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Abstract: In this paper, we consider a multi-layer quasi-geostrophic model of the
ocean dynamics and we prove that the long-time behaviour of its solutions can be
described by a finite number of determining parameters. Under some additional con-
dition we also show that the dynamics of the bottom layer is completely determined
by parameters connected with upper layers only. It means that the information
about the bottom layer is not essential for a description of the long-time behaviour
of the system under consideration.
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Nombre fini de degrés de liberté déterminants pour un
modele quasi-géostrophique multicouches de ’océan.

Résumé : Dans ce travail, on considere un modele quasi-géostrophique multicouche
de 'océan et on démontre que le comportement asymptotique de ses solutions peut
étre décrit par un nombre fini de parametres déterminants. Sous certaines condi-
tions supplémentaires, on montre également que la dynamique de la couche de fond
est completement déterminée par des parametres connectés seulement aux couches
supérieures. Ceci veut dire que l'information sur la couche de fond n’est pas essen-
tielle pour décrire le comportement asymptotique du systeme que 1’on considere.

Mots-clé : Degrés de liberté déterminants, modele quasi-géostrophique.



The finiteness of determining degrees of freedom. 3

1 Introduction.

Ocean circulation numerical modelling started in the sixties with Sarkisyan [23]
and Bryan and Cox [3]. Still now, this problem remains under consideration and
recently Lions, Temam and Wang proposed a modelisation for large scale ocean
and atmosphere dynamics and developed a mathematical theory for the coupled
atmosphere-ocean models [21][22]. The equations of the velocity are derived from
the Navier-Stokes equations, with adjonction of the Coriolis’ effect. The behaviour
of temperature and salinity or density are described also by partial differential equa-
tions. Due to the complexity of the problem, simpler models were introduced. The
quasi-geostrophic (QG) one is a simple formulation neglecting thermodynamics ef-
fects. First, the density is supposed to be constant and the equations are integrated
on the vertical. This results in a two-dimensional Navier-Stokes equation with the
Coriolis’ effect. The QG model corresponds to the streamfunction-vorticity formu-
lation of this equation. In fact, assuming the density to be constant in the ocean is a
rough approximation. Thus in order to improve the model, Holland [16] introduced
a two-layer formulation of this model, assuming the density is constant in each layer.
The QG equation is written in each layer with a suitable coupling through convection
terms. More recently similar models with K-layers have been introduced [20]. In
this paper we consider the K-layers QG formulation of the ocean dynamics. We are
first interested in which parameters can be used for the description of the long-time
behaviour of the solutions to the problem (1)-(7), and second in how many para-
meters are necessary for this description. These questions are inspired by the paper
of Foias-Prodi [13] about determining modes for the 2D Navier-Stokes equations
and are extensively discussed in the literature (see, e.g. [5], [6], [7], [9],[10],[12]-
[15],[17],[18]). The concepts of determining nodes and determining local volume
averages were introduced in [14] and [15] [17] respectively. A general approach to
the problem of the existence of a finite number of determining parameters (degrees
of freedom) was discussed in [7], [9], [10].

2 Model equations and preliminaries.

We consider ocean dynamics in the quasi geostrophic formulation, i.e. all thermo-
dynamic effects are neglected. The vertical structure of the ocean is modelled by
splitting the domain € into K layers of depth thickness Hy. The equation of the
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4 Ch. Bernier-Kazantsev, 1. D. Chueshov

dynamics then reads [16, 20]

90 : . )
E 4 T (g, O+ By) = pAPy + Fid — phottor iy Q0 k=1,..., K, (1)

ot
0=AY— Wi in Q (2)

where ¢ = ¢ (z,y), k= 1,..., K is the quasi geostrophic streamfunction of the k-th
layer. We suppose that € is a bounded open subset of IR? with smooth boundary
09Q. The k** layer is characterized by its thickness Hy, its reduced gravity g, and
its streamfunction ;. The forcing F;C“-”d infers only on the upper layer: F;;Ui”d =0
for k # 1 and F""? = v/H;, where v is equal to the curl of the wind stress on
the surface and is supposed to be in L?(Q). The bottom drag is D™ = 0 for
k # K and D%?”"m = ocAvk. We consider the linear approximation only of the
parameter of Coriolis f = fo 4+ By where fy and 8 are the parameter of Coriolis and
its meridional gradient in the middle of the bassin. The Jacobian operator is defined

by

Judv  OJudv
J = = — —, 3
(u,v) Ox 0y Oy oz (3)
The matrix W is the K x K tridiagonal matrix defined by
Ry —Ry e 0 R, — fgpo
k p—i
_R/2 Ry + R/2 — Ry . !]Hk(,Ok+1 - pk)
W= ) ) ) where (4)
. . ; /. R/ _ f02p0
0 o R Rk "7 gHk(pr — pr-1)

where pg is the mean density of water, py is the mean density in the k-th layer and
g is the gravity acceleration.

