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Abstract: In 1994 Bérenger showed how to construct a perfectly matched
absorbing layer for the Maxwell system in rectilinear coordinates. This layer
absorbs waves of any wave-length and any frequency without reflection and
thus can be used to artificially terminate the domain of scattering calculations.
In this paper we show how to derive and implement the Bérenger layer in
curvilinear coordinates (in two space dimensions). We prove that an infinite
layer of this type can be used to solve time harmonic scattering problems.
We also show that the truncated Bérenger problem has a solution except at
a discrete set of exceptional frequencies (which might be empty). Finally
numerical results show that the curvilinear layer can produce accurate solutions
in the time and frequency domain.
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Couches parfaitement adaptées en
coordonnées curvilignes

Résumé : En 1994 Bérenger a construit un modele de couches parfaitement
adaptees pour le systeme de Maxwell en coordonnées cartésiennes. Une telle
couche absorbe les ondes sans générer de réflexion, et cela quels que soient
I’angle de propagation et la fréquence. Elle peut donc étre utilisée pour clore
un domaine de calcul de diffractions. Dans ce papier, nous montrons comment
dériver et implémenter des couches de méme type en coordonnées curvilignes
(et en deux dimensions). Nous montrons qu'une couche infinie résoud parfai-
tement le probleme de diffraction. Nous montrons également que le probleme
de Bérenger posé en domaine tronqué est bien posé, sauf et éventuellement
pour un ensemble discret de valeurs de la fréquence. Finalement, des exemples
numériques montrent que ces modeles de couches en coordonnées curvilignes
produisent des résultats précis.

Mots-clé : Couches absorbantes, Calcul d’ondes électromagnétiques, couches
parfaitement adaptées



The PML in Curvilinear Coordinates 3

Abstract

In 1994 Bérenger showed how to construct a perfectly matched absorbing layer
for the Maxwell system in rectilinear coordinates. This layer absorbs waves of
any wave-length and any frequency without reflection and thus can be used
to artificially terminate the domain of scattering calculations. In this paper
we show how to derive and implement the Bérenger layer in curvilinear co-
ordinates (in two space dimensions). We prove that an infinite layer of this
type can be used to solve time harmonic scattering problems. We also show
that the truncated Bérenger problem has a solution except at a discrete set
of exceptional frequencies (which might be empty). Finally numerical results
show that the curvilinear layer can produce accurate solutions in the time and
frequency domain.

1 Introduction.

Finite element, finite difference or finite volume discretizations of scattering
problems are faced with the problem of truncating the infinite domain pro-
blem without introducing excessive error into the computed solution. Usually
an artificial boundary is introduced on which a special absorbing boundary
condition is used that reduces the reflection of waves incident on the artificial
boundary. The key is to find boundary conditions that do not ruin the sta-
bility of the computation, are not too expensive and are acceptably accurate.
It is difficult to satisfy these three competing criteria. Low order boundary
conditions are usually stable, but in order to obtain sufficient accuracy the
absorbing boundary must be far from the scatterer making the computation
costly. Higher order conditions are more complex to implement and some-
times have stability problems (for a survey of absorbing boundary conditions
see [16, 14]).

Another approach to terminating the computational domain is to surround
the scatterer by an absorbing layer. In the past such layers have had to be
unacceptably large to control spurious reflections from the surface and interior
of the layer (see for example [20]). However, in 1994, Bérenger 2] showed how
to perturb the Maxwell system to provide a perfectly matched absorbing layer
(abbreviated to PML for the rest of this paper) for electromagnetic scattering
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4 Francis Collino et Peter Monk

problems. His approach constructs an absorbing half-space such that waves
incident from the standard Maxwell medium are not reflected from the half
space independent of their frequency and direction of propagation. In the
PML, the wave is absorbed and decays exponentially with distance into the
layer. Thus the PML layer itself can be truncated to form a narrow absorbing
slab with a low reflection for any angle of incidence. The scatterer can then be
surrounded by perfectly matched slabs to truncate the scattering domain. This
approach is easy to implement and is very effective. It has already been the
subject of numerous of papers [18, 1, 5, 12, 11, 13, 25, 26, 23, 21, 15, 7, 4, 24, 3|.
However, to our knowledge, there has been very little theoretical analysis of
the method.

Of particular interest from the point of view of this paper is the paper of
Chew and Wheedon [6] in which they show that the Bérenger PML can be
constructed via a complex change of variables (see also [8]). We shall develop
this viewpoint in the paper and show how to extend this idea to include a PML
with a variable absorption coefficient (as is used in practice) and we shall show
that method can be used in curvilinear coordinates (see also [8]). We shall
show how the coordinate change is related to evaluating a continuation of the
solution into the complex plane such that the solution becomes evanescent.
This justifies the change of variables approach.

In this paper we shall show how to view the PML as a complex change of
variables in the time harmonic scattering problem. Using this observation we
shall construct a PML layer in cylindrical coordinates (in fact in two space
dimensions) for the time dependent and time harmonic problems. For some
scatterers the use of circular absorbing boundaries can improve the efficiency
of the scheme by decreasing the area that must be meshed. We shall demons-
trate how the construction of the PML is related to special function expansions
of the solution and also provide a partial theoretical analysis of the time har-
monic problem. Our methods extend to three dimensions and to ellipsoidal
coordinates. These aspects will be reported in future papers.

