N

N

A Semi-Explicit Algorithm for the Reconstruction of 3D
Planar Cracks
Tarek Bannour, Amel Ben Abda, Mohamed Jaoua

» To cite this version:

Tarek Bannour, Amel Ben Abda, Mohamed Jaoua. A Semi-Explicit Algorithm for the Reconstruction
of 3D Planar Cracks. [Research Report] RR-3063, INRIA. 1996. inria-00073629

HAL Id: inria-00073629
https://inria.hal.science/inria-00073629
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00073629
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A semi-explicit algorithm
for the reconstruction of 3D planar cracks

Tarek BANNOUR , Amd BEN ABDA , Mohamed Jaoua

N° 3063
December 1996

THEME 4

apport
derecherche







VAV 1 IN IN 1

ROCQUENCOURT

A semi-explicit algorithm
for the reconstruction of 3D planar cracks

Tarek BANNOUR *, Amel BEN ABDA T, Mohamed Jaoua *

Theme 4 — Simulation et optimisation
de systemes complexes
Projet Mostra

Rapport de recherche n°3063 — December 1996 — 21 pages

Abstract: This paper deals with a semi-explicit algorithm to reconstruct 2D segment cracks, or
3D planar cracks, in the framework of overspecified boundary data. The algorithm is based on the
reciprocity gap concept, introduced by S. Andrieux and A. Ben Abda, which provides explicitely the
line (or the plane) support of the cracks. A numerical reconstruction of the cracks, which are actually
the support of the solution jump across this plane, is then performed by computing the Fourier
expansion of the solution jump itself. After the numerical analysis of the method, some numerical
results are presented and commented.
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Un algorithme semi-explicite de reconstruction de fissures planes 3D

Résumé : On présente dans ce travail un algorithme semi-explicite de reconstruction de fissures
droites (en 2D) ou planes (en 3D) grace a des mesures effectuées sur la frontiere. L’algorithme est
basé sur le concept d’écart a la réciprocité, introduit [par S. Andrieux et A. Ben Abda, qui permet
de déterminer explicitement la ligne (resp. le plan) portant la ou les fissures. La reconstruction
numeérique de ces derniéres, qui constituent en fait le support du saut de la solution & travers la
ligne (resp. le plan), est ensuite obtenue en calculant le développement en série de Fourier du saut.
L’analyse numérique de la méthode est ensuite effectuée, suivie de la présentation de quelques résultats
numeériques commentés.

Mots-clé : problemes inverse géométriques, détection de fissures, écartr a la réciprocité, analyse
d’erreur, algorithme semi-explicite.
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1 Introduction

In this work, we are interested in the reconstruction of line segment cracks (in 2D situations), or
planar cracks (in 3D situations) by overspecified boundary data. These problems are related to non
destructive electric or thermic control of materials.

In this area, there are quite a few theoretical works, and almost all of them deal with 2D cases : a
uniqueness result for a buried crack has been investigated by Friedman and Vogelius [16, 1989], and
stability results of logarithmic type have been obtained by Alessandrini [2, 1993]. For the case of
emerging cracks at an a priori known point of the boundary, a uniqueness result and a local Lipschitz-
stability one have been proved in [9, 1996]. In the case of a family of emerging cracks, a uniqueness
result has been proved in [14, 1995]. As for 3D situations, only very few uniqueness results exist, and
they all assume the knowledge of all the possible measurements, namely the full Neumann-to-Dirichlet
operator (see Eller [15, 1996] and references therein).

An efficient numerical reconstruction algorithm - for interior segment cracks - has been presented by
Santosa and Vogelius [19, 1990], and a more recent work by Elcrat and Isakov [14, 1995] gives an
inversion algorithm to recover a family of surface cracks.

In the particular case of 3D-planar (or 2D-line segment) cracks, S. Andrieux and A. Ben Abda intro-
duced in [6, 1993] [7, 1996] the reciprocity gap concept, and proved that such cracks can be completely
determined, provided that complete data are available on the external boundary of the body. Mo-
reover, they gave inversion formulae which determine explicitely the plane containing the cracks, and
proved that the full reconstruction is possible. The proof of the latest result turns to be constructive,
and the semi-explicit algorithm is actually built upon it.