We notice that the matrix W has a complete system of eigenvectors. We thus
introduce A the non-negative diagonal matrix of the eigenvalues of W, and define
the matrix B so that A = B~!WB. We shall denote each vector in the eigenbasis of
W by a star:

* = B719, 0% = B716, etc. (5)

INRIA



The finiteness of determining degrees of freedom. 5

We supplement (1) and (2) with the following boundary conditions :

O(z,y,t) + Wip(z,y,t)=0 on 00Qx]0,T[, k=1,....K
iz, y,t) = CL(1) on JQx]0,T[, k=1,...,K
(6)
Jo rdw =0, k=2 . K,
Cy =0.

Let us point out here that (C}())2<k<x are unknown functions. Finally, the initial
data is

Or(z,y,0) =6y (z,y)in Q, k=1,..., K, (7)

where 6 x(z,y) is in H™1(Q), k=1,..., K. The unknown functions are v (z, y,t),
0ix(z,y,t) and C;(t). From now on, we denote by H™' L2 H! and so on the
spaces (H™HQ)E, (L2 Q)E, (HY(Q))¥ etc. We also introduce the constant py,, k =

2
0,.... K defined by po = 0, prc = 0, pp = ——I0P0 _ — H Ry = Hyyy Ripsy, b =
Y Po PK Pk g(pk+1 — Pk) kLt k140 k41
1,...,K — 1. As in [2], we will use the norm || . ||_; on H™! defined by the scalar
product

K K
(6.0) = 3" M [ V6uVbut 3ope [ (r = ) (s — i),
1 7
where 9 (resp. 1) are defined by @ (resp. 8) as the solution to the equation (2) with
the boundary conditions
Gi(a,y)=0 on 09
Pi(z,y)=C} on 0 k=2,....K (8)
Jo ¥3dQ2 =0, k=2,...,K,

where ¥ is defined according to (5). We note (see e.g.[1]) that the problem (2), (8)
has a unique solution in H* for any # € H™! and that the norm || . |1 is equivalent
to the usual norm on H™! and

ap || Vo flp2 <10 1< a2 [| VO |2 - (9)

We recall some properties of the Jacobian operator in the following lemma [1],[2].
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6 Ch. Bernier-Kazantsev, 1. D. Chueshov

Lemma 2.1 The operator Jacobian verifies, for u,v,w in H}(Q) x H}(Q) x H}(Q)
J(u,v) = —=J(v,u), / J(u,v)dw =0,
Q

/QJ(u,v)wdw:/QJ(v,w)udw,

[ I ) Auds| < o ) v el Vo] Ao

These properties remain valid for functions w, v, w constant on the boundary 052.

From now on, we use the following notations :

NN
A1 is the first eigenvalue of the operator —A with Dirichlet boundary condi-

tions,

¢y is the constant of the Sobolev embedding || ¢ ||r=< ¢ || ¥ || g2,

¢y is a constant such that ¢ || 0 ||-1< >3- Hi || A ||,

¢y is a constant such that || V¢ ||3,< ca || VO ||| A ||, € HF(Q)NH?(Q)

Coo 18 @ constant such that || ¢ ||g2< coo || A ||, ¥ € HE(Q) N HA(Q)

a1 and ag are constants such that

ai 199 g2 <11 0 1< az || V3 [lga,

H' = ming—, g H. )

In this paper we rely on the following result proved in [2].

Theorem 2.1 For 6y, € H1(Q),k =1,...,K, and v € L*(Q) and for all T >
0, the system (1)- (7) has a unique solution 0 in C([0,T7],H™) N L*(0,7,L%) N
L% (0,T,H}). The function ¢ associated to 8 by (2), (8) satisfies» € C([0,T], H)N
L*(0,T,H*)n L} (0,T,H?). The semi-group G(t) from H™' in H™', G(t)fp(z) =
6(t,x), associated to these equations, is dissipative in the following sense:

12
lim su a(t) |2, < u 11
HOOP o) (|2, < M2 E[l)\%CQ (11)
I | v ® 1
lim sup — g H. || A 2dr < <1—|— ),‘V’T>O. 12
t—)oop T t k H ¢k H - ,lLQHl)\% MTCQ ( )

Moreover there exists a global attractor A which is bounded in L2, compact and
connected in H™1 and whose basin of attraction is the whole space H™1. This
attractor has finite Hausdorff and fractal dimensions in H™1.