INRIA



The PML in Curvilinear Coordinates 5

2 Perfectly matched layers and change of va-
riables

As discussed in the introduction, in [2] Bérenger proposes a new absorbing layer
model called the perfectly matched layer (PML), which has the astonishing
property of generating no reflection at the interface between the free medium
and the artificial absorbing medium.

In this section we shall show how Bérenger’'s PML can be viewed as a
complex change of variables applied to the Maxwell system. In particular
for the 2D Maxwell’s equations, the design of the PML in the region x > 0
is as follows. The propagation of a transverse electric wave is governed by

(o= po=1)
0H, 0E, OF,

ot Oy ox (1)
OE, ~ 0H, 0E, _0H,

ot or ' Ot oy

The construction of an absorbing layer in the right half space (i.e. in the region
x > 0) is performed in two steps. First, we split the magnetic component into
two parts according to

H, :Hzm+sz (2)

and rewrite equations (1) as

oH., 0E, 0H.,  OE,

ot gy’ ot Oz 3)
0B,  OH. OB, OH.
ot dx’ ot 9y

At this stage, equations (2) and (3) are equivalent to the initial problem.

In the second step, a damping factor o(z), (o(x) = 0 for z < 0) is introdu-
ced in each equation in those places where the normal derivative operator 9,
appears and the other parts of the equations remain unchanged:

0H., OE, OH OF
2y _ T zx H. — VD
ot oy’ ot M= T T "
O, . _ OH. OE, OH,
—Z g = — — .
ot Y or’ Ot oy

RR n°3049



6 Francis Collino et Peter Monk

System (4) is Bérenger’'s PML model.
If we look for the time harmonic solutions with frequency w, we get

5 OF . OF
—1 Hz = —1 2z = ——1
iwH,, R (—iw + o(x)) % 5
. on. Y

We can rewrite this system of equations with the only unknown being H,. We

have . ) -
: ~ . . OF (iw) OF
?(Hep + H. . =0
(i) ( i y) T y * —iw+o(x) Oz

or

w2f{z +

(6)

In the region where ¢ is zero, we recover the well known property that the
magnetic field of a non-stationary 2D transverse electric wave satisfies the
Helmholtz equation. Inside the layer, we remark that the PML model consists
in making the simple substitution

0*H, iw a( iw aﬁz)
+ =0

0y iw—o(x)0r \iw—o(z) Oz

0 0 w 0 , T [
— — = I =Z+ — / d 7
or  0x  iw-— o(x) 0z w Jo o(§)dé (7)
in the initial equation, whereas the tangential derivatives are left unchanged.
Equation (6) can be easily solved (even if ¢ is not constant), we get

~ 1 +o0 . . @ io (&)
Ho(wy) = o [ HI(k,) et o050 g,
k2 1/2 +oo . (8)
ky =w [ — w—z] , Hg(ky) =/ H,(x=0,y) e~ FYdy

The solutions appears as a superposition of right-going evanescent plane waves.
The waves propagate without any reflection even if the variations of o are
strong. In particular, at the interface x = 0, no reflection occurs as the wave

INRIA



The PML in Curvilinear Coordinates 7

penetrates the PML. After propagating a distance ¢ in the y direction the £,
component of the signal is damped by a factor

571/2
f—%] I3 o(6)de

R )

for the propagating waves (i.e. |k,| < w) and

(10)

for the evanescent waves (i.e. |k,| > w).

In case of a finite PML (it is necessary to truncate the PML to obtain a
problem that can be solved numerically), a Dirichlet boundary condition is
added at the right extremity, say x = 6. The solutions can now be sought as

~ 1 +o0 )
H(e,y) = 5= [ Hk)(+ R(k))F (@, ky) eV,

—__— gk [P+i28yae o—iks JP+i28)ae (11)
:E’ = . e . e
Y piks [Pa+i2yae ik Jy @ +i2&)ae
for z > 0 and
~ 1 +o0 , , ,
Holwyy) = o= [ HO)(™ + Rk )e <) evar,,  (12)

for x < 0 located above the support of the initial conditions. These solutions
are obtained by combination of plane waves which vanish at x = 6 and are
continuous at = 0. The expression of the coefficient of reflection R(k,) is
obtained by writing down the continuity of the tangential component of the
electric field

TN~ — 7 (B0 — i FLV(O0F) — w T\ (O
O(H.)(07) = iw(B,)(07) = i(B)(07) = s (L) (0°)
which gives
R
: w : o(0%) R
kr(1— R) = ———(ik,(1 1
ik { ) w+ za(OﬁL)(Z (143 )1+ R) 1 — o 2iks Jya+iz@ag

RR n~°3049



8 Francis Collino et Peter Monk

or )
R = o2k [y (4= de

We recover Bérenger’s result for the expression of the coefficient of reflection
induced by a PML of width 6. A direct inspection of this formula would
lead us to pick o to be the largest possible which would allow us to obtain
a reflection as weak as desired. However, this nice property is no longer true
when a discretization scheme for solving numerically the equations is used. As
the matter of fact, see [8], the discretization of the equations makes the layers
slightly imperfectly matched. The numerical dispersion induces a reflection at
the interface which is an increasing function of cAz. Thus, o has to be chosen
small enough to control this numerical reflection coefficient and large enough
to obtain a low reflection coefficient (due to the Dirichlet condition on the wall
at x = 9).