In section 2, the results used to construct the numerical algorithm and to run the trials are recalled.
The semi-explicit algorithm is described and studied in section 3, while the numerical results and
comments are presented in section 4.

2 The inversion process.

For the reader’s convenience, we recall in this section the results related to the reciprocity gap concept
[7] that we shall use to built the numerical semi-explicit algorithm and to run the trials.

In this section, we first derive the reciprocity gap notion and the functional associated to it. Then, we
use this functional to establish the formulae for the identification of the plane containing the cracks, a
complete identification result, and another formula for the determination of an emerging crack length
in 2D situations.

2.1 Uniqueness results for 3D-planar cracks.

Let Q denote the 3D bounded domain occupied by the body,and 92 its external boundary, which we
shall assume to be C?. The body is supposed to contain one or more co-planar cracks o € II, where
(1) is the affine plane in R® containing all the cracks. We denote by Q, = Q\o the defective (cracked)
domain. The affine space is equipped with a direct orthonormal frame (O, ey, ez, €3). Denoting by
(1, 2, x3) the corresponding cartesian coordinates system, the plane equation will be given by :

n1T1 + naTy +n3zz +c=0 (1)
where N = (n1,n2,n3) is a unit normal vector to (II).
Let us now denote by ¢ a given heat flux on 99, satisfying ¢ # 0 and / ¢p=0,¢ € H_%((?Q)

a0
(in practise, ¢ will be chosen to be piecewise continuous). Consider then the following steady state
electrical (or heat conduction) problem for a homogeneous medium :
RR n° 3063
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Au, = 0 n Q,
Juo 0 on o (2)
%% = ¢ on 0%

Since the solution of (2) is unique up to a constant, the condition / u, is added in order to insure the

uniqueness. We assume in the following that this solution has been measured on the whole external
boundary 0f2, and we shall denote by f this measure.

2.2 The reciprocity gap concept.

In the general framework of flaw determination, one can intuitively feel that some insight into the
problem may be gained by comparing the actual response of the body (a flux being prescribed) to the
one given by a safe body with the same characteristics.
The first idea is to examine both state fields. This cannot be useful, so far as these fields are defined on
two different domains (the safe one, and the defective one), and the field corresponding to the defective
body is only known by its Cauchy conditions on the external boundary. One has then to carry all
the available information on the known part of the body. To this end, the Maxwell-Betti reciprocity
principle (in elastostatics) provides the idea, which extends in fact to any symmetric operator. For
sake of simplicity, we shall present it in the case of elliptic operators. The variational formulation of
such problems can be settled as follows :
Find » in H, such that :
{ a(u,v) = L(v) for any v € H (3)

where H is a Hilbert space, a a bilinear, symmetric and coercive form, continuous on H x H, and L a

linear continuous form on H. Ly and Ly being two different linear forms defined on H, let us consider
the two corresponding problems (i = 1,2) :

Find u; in H, such that :

(4)

a(u;,v) = L;(v) for any v € H

Then, choosing v = ug as a test function for the first problem, and v = wy for the second one, we
derive that Li(vz) = Lz(vy). This is the reciprocity principle, due to the symmetry of a. Let us
now reconsider the particular case of the Laplace equation, and let % be the solution of the following
problem in the safe body :

Aag = 0 m Q
{ g—i = ¢ on 0f2 (5)
where ¢ is some flux verifying é = 0. Denote by f the measured temperature on the external
o0

a0 = f), and consider the quantity :

/8 (@f =af)

According to the reciprocity principle recalled above, this quantity vanishes if the domain is safe. The
reciprocity gap is then naturally defined, for any harmonic function v € H (), as follows :

boundary (@

INRIA
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Jdv
RG v) = v — — 6
[6,£(v) . I (6)

Equation (6) defines then a linear form on the space H = {v € H'(Q2) such that Av = 0 in Q}. By
using Green’s formula on the domain €, , we get :

R0 (0) = [ Tual 3 )

where [u,] denotes the jump of the u, across o, with respect to the direction of the normal N. The
following result then holds.