INRIA



|

The finiteness of determining degrees of freedom.

In particular this theorem means that the long-time dynamics of the considered
system is described by a finite-dimensional set in the phase space and therefore, at
least theoretically, we may describe the long-time behaviour of solutions to (1)-(7)
by a finite set of parameters.

3 Statement of main results.

As in [9]-[10], we will use the following

Definition 3.1 A finite set L = {lj}]lw of linearly independent bounded linear func-
tionals on the space H? = (H?(Q))X is said to be a set of determining degrees of
freedom for the problem (1)-(7) if for any two solutions 6'(t) and 6%(t) satisfying

Jim (1 (1) — (1) =0,1<j < M
—00
where ' is defined from 0 by (2) and (8), we have
. 1y _ p2 _
Jim [|6'(1) — 6(1) 1= 0.
We note that , due to (9), the last inequality is equivalent to
. ey 2 _
Tim [ 91(0) = () = 0.
Our main results are the following assertions.

Theorem 3.1 Assume that the sel L = {lj}]lw possesses the property
19 e < Cemax |l ()] +ec [ ¥ a2, (13)

for any ¢ € H? with some positive constant C; and ;. Assume that

aq >\1M2\/H1H’ . Hy,
e < — min — . (14)
az || v || V2 k=1...K Qg
where )
2 p 2
op = 202H, 4L [ =L 4 Tk ) 15
P M(th Hyty (9)

Then the set L is a set of determining degrees of freedom for the problem (1)-(7).
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8 Ch. Bernier-Kazantsev, 1. D. Chueshov

The importance of the relation (13) for construction of determining sets of functio-
nals was first observed in [9] (see also [10]).
Theorem 3.1 implies

Corollary 3.1 Let T" be a triangulation of the domain Q made of triangles with
sides less than h and let {x;,5=1,..., Ly} be the sel of all vertices of triangles
from T". Then the set £ = {l;x(¢) = ¥r(z;),5=1,...,Lp,k=1,...,K} is a sel
of determining degrees of freedom for the problem (1)-(7) provided

<1a1)\1,u min E
Cayllv \/_c k=l K\ o )

where oy, is defined by (15) and C' is the constant of approzimation (see (16) below).

This corollary follows from well-known estimate (see e.g. [8]) for linear splines
connected with the triangulation 7" of the smooth domain Q :

lw = S(T" @) [lg < Ch || @ |52, (16)
where S(T" w) is the linear interpolation spline corresponding to w € H?().

Theorem 3.2 Assume that l; € L do not involve the last component of the vector
of the stream functions ¢y, ..., ¥k, i.e. 1;(¢) is independent of Y for any ¢ € H?
and that the set L = {lj}]lw satisfies

K-1 K-1
Yol < Ce max 1 ()] +ecy Yok e (17)
k=1 k=1

for any ¢ € H? with some positive constant C and e;. Assume also that the bottom
friction o satisfies

2”1]”262 a’ <04k)
M+20> ———— { — . 18
AL 2o Hi Hip?Mia? ket i \ Hp, (18)

Then the set L is a set of determining degrees of freedom for the problem (1)-(7)

provided
Ap® v/ H{H” H
c < @ Ay min — , (19)
az vl fc k=l K\ | o

where oy, is defined by (15) and H” = ming—; g1 Hy.

INRIA



The finiteness of determining degrees of freedom. 9

From this theorem in the same way as corollary 3.1, we have

Corollary 3.2 Assume T" and zj,j=1,...,Ly as in corollary 3.1. Then the sel
L =1p(¥)=r(z;),7=1,...,Lp,k=1,..., K — 1 is a set of determining degrees
of freedom for the problem (1)-(7) provided (18) holds and

1 a1 )‘Lu \/—77 min @
SCalv| V22, =tk \ | ay )’
where oy, is defined by (15).

Theorem 3.2 and Corollary 3.2 mean that in order to determine completely
asymptotical dynamics of solutions, we need no information about the behaviour
of the K-th layer. A similar effect was first observed in [6] for some classes of
reaction-diffusion systems. It was shown there that under some conditions certain
non-vanishing components of a solution are not essential for description of long-time
dynamics. We also refer to [5] for discussion of this phenomenon for the second
order in time evolution equations.

Theorem 3.3 Assume that 6\ (t),7 = 1,2 are two solutions belonging to the at-
tractor. Assume also that either the condition (14) or conditions (18) and (19) are
Sulfilled. Let L be the corresponding set of determining degrees of freedom. Then the
property

(M) = 1P (1)) (20)

for any 1l € L and —oo < t < tg implies 0V (1) = 0D (1) for —oco < t < co.