In square domains, Bérenger’'s PML for 2D transverse electric waves is
constructed with the help of two damping functions o, (z) and 0, (y) satistying

0s(t)

oo (1)

0, for |t| <
o(t), for |s| > wheres=u,y.

Equation (4) is replaced by

OH., 0E, OH OF
z H. — T zT H. = Yy
i T OvWHzy oy’ ot o(2) e o 13)
OB, , @)F oH, OE, WE OH,
— + 0y = - , — 4o = .
ot VT T ot vV ay

Following the same developments as above, we obtain the stationary solution
as the solution of

w2f1z+ w 8( w 0]—1@)4_ w (9( w BI-L

) =0. (14)

w— 0y 0y \iw— o, 0y w— 0, 0T \lw— 0, O

A direct inspection shows that the Green’s function for this equation is given

by
A.(o,y) = (H (/72 + 72)

INRIA



The PML in Curvilinear Coordinates 9

where

~ 2 N v (Y

T=x+ ;/0 o.(s)ds, J=y+ ;/0 oy(s)ds

This is one key to understanding the nice properties of the PML model. This
model is simply obtained using a complex change in variables applied to the
original equation. The axes x, y € R are moved into two paths in the upper
complex plane. The existence of an analytical extension of the Green’s function
in this upper complex plane allows us to properly define H,. The exponential
decay of this extension ensures the damping effect of this transformation on
the solution.

We end up this section by giving a variational formulation for the harmonic
Bérenger’s PML model with Dirichlet boundary conditions. The problem is
posed in D, = (| — L,L[x] — L, L]) \ Q where Q is a perfectly conducting
scatterer entirely contained in (] — L, L[x] — L, L[) and L > ¢. The problem is
to find H, such that

( d.d,H. + dy% (éagf) —I-dz% (i"’g‘) =0 (x,y)€ Dy

Hz(s) =0, se 3(] - LvL[X] - LvLD (15)
oH,
" Ov

=—g s€0f

where ¢ is a given function and

do(z) =14 gaz(x), dy(y) =1+ ﬁay(y).

If
X={veH (D)) |v=00nd(~LLx]-LL)}

the variational formulation of the above problem is simply

find H, € X such that VF € X,

N d,0H, OF d, 0H, OF
tzFA—/—y kil A/-”” 2 90 A:/ F
[, deu . F Q(dmax ax>d +Q<dy dy 6y>d oo 98
(16

)

RR n~°3049



10 Francis Collino et Peter Monk

This formulation can be discretized by a finite element method in the usual
way way. Concerning the existence and uniqueness of the solution, a result
similar to those we will obtain for Bérenger’s PML in curvilinear coordinates
(see Theorems 1 and 2), can be obtained.

In conclusion of this preliminary section, we have shown that the PML
model can be interpreted by a change in variables and that the corresponding
model can be put in a variational form suitable for a finite element method.
With this in mind, we can now begin our study of a PML model in curvilinear
coordinates.

3 The time-harmonic scattering problem

In this paper we will develop a curvilinear PML for a simple electromagnetic
scattering problem using the change of variable technique introduced in the
previous section. Let 2 be a smooth bounded domain in the plane, and assume
that the boundary of €2 is a perfectly conducting scatter. The problem we shall
consider is to compute the transverse electromagnetic field scattered from the
boundary of 2. We shall start with the frequency domain problem. Let H
denote the magnetic field scattered by 02 then H satisfies the Helmholtz
equation in the exterior of {2:

AH+kH=0in R?\ Q, (17)

where the wave number k£ = w,/elt, w is the frequency of the incident field, €
is the dielectric constant and p the permeability of the surrounding medium.
On the perfectly conducting boundary, Neumann boundary data is given:
oH
— = g on 02 18
5 =9 (18)
where v is the unit outward normal to 2 and ¢ is a given smooth function
derived from the incoming or incident field. Finally the scattered field must
satisfy the Sommerfeld radiation condition uniformly in all directions:

0H . 1

INRIA



The PML in Curvilinear Coordinates 11

where p = [z| is the radial coordinate. For sufficiently smooth g and 2, this
problem has a unique solution H € C*(R*\ Q)N C'(R?\ Q) (see for example
9)).

Let us assume that € is contained in the interior of the circle of radius
a’. Then for p = |x| > o’ the solution H can be written using separation of

variables:
oo

H(z)= Y a.HY (kp)exp(inf) (20)
where H(" is the Hankel function of first kind and order zero, and =
pexp(if). This series converges uniformly for r > a’ [9].

To obtain the Bérenger PML layer in cylindrical coordinates, we want to
extend the solution given by (20) to the complex plane such that the wave
becomes evanescent as the imaginary part tends to infinity. Suppose p =
pr + 1p; where p, and p; are real. The desired asymptotic behavior of the
Hankel functions is

i Cm o Cn 5\ 15
H00)] ~ | e el + ) = T e (k). [ = .