Proposition 1 (Determination of a normal vector to the plane) Denote by x. the mapping
x +— xg, and let Ly, = RG4 g(xk). If ¢ has been chosen in such a way that /[ug] # 0, then

(o2
the components of the unit normal to the plane (I1) containing the cracks o are given by :

Ly
ng = fork=1,2,3 (8)
VLI + L3+ L3
Furthermore, one has :
|/ug = L2+L2+L2 (9)

Proof : It is straightforward from expressions (6) and (7) of the reciprocity gap applied to the
harmonic functions xi, &k = 1, 2, 3.

A unit normal vector N having been determined by the previous proposition, consider a new direct
orthonormal basis (1", V', N'), and denote by (Xi, X3, X3) the corresponding cartesian coordinates
system with origin O. The equation of plane (II) in this system will be :

X3—C:O

Under the same assumption /[ug] # 0, the following result completes the localization of the plane

o
(IT) by determining the constant c.

Proposition 2 (Determination of the constant) The constant ¢ determining the plane (I1) is

given by :
RG
_ : [¢,fl(p) . (10)
vLIi+L;+ L3
where :
o X2 - X2
P(X1, Xg, X3) = 2——2 5 : (11)
Proof :It is also based on the reciprocity gap applied to some specisl function, as shown in [7]
|

RR n° 3063
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2.3 The complete identification of the cracks.

At this stage, the plane (II) containing the cracks is entirely, and explicitely, determined.

A constructive method is now proposed to achieve the cracks identification. Once again, the recipro-
city gap is the basic tool. Based on its two expressions (6) and (7), the identification of ¢ is performed
by interpreting [u,] as a linear form on L2(S), S being some square domain of the plane (II) containing
the cracks.

Consider now a new frame (O’, ?, ?, ﬁ) obtained by a simple translation, such that the new origin
O’ belongs to (II). Let d = diam(2), and W be some open “big box” containing Q. Setting d = 2
does not reduce the generality, and then for example :

w :](11 — 1, a; + 1[)(](12 — 1, ag + 1[)(](13 — 1, as + 1[

where (al,%, az) are the coordinates of some appropriate interior point to €, with respect to the

LV, N).

frame (O’

Figure 1: The crack laying in the determined plane

Let us choose S = IINW, and then S =] — 1,+1[x] — 1, +1[ after a translation. Define on W the

family of functions (0;7 ); qle’N7 as follows :

: 1
0 (x,y,z) = ————=9" (x,y)sinh + 12
pa (2,9, 2) e pa (2, y) sinh(m2y/p? + ¢?) (12)

where (97 )=L- is the orthogonal basis of L2(S) defined as follows :

P,3/p,gEN
zg,q(%y) = cos(pra) cos(gry)
g,q(wyy) = cos(prz) sin(gmy) (13)
?92,q(w,y) = sin(pmz) cos(¢my)
Ppq(z,y) = sin(prz)sin(gry)

Lemma 1 Let EL::] be the extension by zero of [u,] to S. Then, for p,q € N and i =1,2,3,4 :

RGys,1(65,) = [ [v0).0, (1)

INRIA
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Remarks :

1
1. It is worthwhile to observe that [u,] can be defined as a function of H%(S) since [u,] € Hgy(o),

1
and the extension by zero maps continuously Hg,(o) onto Hz (S) ([17]).

2. Equations (14) give in fact the Fourier coefficients of [u,] on the square S. By reconstructing its
Fourier expansion, we can then determine its support.

Of course, we shall use a truncated Fourier expansion, the so called quadratic partial sum at
order n :

n 4
[ucl, = D YRGB, -7, (15)
p,g=11i=1
As mentioned above, the support of [17;] is exactly the crack . The following recalls this statement,
proved in [7].

Proposition 3 [u,]| cannot take a non nill constant value on any open subset of posilive measure of
o. As for the set {x € o ; [us|(z) = 0}, it is either of nill measure, or equal to o.

Remark : Actually, {z € 0 ; [us](z) = 0} = o means that the chosen flux ¢ is not identifying.

3 The numerical semi-explicit algorithm.

Following the above results, the algorithm appears clearly to split in two steps :

1. The first one, which is explicit, consists in locating - by using formulae (8) and (10) given in the
former section - the plane (II) containing the cracks. This determination is exact, so far as the
data are exact themselves.