A similar assertion on determining modes for the 2D Navier-Stokes equations was
first obtain by Ladyzhenskaya in 1972 (see, e.g., references in [4], [19]).

As in [17],[18], we can also prove assertions similar to corollaries 3.1 and 3.2 and
theorem 3.3 for local Volume averages. In this case the determining functionals

are defined by [;(¢y) = 2 Jo Vr(z,y)A (E — jl,% — J2)dw where A(z,y) = 1 for
(z,y) € S=[0,1] x [0, 1] and Az,y) =0 for (z,y) € S.
4 Proofs.

Proof of theorem 3.1. Consider § and 6 two solutions of the system (1)-(6) with
initial data 6y and 6y respectively. We introduce 8 = 6 — 8, ¢ defined by (2) and

RR n°’3067



10 Ch. Bernier-Kazantsev, 1. D. Chueshov

(8). Then 6 satisfies the system

00,

p ~ HATE DT = =) (Y, O+ By) = J (P, 0) in Q, k=1, K21)

§=Ad—- Wy in Q. (22)

Since ¢y (z,y,t) = C;(t) on 02 by (6), let us introduce C(t) = BC™*(t) and
ez, y,t) = Pz, y,t) — Cr(t). Multiplying (21) by Hyty, integrating over €2 and
summing on k, we obtain

10172,

s TR Hell MYy 1* +Hko || Vi |P= 37 Hy (J ($r, 05), ¥1) - (23)

k k

Let us bound from above the right-hand side of this equation. We rewrite 8
with its explicit form :

Oh = A = F- (e = V) = B (s = ).

Thus,
ZHk (Vn, Ok), ¥1) = ZHk (Vrs Aog), 0) —

= ok (J(Prs Yk — Y1), Epk 1 (T (ks Y1 — Y1), ¥p) -
%

An integration by part and lemma 2.1 allow us to bound from above the first
term of the right-hand side of the above equality by

ZHk (P, At), ¥3) | < C4ZHk 1k aell Vi M1 Ao ] (24)

On the other hand,

|Zpk (ks & — Vi), ¥3) | = |Zpk (Vs Y1), i) | =

<ok Nl On Nzl Vor Il Vorga I,
k

7 7 C 7
|E]0k (Drs Yk — V1), Uk ;\ Yoo L a2l Vor [l Avrgn || (25)
Lok

INRIA



The finiteness of determining degrees of freedom. 11

Inserting the inequalities (25) and (24) in (23), we have

5 T Ui ||* +Hgo || Vor |1°<
< azﬂk e el 9o 1) A | +
\/—Zpk I Nzl Vo N At |+
v S Y A [ERS
1d|e
2 H dt H - +HZH H AVIC H2 +Hgo H V¢Ix H2

C4Hk

H _
Z“ E )l Ady |\2+Z I |22l Ve |1” +

,qu 0 n
# 3T A I+ T el W 1P

MHk 1 20}7 n /
P A P D o el Vo

Then

6],

i +MEHk | Ay |I* +2Hg o || Vi [I< Zak 1w [zl Vw117, (26)
k

where ay, is defined by (15). Finally,

o],

i Sy He |l Avy P +2Hko || Vo < (27)

k
2

C5 ag 7
< —5 max (F) ZHk H Ay, HQH 0 H2—1
k7 7%

,ua% k=1,...,.K
Assuming that the family £ fulfills (13), we have

VeI Cemax|lj($)]+ecee || AY ] -

RR n°’3067



12 Ch. Bernier-Kazantsev, 1. D. Chueshov

It is easy to see that

—Cs.c mellj(@b)IZ,

LY

for any positive §. Consequently

S Hp || Ay [P > min Hi Yo |l Ay |,
k k

1-96 ~
> S5 H' || Vo | ~Cocmax |L(4)),
5,3 J
> 10 gee, ¢ 11;()?
— ma)\
= et dd e ’

for any positive §. Using this formula, the estimate (27), and the constants in (10),
we obtain

dl o> 1-4 2 « -
W a2t S o (GE) St a0 1000 1< 29
k

2 2 2,
dt E7Ci a5 pay k=1,..K

< uCse max ()]

for any positive §. We now proceed as in [18] and using [18, Lemma 3.1] along with
formula (12) for 7 = p~'c;"', we obtain that || 8(¢) ||-;— 0 as ¢ — oo provided