This implies that the correct half-plane is
SIm(kp) > 0.

With this observation in mind, we define the complex radius p. We choose
a > o' and a real (artificial) absorption coefficient ¢ = o(p) parametrized by p
satisfying o(p) = 0 for p < a and o(p) > 0 for p > a, then

p=

p—i—/pw(s)ds ifp>a
a W
P

ifad <p<a

We also assume that p

lim [ o(s)ds = occ.

p—0 Jq

dp _{1+w(p) ifp>a
w

Note that

dp 1 ifd <p<a

RR n°3049



12 Francis Collino et Peter Monk

It will prove convenient to define & by
L o(s)ds itp>
=1 /a o(s)yds ifp>a
0 ifp<a

Then 5 and p are related by d as follows
ﬁ:p(1+z—0)=pE. (21)
w
Now we can define the Bérenger solution H? for & € R?\ Q as follows:

A { H(x) if |x| <d

B _
)= > anHD(kp)exp(ind) if || > o (22)

We need to derive a boundary value problem satisfied by HZ. If & € R?\ Q
and |z| < o/, H? satisfies the standard Helmholtz equation. Across the circle
| = o' the function H? and it’s normal derivative are continuous. Thus it
remains to derive an equation in |&| > «. In this region H? is a sum of Hankel
functions and hence satisfies the Helmholtz equation (17) but using p in place

of p
X 1(0 (.0 - 19
—k*HP =~ | = | p==H" ———HP). 23
ﬁ(aﬁ (paﬁ >+/5892 (22)
We can start by using the chain rule:

O0H 0Hdp 10H

i A 24
ap op dp d Jp (24)

Hence using this result and (21) we can rewrite (23) in terms of p. We obtain:

N 11(10 (dpd - 1 0% .
_ ZHB::_ - __HB _——HB
b dp (d@p(dap >+dp092
which we rewrite slightly as
— | —=—H ——H 25
<8p<d8p )+dp892 (25)

INRIA
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The PML in Curvilinear Coordinates 13

It is convenient (from the point of view of implementation in a standard finite
element code) to transform this equation back to rectangular coordinates to
obtain o R

—k*ddH? =V - (AVH?)
where A is the following matrix function:

A(p,0) = ( g cos™(0) + sin”(6)  cos(f) sin(0) (3 _ z) )

cos(#) sin(6) (g — %) 4sin*(0) + 4 cos®(9)

If p < o’ we define A =TI (the identity matrix), and d = d =1 The problem of
computing the Bérenger solution H? is thus the problem of finding H? such
that

V.- (AVH?)+ K?ddH? = 0in R*\Q (26)
OHP

5, = Jon o0 (27)

|HP| is uniformly bounded as |p| — oo (28)

Here the boundedness assumption has replaced the standard Sommerfeld condi-
tion at infinity (because the solution is assumed to be decaying at infinity).
We can now state and prove our first theorem:

Theorem 1 There exists a unique solution of the Bérenger problem (26)-(28)
given by (22).

Remark. This theorem shows that the solution of the curvilinear Bérenger
time-harmonic scattering problem is the desired physical solution of the stan-
dard scattering problem in the neighborhood of the scatterer.

Proof: Existence is not a problem since we have constructed the boundary
value problem (26)-(28) so that (22) (derived from the known solution of the
standard scattering problem) is a solution.

To prove uniqueness we can modify the standard proof as follows. We set
g=0. Let Dy = {& € R*\ Q| |2| < o'} then using the fact that (26) is just
the Helmholtz equation in D, we can use Green’s theorem applied to D, to
show that if g = 0 then
5 OH B ,O0HB .

/|a::a: AP — AP ds = 0. (29)

RR n~°3049



14 Francis Collino et Peter Monk

But for r > o/, H? satisfies (25) and hence is a sum of Hankel functions:

HP = 3" (a,HO (kD) + b HP (kp)) exp(ind).

n=—oo

Since we assume that ¢ is chosen so that J(kp) — oo as p — oo the large
argument asymptotics of the Hankel functions (note R(kp) = p) shows that
H®(kp), —oco < nm < oo is unbounded as p — oo. Hence to satisfy the
radiation condition (28) we must require b, = 0 —o0 < n < co. Now using
the Hankel function expansion in (29) shows that

Y Janl? <H§>(ka')H9>'(ka')—Hé”(ka')ﬂ,gl)'(ka')) —0

n——oQ

where we have used the fact that p = pon ¢’ < p < a. Using the non-vanishing
of the Wronskian of the two Hankel functions we conclude that a,, = 0 for all
n. Hence HB(x) = 0 for |&| > o/, and a standard continuation argument
shows that H2 = 0 in R?\ Q (see for example [9]). This completes the proof.
O

The boundary value problem (26)-(28) is still not suitable for computation
since it is posed on an infinite domain. However truncation of this problem is
not as delicate as for the standard scattering problem since the solution decays
exponentially outside the circle p = a. For example we can impose the Dirichlet
boundary condition on a suitably large radius circle containing the scatter (in
three dimensions this would be equivalent to specifying that the tangential
component of the magnetic field vanishes on the artificial boundary),

Let

Dy ={x cR*\ Q| |z| < b}

On the outer boundary we impose the Dirichlet boundary condition
HE =0on |z| =b. (30)

Then the first boundary value problem we shall approximate numerically is to
find H? such that (26) is satisfied in D, with boundary data given by (27) on
09 and by (30) on the artificial boundary || = b.