2. The second one is the numerical computation, by use of formula (14), of the truncated Fourier
expansion (15) of the solution jump [u,].

The only numerical computations needed by the algorithm are those of the Fourier coefficients of [u,],
which are obtained by computing integrals on the external boundary involving both the prescribed
data ¢ and the measured data f :

i SRR i 80;41
RG[é,f](ep,q) = /[uff]'ﬁp,q = / $0,,— 9 f
S a0 n

In this paper, all the numerical trials have been run with synthetic data, i.e. with data generated by
a finite element computation providing f from the prescribed flux ¢.

It should be pointed out that we are interested here in approximating the support of this jump,
rather than the jump itself. For this purpose, the truncated Fourier series [u.], is not expected to be
satisfactory, since its support has no reason not to extend on the whole domain S. In order to provide
an approximation of the cracks, we need then to define, for a given positive real number ¢, and a given
integer n, the following sets :

oe={r e8| [ul@)] > <) (16)
and

one = {2 €85 |[ul(@)] > ¢ (17)

The first one is expected to be an approximation of ¢, and the second one an approximation of o..
Let us denote by d the Hausdorff distance in the plane (Il). The following result then holds :
RR n° 3063
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Figure 2: Approximations of the crack

Lemma 2 For a prescribed real positive number ¢, we have :

nh_)rréo d(0pe; 0:) =0 (18)
and furthermore :
lim lim d(ou.;0)=0 (19)
e—0 n—o0

Proof : For sake of simplicity, we shall denote by g the unknown function [u,] that we are seeking to
approximate, and by g, its truncated Fourier expansion, at order n. Then ;

o.={zeS;|g(z)| > e}

and
Ope =12 €55 |gn(z)| > €}

The sets o, are strictly decreasing with respect to ¢, i.e. :
o.Co, Coife>n (20)

We are going to prove that, for a given £, there exists some integer N such that :

*nZN:>03_5§Un5§0%§U (21)
2

To this end, we shall need the Grisvard’s regularity results for solutions of elliptic problems in singular

domains ([17]) : u, € H%_W(Qg), and therefore that [u,]|, € Hoéo N H'™(o) for any positive real
number v. Then g € H!=7(S), and it can be locally (i.e. near the crack boundary do) expanded into
a regular part g%t € H%(S), and a “singular part” ¢° which behaves like p%, p being the distance to
the crack boundary do. It turns out then that ¢ is a continuous function, and even an absolutely
continuous one on do, so that the following holds :

limd(oe; 0) = ll_I)% p{resS;0<g(z)<e}) =0 (22)

e—0

p being the Lebesgue measure in (II).
On another hand, we need to prove that the Fourier quadratic partial sum g, is uniformly convergent
to g. This is done by using a result due to Zhizhiashvili (1971 and 1973), reported by Alimov et al
[5], which is a generalisation of the Dini-Lipshitz uniform convergence of Fourier series theorem from
the 1D to the multi-dimensional case. Namely, the statement is that, if the modulus of continuity
w(d;g):= | ma|)<(6 lg(z) — g(y)| has the following behaviour :
-y
w(d;9) = o(1) (log %)_2 for 6 — 0 (in the 2D-case) (23)
INRIA
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then the quadratic partial sums converge uniformly to ¢ on S. Let us check the behaviour of the
1
continuity modulus. According to its regularity, g is a C27” function, for any v > 0 [1], and then :

l9(2) = g(y)| < ¢ |z — y|7 7

such that w(é; g) = 0(5%_W), which insures (23) and, according to Zhizhiashvili, the uniform conver-
gence of g, to g. For any given &, there exists then some integer N (¢) such that :

n2NE) = maxlgn(e) - g(x)| < (24)
Let now z € 0,.. Then :
€ €
|g(30)| > |gn($)| - |g($) — gn(x)l > e — 5 — 5

which proves that for n > N(eg) , o, C o:. By the same kind of argument, 0z. C o0, and (21) is

2
proved. Since we also have 022 C 0. C 0z, we can derive that d(ope; 0.) < d(oze; O'%), which - by
2 2
using (22) - proves (18).