H' 2| v A, (ak)>0
— max | -
K 2 a3el 3H1)\2a1 k=1,...K \ H} k

<a1)\1,u in @
ay || v || fc Voar /-

Proof of theorem 3.2. We recall the estimate (26) of the proof of theorem 3.1 :

which we rewrite

62,

o T py  Hy || A¢y || +2Hko || Vg |[°<

k

1 _
< Yool v llzell Vx|
k

INRIA



The finiteness of determining degrees of freedom. 13

where ay, is defined by (15). Since the family £ satisfies (17), we have

K-1 K-1
31V I < Cemax (8] + scem| 32 Il Ave |
k=1

We then obtain

Y. Hpll Ay
k=1,..,K—1

(V4

min - He o | A%,

k=t K= TR
5 K-1

> H” Z | Vi |2 = Cs.c m?x|zj(¢)|2,

25~Eoo

for any positive §. We then have

d H Y H2—1 1-4 ” = 2 / 2
+ u H Z | Vb || + (uA1 4+ 20)Hi || Vg ||°<

dt e%cgo P

02
< = < Hi || A 6 ||* [
_W“g%(m); el A P10 12+, ma ()]

Let us introduce

1—-46 HA1 + 20
£c,0) = mi H”, Hg |.
m(ez,0) = min (Mgﬁcgoa% o K
The last inequality gives

dl e |2 c?
% + (m(&:,a) —% max < ) ZHk | Ay, HQ) 1612,< (29

,LLal k=1,...K

< uCsy m;tXllj(w)l :

We then proceed as in the proof of theorem 3.1 and obtain that, if

c? ap\ 2| v H2
m(eg,0) — =% < | = >0
(m( £:0) ua:{ k:r??.):]{ <Hk) ;ﬂHl)\%

i.e. if ¢ and o satisfy (18) and (19) then || 8(¢) ||2;— 0 as ¢ — oc.
If we assume that some layers (e.g., k; layers, j = 1,...,s) have large enough visco-
sities (the coefficients before A%¢) in the main equation), then using similar method,

RR n°3067



14 Ch. Bernier-Kazantsev, 1. D. Chueshov

we can prove that the behaviour of these layers is completely determined by other

(essential) layers.

Proof of theorem 3.3. Rewriting in an uniform way the inequalities (28) and
(29), for both cases we have, with 8 = (1) — 9(2),

612,

L) |62, COP max ()P ViR
J

with

S%C(QX)CLQ paj k=1, K

1-6 c2 @
a(t) = {,uﬁH/ _ % max (H—]Z) ZHk I A¢£ HQ}
k

in the first case, and

2

K
c «
a(t) = {m(ag,a) — 2 max (H_];) Z Hy, || A} HQ}
k=1

Iua% k=1,....K

with
1-46 A 2
m(ez,0) = min (MEQ s—H", ad 1(;2_ UHK)

£Coo2 2

in the second one. If condition (20) is verified, we have

di 62,

T ta I9]Z<0 V<t

Integrating this last inequality between s and ¢, we obtain

160) 12,51 066) 12 exp (- [ ar)ar). (30

Consider now that #() belongs on the attractor. We then have for all t € R

2
0@ (1) 112, < | vl 31
[ 0%7(1) |2, < 2 HAG (31)
I i o] 1
T/t ST H || Ay |2dr < T, <1+ ,MTC2> YT > 0. (32)

INRIA



The finiteness of determining degrees of freedom. 15

Moreover, by conditions (14) or (18) - (19), we have

(t) > C(2>o . (ak) 2” ‘UH2 iH HA/2H2
“ pa? k:r?,rc.h.ﬁl{ Hy) | p*H N = k Yk
Combining the above inequality with (32),

¢ c2 ap\ | 2] v |? | v |® 1
dr > =2 max (=& t—s) - t—s)+—
/5 a(r)dr > pa? k:n;laxh <Hk) [MQHI)\%( 5) w2 HyA? <( s) + uc;)) k

and then

t 2 ; 2 1
/ a(r)dr > <5 max (ﬁ) ol [1 _ _7] (t—s).
s pai k=1,..K \ Hy /) p“ H{\j ,u(t S)CQ

2
Thus, for s < t — Ticy
: 2 a Ilv 1
d oo N —(t—s8)= A(t —
/S a(r)dr > 27 I (Hk);ﬁHlAfz( $) = All =) (33)
for any —oo < s <t — % < t < tg. Combining (30) with (31) and (33) gives

10(t) [|2,< Cexp (—A(t — 5)).

Now if we let s — —oo we obtain || 8(¢) [|[-1= 0 V¢ < tg. We thus obtain
0 (1) = 6 (1) for t < to. The uniqueness theorem for the system (1),(2) yields
that 8 (1) = 83 (¢) for ¢ € R.
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