As we shall see, better numerical behavior can be obtained if we use an
absorbing boundary condition on the outer boundary. So to further improve

INRIA



The PML in Curvilinear Coordinates 15

the efficiency of our numerical experiments we use a simple absorbing boundary
condition on the artificial boundary. We impose the Sommerfeld radiation
condition suitable for the evanescent Hankel function:

OH?"

Then the field A? satisfies the Robin problem (26), (27) and (31).

The obvious questions are whether the problems outlined above have unique
solutions and whether their solution is close to the solution of the infinite
domain Bérenger problem (in particular we want to know if the solution is close
to the true scattering solution close to ). In particular, does the absorbing
boundary condition improve the method. We can provide a partial answer to
the first of these questions as the following theorem shows but we have been
unable to prove the approximation property.

Before stating the theorem we define the constant M > 0 by

M = sup o(p)+7(p)
pE(a,b)

We will prove our theorem by allowing complex valued w in the following set
U C C which contains the positive real axis with the exception of w = 0 (where
physically interesting values of w lie):

U={weC, Fw) >0}U{w=wr+iwi, wr # 0, w;l <wf/M}.
Recall that k = w,/ep.

Theorem 2 Suppose g € H~Y/2(9Q). Then:

1. The boundary value problem (26), (27) and (30) on Dy has a unique
solution H? in H'(Dy) for every real k except possibly for a discrete set
of values of k.

2. The same conclusion holds if HB € HY(Dy) satisfies the Robin problem
(26), (27) and (31).

RR n~°3049



16 Francis Collino et Peter Monk

Remark. We have been unable to rule out the possibility that a unique
solution fails to exist for some real k.

Proof: The proof of the two conclusions of the theorem are almost identical,
so we will prove only the case of the Robin problem which is more interesting
in practice.

The proof rests on the analytic Fredholm theorem (see [10]). First we pose
the Bérenger problem (26), (27) and (31) as a weak problem on the space
H'(Dy) (for the Dirichlet problem we would use the subspace X = {u €
HY(Dy) |u=0on |x| =b}). Let

(u,v)z/D wwdA, <u,v >so= /muvds and < u,v >,= /:n uv ds
b

|T|=b
then we seek H? € H'(D,) such that
(AVH? Vo) — k(ddu,v) — ik < du,v >y= — < g,v >aq Yv € H'(Ds). (32)

Now we define two operators A(w) : H'(Dy) — H'(Dy) and B(w) : H'(Dy) —
H'(Ds) by

(VAu, Vo) + (Au,v) = (AVu, Vo) + (u,v)
(VBu, Vo) + (Bu,v) = ((k*dd+ 1)u,v) +ik < du,v >,

for all u,v € H'(D,). Both operators are well defined by the Riez represen-
tation theorem. Note that because d, d and k depend on w, the operators A
and B depend on w.

Since the coefficients defining A are analytic at each w € U, the operator
A is analytic in w. Next we show that A4~! exists and is continuous by using
the Lax-Milgram lemma. The continuity of A is obvious so it remains to show
that A is strongly coercive. But

(u, ) + (AVUVE)| = |(VAu, V) + (Au, 5)| < C||Aul|m1(p,)|[ul| m(p,)

and so strong coercivity is proved if there is a positive constant  (possibly
depending on w) such that

|(u, @) + (AVuV)| > 6|[ullfp,)- (33)

INRIA



The PML in Curvilinear Coordinates 17

For any u € H'(Dj)

((AVu, Va)| > R((AVu, Vu)) = /

weDb:‘w|<a‘l

Vul? dA+ /  R(VwAVE)dA.

But from the definition of the Bérenger layer:

<|x|<b
b 2 E
D14 -AVT) dA. = (-
i avaan= [ 7 ((5)

2
d
R —
i (dﬁ)
It thus suffices to show that
min (R(d/d), R(d/d)) > 6 > 0

ou

dp

where 6 is independent of p but can depend on w.
We shall prove the above inequality for %(d/d), the other inequality being
similar. Note that if w = w, + iw; then

(i)

d

Hence if w; > 0 then R(d/d) is a monotonic function of w, and so

d . o+ w; ) Wi . Wi

But if w, # 0 and |w;| < w?/M then
2 )01 2 _ .
§R(g)ZcA)T—i-(a—i-cr)c<)1>wT Mw;

d

2 = 2
w? w

Hence R(d/d) > min(6;,8,) > 0. Having proved the strong coercivity of A, we
can now conclude that A is invertible for any w € U.

The operator B is compact, because if w = Bu then w € H'(D;) satisfies
the following boundary value problem:

—Aw+w = k*dduin D,
ow

o = 0 on 0N
2_1;1 = —ikdu on |z| =b
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Since d and d are functions in L. (D), standard elliptic regularity theory
implies that ||w||m2) < C||ul|mi() but since H?*(2) is compactly embedded
in H*(2) we conclude that B is compact. Furthermore B is an operator valued
analytic function of k for all k.