This result means that for a fixed ¢, lim o,. = o.. d being continuous, we immediatly get :
n— oo

lim d(o,e; 0)=d(o.;0)

n— 0o

and finally :

lim lim d(o,.;0) = limd(o.;0) =0

e—0 n—o0 e—=0

|
Remark : This is the weakest result one should check before running any numerical trial. Anyhow,
it shows - since lim lim o,. = 5, while lim lim ¢,. = ¢ - that the numerical trials have to be
n—oo e—0 e—=0 n—oo

performed at a fixed “tolerance number” ¢, and that o,,. is the right candidate to approximate o. By
the forthcoming error estimates, we establish more precisely this statement.

Lemma 3 Under the assumption that the “stress intensity factor” does not vanish on do, there exists
some constant c, and some real positive number ey depending on Q, and u,, such that for any e < &g,
we have :

d(o.; 0) < c.g (25)

Proof : Using again Grisvard’s regularity results, one has :

g9(z) = g%(2) + p% ¢(s) (26)

where p is the distance to the boundary do, ¢(s) being the so-called stress intensity factor by analogy
with the elasticity problem. Namely ¢ is some regular function of the curvilign abcissa of do, and g%
a regular function defined on o (g% € H* V(o) N H(0)). Let = be a point of do., and z¢ a point of
do such that :

dist(z ; 0o) = dist(z; z9) = |z — 20|

Then, we have, since p(z) = |z — xo| and gf(z¢) = 0 :

1
9(2) = g"(z) — g"(z0) + p? ¢(s0)
For any z € do., it comes then, since |g(z)| =¢ :

e > p2 | p(so)| — lg7(2) — g% (z0) |

RR n° 3063
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Since gF € H?*77(0), there is some constant c; depending on g and o such that :
|9"() = g% (o) | < 2w — o]

By the assumption that the “stress intensity factor” ¢ does not vanish on do, and thus that min | ¢(s) | >

s€do
8 > 0, we get then :
e> (B - e p%)p% Va € do. (27)
The mapping € — max p(z) is a positive increasing function of €. Then :
€doe
lim max p(z) =0 (28)

e—=0 z€do.

because if not, this limit would be some positive real number y, and one could exhibit a sequence
Ty € do 1 such that hm p(zy) = p. From (z,,)n>1, we could then extract a convergent subsequence
m—r

Ty s Wlth limit z* € 7, and x* € o since :

- 1
g(@") = lim_g(zm,) = lim (Z—) =0

This cannot happen because lim dist(z,,, ; do) = lim p(z,,,) = p # 0.

k—oco k—oo

Figure 3: Distance between the crack and its approximation

It follows from (27) and (28) that we can find two real positive numbers g and 3 such that, for any
e < gg, we have :
ﬁ—CQp% >3 >0 forall z € do.

Let us now define p, = max min dist(z ; y) . Using(27), it comes then :
r€do. yEdo

1
e > PBp?

On another hand, any point of do. is at a distance less than p. from 0do, and consequently, since
0. C 0, no point of o\o. is at a distance from Jdo greater than p.. Thus, d(o.;0) = p(o\o.) is
bounded by the measure of a strip of length A(do), which is the “measure” of do , and of width p. :

d(o.; 0) < p: A(0o)

which leads to e > ¥d(o.; 0)?, with ¥ = 3 A(00). This proves (25).

[

INRIA
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Remarks :

1. Estimate (25) is strongly based on the knowledge we have of the behaviour of the singular part
of the solution. Actually, the power of € is the inverse of the power of the local behaviour (near
the crack tip) of the solution.

2. All the above proofs, given in the case of a single crack, extend easily to the case of multiple
co-planar cracks, by reasoning on each connected component of o.

3. In the 2D case, all the proofs work as well, and are even simpler : the Hausdorfl distance reduces
then to the sum of the distances between the left and right crack tips while p. is the maximum
value of these two distances.

We are now able to give the final estimate in the following theorem.

