constraints, as in robotics. This analogy consists in associating a
serial robot to a molecule, by considering the rotation w; around the axis L;, as a
rotation articulation between two solids S;_1 (centered at p;,_1) and S; (centered at
pi), as illustrated in the following figure; for notation refer to figure 1.
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The circles indicate the articulations of rotation in this robot. It has the particu-
larity that two consecutive axes of articulation are intersecting at a point. The cyclic
molecule corresponds to a situation where the last solid is in a fixed configuration
with respect to the first one.

This analogy can be carried on further, in order to analyze the configurations
that are infinitesimally unstable. For any solid S moved by a displacement D(t)
(where t is, for instance, time), the velocity of a point M (t) of this solid is given by

di(M(t)) = Vo + OM(t)xQ

where O is the origin, V; the velocity of the origin, considered as point of the solid,
X is the vector product of the physicists and €2 the angular velocity. In other words,
(Vo, ) represents the cinematic torque. We will identify it with the element Z of
A’E (where E is the 4-dimensional vector space underlying the affine space A® and
AE the exterior algebra on E, see [Lan80, Bou70]):

IT=ViegNes—Voer Neg+Vizer Aes+Qre1 Aeg+ Qoeg Aeg + Q3 e3 A ey,

where the e; = (0,...,0,1,0,...,0) are the vectors in the canonical basis. It repre-
sents the infinitesimal movement of the solid. For instance, for a rotation along an
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axis L containing A = (1: a3 : a9 :a3),B=(1:b1:by:b3), we have Q = A AB and
V4 = 0. Thus the infinitesimal movement for this rotation is AA A B € A2E.

If M = (1:mq:my: m3), we check that the first 3 coordinates of Z A M (ie.
the coefficients of ey A eg A es, eg Ae1 Aes, eg Aep Aeg) are precisely the coordinates
of dy(M(t)). As we have Z A M A M = 0, the last coordinate (the coefficient of
e1 Neg ANeg of T A M is determined, when we know its 3 first coordinates and M.
Thus, the velocity d;(M(t)) can be identified with the vector Z A M € A3E.

Consider now several solids connected by articulations of rotation along axes
Lq,...,L,. The velocity of any point M of the last solid is the sum of the velocities
of M attached to each solid. It is given by the formula

N
di(M(t) =Y AiLi A M.
i=1

Coming back to our problem of molecule (or robot), the serial robot will be unstable
(see [MS94],[Mer90]), if the velocity of any point M in the last solid is 0, but the
infinitesimal movement of the 6 solids is not zero. This means that we can fix the
first and last solid and find however an infinitesimal motion of the chain of solids. In
other words, the chain will be infinitesimally unstable if there exists (A1,...,Ag) #
(0,...,0) such that VM, >N X\; L; A M or equivalently

AMLi+ -4+ XgLg = 0.

where L; = p; A p;y1 € A’E represent the axes of rotations of the robot.

Therefore, the cyclic molecule is infinitesimally unstable if these axes of rotations
are linearly dependent in A%E. We are going now to characterize geometrically, the
configurations of the molecule which are infinitesimally unstable.
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Let P be the plane (pa, ps, pe). The linear system generated by p1 A p2, p1 Aps is
the same as the one generated by p1 A p2, p1 A py where p4 is any point of the plane
P1,P2,ps3 outside the line (p1,p2). In particular, we can take p4 on the plan P. Let
us call this line L = py A p5. By the same operations at the points p4, ps, we can
replace the system (p; A piy1)i=1..6 by an equivalent system

p1 A pa2,p3 A pa,ps Ape, Ly, Ly, Ly

where L} (resp. LY, L}) is the intersection of (p1, p2, p3) (resp. (ps,p2,p4), (p5, P4, p6))
with P.

Note that if these 3 lines are concurrent, then they are linearly dependent in
AZE, for they are in a same plane. In this case, the 6 elements pi A pa2, p3 A pa, ps A
pe, L, L}, L. are also linearly dependent.

By construction, if L}, L%, L meet in a common point, so do the planes

(P2, P4,D6), (P1,P2,03), (P3,P4,D5), (P5, P65 P1)-

We can translate this condition, using the Cayley operators (see [BBR85]), in a
polynomial in the determinants of the points p; as follows:

(p2,P4,p6) N (P1,P2,P3)
= p2 A palpe, p1,p2, 03] — P2 A pe[pa, 1, P2, P3| + pa A pe[p2, p1, P2, 03]
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(P2, 14, 16) N (P1,P2,P3) N (D3, P4y P5)
= —pa[ps, p1, P2, 3][P2; P3, Pa, P5] — P2[P4, P1, P2, P3][P6; 3, P4, D3]
+p6[pa, P1, P2, P3][P2, P3, P4, P5] + palp2, P1, D2, P3][P6, P3, P4, 5]
which yields

[P, 1, D5, P6][P6> P1, D2, D3] [P2, D3, Pa, Ps] + [P2, D1, Ps, De][Pa, 1, D2, P3][Pes D3, Pa, Ps] (7)

— [pe, P15, Pe][pa: 1, P2, D3] P2, 3, P4, P5] — [pa, p1, D5, Pe][p2: P1, P2, D3] [Pe, 3, pa, ps] = 0
where [A, B,C, D] is the determinant (or oriented volume) of the 4 affine points
A,B,C,D.

The determinant of the 6 axis p; A p;4+1 and this polynomial (7) are of the same
degree (i.e. 2) in the coordinates each point p;, and vanish on the same open subset
of the unstable configurations (pi,...,ps). Therefore, they are equal within multi-
plication by a nonzero scalar.

Therefore, the necessary and sufficient conditions for which the molecule is uns-
table is given by the equation (7).
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