Now let G € H'(Q) be defined by

(VG,Vv) + (G,v) =< g,v >, Vv e HY(Q)
then the Bérenger problem is equivalent to finding H2 € H 1(Q) such that
AH® —BH” =G

Since A™! is bounded, A™!B is compact (and an operator valued analytic
function of k) and so the analytic Fredholm alternative theorem is applicable.
It remains to decide between the alternatives of this theorem. To do this
shall prove that a solution of the Bérenger problem exists when w = 7. Once
this is proved, the theorem is proved since the analytic Fredholm theorem
implies that (I —A~'B)~! exists except possibly for a discrete set of exceptional
wavenumbers.
When w = i, the functions d and d are real and positive since

d

(1+0)>0, andd=(1+7) > 0.

Hence the matrix A is real and uniformly positive definite (when w = 7) and
dd > 0. The weak problem is to find H® € H*(D,) such that

(AVHE Vo) + ep(ddu, v) + /et < du, v >p= — < g,v >0 Yo € H(Dy)
(34)
But in this case the bilinear form associated with this problem is coercive since
if u € H'(Q) then
(AVu, V) + eu(ddu, @) + \/epp < du, @ >,> C (HVUHQLZ(Db) + HuHQLz(Db)) )

Hence the Lax-Milgram lemma shows that a unique solution exists for (34).0

INRIA
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4 The Time Dependent Problem.

Bérenger first proposed his PML for the time dependent Maxwell system. Here
we describe how to generalize Bérenger’s PML to allow for an annular absor-
bing layer in the time domain. The scattering problem is again to predict
transverse mode scattering from an infinite perfectly conducting cylinder oc-
cupying the region 2 described in the previous section (although, as we have
seen, the details of the scatterer are unimportant from the point of view of
developing the PML equations).

We assume that at ¢ = 0 the fields vanish for £ € R*\ Q. After t = 0, an
incident wave interacts with the scatterer to produce a scattered electroma-
gnetic field where the electric field EM = (EM, E})T and the magnetic field
HM satisfy the two dimensional Maxwell system

OEM OHM ) =
= i 0
€5y 2 in R*\
OEM OHM ) =
= _ i Q
€ 5t e in R*\
OH OEM  OEM ., —
— = - R\ Q
Kot oy ox MR

with zero initial data and boundary data appropriate for a perfectly conducting
obstacle:
nEM —EM =~ on 012,

where v is a given function (which is determined by the incident electroma-
gnetic field).

As we have seen in the previous section, the curvilinear Bérenger PML
can be derived by writing the frequency domain equations in curvilinear co-
ordinates and changing variables. We start by writing the Maxwell system in
cylindrical coordinates. For ' < p the electric field EY = (EM E}M) and
magnetic field HM satisfy

OEM  19HM
o T oo
oEY  OHM
o T o

RR n~°3049
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oH 1(3( M)_aE;,W>

= - _Z|=(pE
Y o \ap e a0

To derive the Bérenger medium, we move to the frequency domain. If we
assume that E)' = E) exp(—iwt) and similarly for the remaining variables we
obtain the time harmonic Maxwell system:

R 10HM
—jweEM — T
wek o0
. OHM
—'LCUEEéM = _a—p
R 1{o, . OEM
—iwpHY = —Z | =(pE)) - =2

For the time dependent problem, we proceed analogously to the previous
section. The Bérenger system is just the standard Maxwell system, written
using p in place of p (the fields now carry the superscript B to indicate that
we are considering a Bérenger medium):

- 10H"
—jweEB = = 35
iwek, 500 (35)
7B
—iweb} = —855 (36)
- 1(0, .~ OEP
—iwpH?® = —Z | == (pEP) - =2 37

Note that if we use (35) and (36) to eliminate EZ and E¥ from (37) we obtain
(25). As in the case of the time harmonic problem, we want to derive the
equivalent of this system using real coordinates. Using (24) implies that (36)
can be written:

—iweE? + eoBF = ——— (38)
We can easily rewrite (35) using the fact that § = dp to obtain:
10HP

. B B __
—zweEp +€0Ep —; 20

(39)
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It remains to rewrite (37). We define the auxiliary Bérenger variable H®) by
@) — 1
—iwpHY = ———F (40)

Expanding the derivative, we can rewrite (37) as

R 1/{. o .. OEB
—iwpH? = 2 | EP + p—=Ef — —2].

We can then change variables back to p and add and subtract (1/dp)(8/9p)EP
to both sides to obtain

A 1 1\ 0 - 1 {0 .- OEB
iont? = - (12 1) 2 g ( (B - 0;).

d d)ap ? dp\op

Hence

. _ N 1({06, - OFB
—iwpdH® = (d — d) iwpH® — = | =—(pEP) — =2

and this becomes

. . . 1(0 . oEB
—iwnH? + o HE —VH® = | Z(pEBy - 2. 41

Collecting the equations (38), (39), (40) and (41) we obtain the following time
harmonic Bérenger system:

. . 10H"
—iweEf + eEEf = ;W
. R OHB
—iweEP + eoB} = — ap
o . . 1({0 - OEP
—iwpH? + jgH? + (o —7)H®) = p (8_p(pEéB) o) )
. . 0 -
—iw,uH(p) + MUH('O) — ——Ef
dp
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Finally, we can move back to the time domain to obtain:

OE?P 10HB
L +eEP = ——— 42
€ + 7 E, > 00 (42)

EB OH®B
Gaate + GUEE = _8—p (43)

OHB 1/(0 oEB
cH" —7)HY = —Z | Z=(pEP)- =2 44
OH® o

() — ___EB 4
p—a— tuoH 2,0 (45)

5 Numerical Results

5.1 A Special Case of the Time Harmonic Problem

In the special case of a concentric circular scatterer we can solve the standard
scattering problem and Bérenger problem using special functions. We will use
this case to examine the improvement gained by using the Robin problem over
the Dirichlet problem. Let us suppose that the scatter 2 is a circle of radius
a.

First let us consider the standard scattering problem of computing H such
that (17), (18) and (19) are satisfied in the case when the scatterer € is a disk

of radius @’ and the boundary data is

_ Oexp(ikz)

on x| =d

where & = (z,y). This problem has the solution

H(p,0) = > anH)(kp)exp(inf)
where
i (ka')
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The PML in Curvilinear Coordinates 23

If we truncate the domain using a circle of radius b, use a Bérenger layer in
a' < a < p < band use the Dirichlet condition on p = b we must solve

V. (AVH®) + K?ddH? = 0in D,
. .

0H _ 0 exp(ikx) when p = o
ap ap

HE = 0 when p=1»

Let use denote by py = p|,—s, then the above problem has the solution

H%(p,0) = Y (aBH" (kp)+ b2 HP (kp)) exp(ind)
where . SR,
H\%) (kp " J (ka YHNY (kp
a/f__ ’f(ll)( pb)bf and bf:_z n( CL) n ( ,Ob)
n (kpy) w

provided W # 0 where
W = HP' (k) H (k) — HS' (ka')H ().

When W = 0 the problem is not uniquely solvable. Of course the solution
HB is independent of the details of the Bérenger layer and depends only on
Pp- This is not the case when numerical methods are used to discretize the
Bérenger layer since there will be spurious reflections from within the layer
and the layer must be designed to minimize these (as well as reach the desired
value of py).

We can evaluate the error in the Bérenger solution on the circle p = a’ by
computing the relative error:
2

Yoo (00 = a) HO(ha') ~ WO (ha)|
> ‘an O (ka') i

1H — HP||r =

In practice we truncate the series using —10 < n < 10. Arbitrarily we choose
k =1 and ¢’ = .1. We plot the error as a function of p in Figure 1. When
p is real (i.e. when o = 0) there are eigenvalues for the annular domain and
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these show up clearly as peaks in the error surface. As the imaginary part of p
increases the error decreases and can be made arbitrarily small if the imaginary
part is large enough. In Figure 2 we show the error as a function of the real
part of p for fixed imaginary part. By deciding on a desired error level, one
can find an appropriate value of py.

In the subsequent sections we actually use the Robin boundary condition
on the outer boundary. In this case (for the circular scatterer of radius a’) we
solve the following problem:

V- (AVHP) + B2ddH? = Oford <p<b
OH? d exp(ikx)

95 = Twhenpza'

OH® -
— —ikdH? = Owhenp=>
dp

This problem has the solution

H(p,0)= Y2 (afHD(kp) + b HP (k7)) exp(ind)
where ay @)
HOY (15— iHO (15
af = — ’(ll)l(kpb) ’ ’(Ll)(kpb)bf and b2 = —
n’ (kpp) — iHn" (kpy)

provided W # 0 where

i"J! (ka')
w

 HP(kpy) — Z'Hr(f)(/fﬁb)ﬂ(l)/
HY (kpy) — iH® (kps) "

When W = 0 the problem is not uniquely solvable. We could not prove exis-
tence or uniqueness for this Bérenger problem in general but our calculations
suggest that for the annulus existence and uniqueness only fail at £ = 0 (where
the problem becomes a pure Neumann problem). This accounts for the error
spike towards p = 0 shown in Figure 3. Compared to Figure 1 we can see
that there are no other eigenvalues for the range of p considered here. The
error curves shown in Figure 4 (compared to Figure 2) show that the error
obtained using the Robin boundary condition is much smaller than the error
obtained using Dirichlet boundary conditions. This justifies our use of the
Robin condition in the numerical results presented later in this section.

W = H®Y (kd') (ka").
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Error

0.4

Imaginary part Real part

Figure 1: Here we plot the relative Ly error defined by (46) between the exact
solution of the time harmonic scattering problem for a circle and the Bérenger
solution using a Dirichlet outer boundary. We show the error as a function
of pp. When p; is real there are eigenvalues for the annular domain and these
show up as peaks in the error surface. As the imaginary part of p, increases,
the error decreases. Away from the real axis we see no evidence of lack of
existence or uniqueness for the Bérenger problem.
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Imaginary part = 1
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Error
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Imaginary part = .5
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0.111
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0.091

Error

0.08-

0.07

0.06 -

1 2 3 4 5 6
Real part
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0

Figure 2: Here we plot the relative Ly error defined by (46) between the exact
solution of the time harmonic scattering problem for a circle and the Bérenger
solution using a Dirichlet outer boundary. We show the error as a function of
R(ps)- In the top panel () = 1 and in the bottom panel I(py) = .5. When
3(pp) = 1 the error is reduced to approximately 3%.
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Error