Theorem 1 Under the assumption that the “stress intensity factor” does not vanish on 0o, and given
any positive number §, there exists two positive constants ¢ and ¢, and some real positive number £q,
such that for e < eg, and n > ée~ %) we have :

d(0pe;0) < c.e? (29)

Proof : We shall use the following characterization of the Sobolev space H*(S) [18, Kress] :

HY(S) =g € L*(S)5 3 Y (14 +¢%)* |ap,(9)]* < oo (30)

p,g=114=1
where apq (g) are the Fourier coefficients of g, the space L%(S) being the set of functions g verifying

Z Z ‘a;q (g)‘2 < o0. Given a positive number v < 1, which relationship to the given § will be

p,g=114=1
precised later on, we have already pointed out that g € H*(S) for s =1 — . We have :

(g g” ZZ pq

p,g>n =1
which can also be written :
4 .
G=ga)(@) = DD A+ +¢) T (1+0"+¢*)2ap,(9) 0}, (2)
p,g>n =1

Using the Cauchy-Schwarz inequality, we get :

rgggl(g—gn)(w)lé{z:(lﬂ +4%) } {ZZHP +4%)° |a ()I}

p,g>n p,g>n =1

Since g € H?, the second term between brackets is converging to 0, and is then bounded by some
% > 0. Thus, chosing any real positive number s’ smaller than s, we derive :

max |(g — g,)(z)| < & { Z (14 p2 + q2)_5/ (1+ p2 T q2)—(s—5') }2

€S
RR n° 3063 P,g>n
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and therefore : X
K 1 g
c _ < 2 2y —(s—s")
max|(g — gx)(2)| < { > " (1+p*+¢)

(1+ 2'”2)% p,a>n

1
Now, any choice of s’ such that s —s' > 2 would insure the convergence of the series between brackets,

1—2+' 1
which is therefore bounded. Such a choice is realized by taking s’ = 5 T , with 2 > 9 > .
We obtain then :
R
(9 g0) ()] < —— (31)
n2

2 2
Thus, in order to get [(¢—g,)(z)| < =, it is sufficient to choose N(g) > ¢ée 1-2v", where ¢ = (28)1-2"".

N | ™

é 1
Let us then set 7' = m, which fulfills the required condition 0 < 7' < 2 and chose for v any

real positive number smaller than 4. The condition on N (g) becomes then N(g) > &~(2+9),

Now, by lemma 3, we know the existence of two positive numbers £g and ¢ such thate < g9 = d(oz:; 0) <
2

ce?. Chosing n > ¢~ insures then (24), which is :

max|(g — gn)(2)| <

N | ™

and therefore, as in the proof of lemma 2, 0z C 0,. C . Then :
2
d(0pe; 0) < d(ose;0) < cé?
2

which is the desired estimate.

4 Numerical results.

The numerical study has been carried for 2D and 3D cases, but according to the computer facilities
available, the algorithm behaviours have been outlined for 2D situations, some 3D cases been run
afterwards to make sure that the conclusions extend. Furthermore, the 2D numerical trials have been
mostly carried for a square domain €2, which is not actually a limitation in our case, since the first
step of the algorithm is explicit and is hence not influenced by the domain’s shape, and that its second
step begins by immersing the domain in some “square big box” before computing the Fourier series.
Anyhow, some special geometries have also been achieved to complete the study.

4.1 Location of the crack’s line

According to section 2, the location of the crack’s line is achieved by computing the three boundary
integrals involved in the formulae (8) and (10) giving the two components of the normal vector, and

the constant of the line’s equation. Any flux ¢ satisfying the identifiability condition /[ug] # 0 can

o
be used in the identification process, but it is expected that some fluxes behave better than others.
Referring to Friedman and Vogelius ([16]), we know that non identifying fluxes exist, for which the
crack is immerged in some field line of the solution.
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As mentioned above, all our trials are based on synthetic data, obtained via a finite element direct
computation using the INRIA’s Modulef library. The boundary integrals have then been computed
by using a Simpson’s rule on the finite element mesh. Several fluxes have been tested, to determine
the line supporting a crack ¢ with endpoints (0.5, 0.) and (0.8 , 0.), within the square domain Q =
]-1,1[ x ]-1,1[. The constant is determined with less that a 10™* error in all the cases, while the angle
(i.e. the normal vector) is determined with a better accuracy. In figure 4, we can notice that - with 20
basis functions - the reconstitution of the crack depends on the fluxes used to perform the algorithm,
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Figure 4: Reconstitution of a crack using six different fluxes (20 basis functions, 5 % tolerance number)

the “worst” approximation being obtained in the case where the level lines are crossing almost conti-
nuously the crack (and thus [u,] is almost vanishing on o). Figure 5 illustrates this statement.

Comparing the level lines for the “worst” flux (¢_3) and the “best” one (¢3), we notice - for this
latter’s - strong discontinuities across the crack, and also high gradients near the crack tips, which
denote the presence of singularities due to non vanishing stress intensity factors. Even this assumption
is not necessary to insure the identifiability, it was needed to prove a Lipschitz-stability result for 2D

emerging cracks [9], and it was - in the present paper - essential to derive the error estimate (25) of
lemma 3, and thus to derive the error estimate (29) in theorem 1.

4.2 Complete identification and convergence

The crack’s line being identified, we know are first going to look at the effects of the truncation of
the Fourier expansion on the accuracy on the reconstructed jump [u,], before being interested in
its support. Figure 6 gives the “real” jump (obtained by the finite element computation), and the
reconstructed jumps obtained by truncated Fourier series involving 20, 30, 50, and 70 basis functions.
Two observations can be pointed out at this stage :

1. The crack seems to be detected even at the lowest values of n ;
RR n° 3063
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Figure 5: Level lines for the worst and the best flux (70 basis functions, 5 % tolerance)

2. The reconstructed jump [u,]|, is somewhat oscillating, and cannot hence provide an acceptable
approximation of the jump itself.
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Figure 6: The reconstituted jumps and cracks using 20, 30, 50 and 70 basis functions (5 % tolerance)

A smoothing procedure would probably improve the approximation of the jump, but it would in the
same time spread out its support, which is the very information we are seeking to catch. As announced
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in section (3), we shall keep the jump as computed, and use for the approximation of its support the
following set :

one = {z € 5 fulln(e)] >}

for a prescribed ¢ that we shall refer at as the tolerance number.

Given a value of n (which is a computational cost we are willing to pay), we should choose - according

1-4
to theorem 1 - an ¢ of order n~™ "2 - for any &' > 0 - so that we obtain an error d(o,.; o) of order
n~'t% . The behaviour of the errors, as shown in figure 7, turns out however to be much better than
expected.
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Figure 7: Error vs. number of basis functions used

As a matter of fact, the relationship between n and e, used to establish the error estimate (29), was
based on the uniform convergence of the Fourier series, which is slow, and this could be a too strong
requirement : observing the reconstituted cracks of figure 6, one can notice that the convergence of
One to o is achieved far ahead the uniform convergence of g, to g.
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Figure 8: Error vs. tolerance number

According to these observations, all the trials reported from now on have been run with 70 basis
functions in 2D, and 70 x 70 functions in 3D, which are the numbers it is not worthwile to go beyond
RR n°3063
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since they achieve the convergence of the cracks with an error (less than 0.4 %) which seems to be the
lowest we can reach. The related tolerance numbers (5 % in 2D, and 3 % in 3D) have been chosen
according to the curves of figure 8.

4.3 Noisy data

Running an identification algorithm based on measurements, one has to remind that measured data
are subject to noise, the effects of which have to be studied. In our case, the data are synthetic, i.e.
obtained by a finite element computation subject to errors, and they are hence already noisy. To
the computational noise, we have added a random noise, generated by a Fortran routine, and run
numerical trials for several ratios (with respect to the maximum value of the “measured” data) of this
additinal noise.

Figure 9 gives the result of the complete identification algorithm for four ratios (5, 7, 10 and 15 %).
Up to 7 % of additional noise, the results remain satisfactory. At 10 % of additional noise, a parasite
crack appears in the middle of the crack line. At 15% of additional noise, the crack is completely lost.
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410 % noise 118 % noise !
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Figure 9: Behaviour of the algorithm with respect to the noise level

Actually, effects of the noise have been recorded even in the explicit part of the algorithm, namely in
the determination of the crack’s line, since this part involves as well the noisy data for the computation
of the boundary integrals. The line is correctly identified up to 10 % of additional noise, and it is lost
at 20 %. At 15 %, the line is still correctly recovered, but the crack itself is lost [10, Bannour].
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4.4 Effects of the crack location

No assumption on the location of the cracks is needed, from a theoretical viewpoint, by the algorithm
to recover them. It is interesting therefore to verify, in a few extreme situations, how general the
algorithm is. A crack located near the corner, an emerging crack (at an unknown boundary point),

and a multiple crack were the three situations chosen for this test, the results of which are summarized
in figure 10.
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Figure 10: Recovery of a crack in some extreme situations : a-real jump ; b-reconstituted jump ;
c-reconstituted crack

4.5 Further trials and comments

As announced in the beginning of this section, some “special” geometries have also been tested to
verify that the process is not shape-sensitive, and 3D situations have also been studied. An exhaustive

presentation of all these trials can be found in ([10, Bannour]). Figure 11 shows that the process is
not shape-sensitive.
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Figure 11: Recovery of cracks in the case of a non square domain

As expected, the 3D situations require much more computational time to run than the 2D ones : the
number of Fourier basis functions needed is squared, and the integral computations on the boundary
are 2D instead of being 1D, so that the number of numerical integration is also squared, at a presribed

rate of accuracy. Figure 12 gives the reconstitution of the jump through a square-shaped crack with
respect to the number of harmonics ( 30 x 30, 50 x 50, and 70 x 70).
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Figure 12: Reconstruction of the jump in 3D

Using a 3 % tolerance number, figure 13 shows then the reconstruction of two cracks (a special-shaped

one, and a multi-crack) which establishes that the algorithm is able to reconstruct any crack, wathever
its shape is.
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Figure 13: Reconstruction of 3D cracks a-non square crack ; b-multi crack

All the computations have been run on Sun Sparc workstations : Sparc 1 for the 2D cases, and Sparc 5
for the 3D ones. A few runs have also been performed on a Sun-Sparc 20 machine, so that it is not wor-
thwhile to compare machine-dependent cpu times. It seems more interesting anyway to compare the
time needed by the algorithm to achieve the reconstruction with the time needed by a piecewise linear
finite element direct computation. Such an information is interesting because most inversion processes
are iterative, and they would need, at each iteration, to solve one or several direct problems by a finite
element computation. In other words, a relevant unit to compare the algorithms one to each other,
in terms of computational time, would be the number of DFEC (Direct Finite Element Computations).

‘ H DFEC H order 30 x 30 ‘ order 50 x 50 ‘ order 70 x 70 H
cpu time 4°37° 9’227 15’427 19’317
ratio reconstr./DFEC 2.03 3.40 4.23

The above table gives these informations, for the reconstruction of a 3D single crack. It shows that
the semi-explicit algorithm is a low-computer cost one, even its implementation has not been fully
optimized, while the finite element code Modulef used for the computations has of course been.

5 Conclusions

The semi-explicit algorithm presented in this paper is based on the reciprocity gap concept, which is
valid for any symmetric operator. Because of the explicit identification of the support of the crack
(line in 2D cases, and plane in 3D), the algorithm turns out to have very low computational costs,
since it needs computations only on an hypersurface. Its limitations are of two types :

1. The cracks have to be planar (in 3D) or segments (in 2D), and if they are many of them, all
have to be co-planar (resp. colinear). It seems difficult to go beyound such a limitation, which
is constitutive of the algorithm. Recently, Santosa and Vogelius have proposed a promising low-
profile way to use the method, in order to provide a first guess for some other algorithm, when
the geometric assumptions are not fulfilled. The numerical analysis of this idea has not been, up
to our knowledge, done, and the compatibility conditions on the data (the prescribed and the
measured ones) have also to be checked.

2. The data have to be complete, that is prescribed - or measured - on the whole external boundary.
This might be a serious limitation in some practical situations, although most papers published
on the topic seem to carry the same assumption.
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Near-future prospects of the method lay first in its generalization to various operators, and various
boundary conditions on the crack. Several results have already been obtained in this area, and some
others are in progress. On another hand, it seems worthwhile to deepen the error analysis, in order
to throw some additional light on the reported superconvergence phenomenon. Last, the lack of
measurements on the boundary (incomplete data) could be not such a hopeless situation, at least for
2D cases, if a reliable way is found to couple some existing process of completing the lacking boundary
data to the recovery algorithm.

Acknowledgements : The authors are indebted to Claude Zuily for the fruitful discussions they had with him
on Fourier series.
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