0.4

Imaginary part Real part

Figure 3: Here we plot the relative Ly error defined by (46) between the exact
solution of the time harmonic scattering problem for a circle and the Bérenger
solution using a Robin outer boundary. We show the error as a function of p.
For py, small the error is large but for a sufficiently large real or imaginary part
the error can be made arbitrarily small. Apart from when £ = 0, we see no
evidence of lack of existence or uniqueness for the Bérenger problem.
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Figure 4: Here we plot the relative Ly error defined by (46) between the exact
solution of the time harmonic scattering problem for a circle and the Bérenger
solution using a Robin outer boundary. We show the error as a function of
R(pp). In the top panel I(pp) = 1 and in the bottom panel J(p,) =_.5.
Compared to Figure 2 we see that the use of a Robin condition on the Iong%Iej}
boundary improves the error in the Bérenger solution. For example we can
reduce the error to approximately 3% by using S(ps) = .5 instead of I(pp) = 1
when we use the Dirichlet boundary condition.
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5.2 Time harmonic problems

The purpose of this section is to show that the Cartesian and cylindrical Béren-
ger PML layers can be used to compute near field solutions of the Helmholtz
equation (and hence by a suitable transformation the far field). We shall only
show the results of one numerical experiment since we will provide a more
detailed numerical test of the curvilinear method for the time domain problem
(where the Bérenger method is most popular and where the behavior of the
Cartesian layer is well known).

For this test, we compute the field scattered from a perfectly conducting
metal obstacle in transverse polarization. This corresponds to Neumann data
imposed on the metal wall. The incoming wave is HM® = exp(ikx). The
scatterer is contained in the box —2 < x < 2.2 and —0.7 < y < 0.7 and
the speed of light to be unity so wave number is £ = w = 6.2832. The grid
used is shown in Figure 5 where the outer radius of the circle is p = 5 and
the maximum diameter of elements in the mesh is h = 0.279. Note that
the grid is not aligned with Cartesian or radial coordinate system, which is
convenient from the point of view of using a standard mesh generator. Cubic
isoparametric elements are used to discretize the problem. For the Cartesian
case we use a simple Newumann boundary condition on the outer boundary
(it would be more usual in this case to use a rectangular outer boundary but
we want to make comparisons with a single grid). For the curvilinear PML
we use the modified Sommerfeld radiation condition being used on the outer
boundary (ie., we are solving the Robin problem (26), (27) and (31)). We
choose o (s,a) = ao(|s| — a)? for |s| > a and o = 0 for |s| < a. In all cases we
choose oy = b.

In the Cartesian case we use

de(x) =14+ 50(90, 2.5) and dy(y) =1+ éa(y, 1.2).

This implies that the layer is half a distance unit from the scatterer. For the
curvilinear case we use

d(r)=1+ ﬁa(r, 2.5).

Figure 6 shows contours of the real part of HM computed by a capacitance
matrix technique that matches the finite element solution to an integral equa-
tion solution outside the grid (thus handling the infinite domain accurately)
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Figure 5: The mesh used in the numerical experiments reported on the time

harmonic wave equation.
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Real Part
1429719

1286171

1.142623
— 0.999075
_ 0.855527
071198
_ 0.568432
0424884

0.281336

_ 0137788
__ -0.00576
- -0.149308

L -0.292856
L -0.436404
-0.579952
-0.723499
-0.867047
-1.010595
-1.154143
-1.297691

Figure 6: The real part of the scattered field computed using a matched finite
element - integral equation code.

RR n°3049



Real Part
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— -0.00439%
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L -0.434489
-0.577853
-0.721218
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-1.007946
-1.151311
-1.294675

Figure 7: The real part of the scattered field computed using the Cartesian
Bérenger absorbing layer.

INRIA



Real Part
1.429239
17285877
T 1142515
0999153
0855791
071243
0569068
0425706

0282344

_ 0.138982
_ -0.00438
L -0.147742

L -0.291104
L -0.434466
-0.577828
-0.72119

-0.864552
-1.007914
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Figure 8: The real part of the scattered field computed using the curvilinear
Bérenger absorbing layer.
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[19]. Figure 7 shows the real part of the Bérenger solution H” using the Car-
tesian layer, and 8 shows the real part of the Bérenger solution HB using the
curvilinear layer. Clearly the near field (for example in the scatterer) compu-
ted using both Bérenger layers is similar to the capacitance matrix solution
in Figure 6. But, as expected, the Bérenger solution dies away rapidly in the
absorbing layer. Furthermore, in both cases, the contours of the solution show
no abrupt curvature changes when the Bérenger layer is entered which indicate
that the layer is “perfectly” matched.

Figure 9 shows the real part of the scattered field along the x axis compu-
ted using the matched finite element and integral equation approach. Figure
10 and 11 shows the corresponding result for the Cartesian and curvilinear
Bérenger media. The solutions are similar for |z| < 2.5 (this is for coordinate
values from 2.5 to 7.5 on the one dimensional plots) but the Bérenger result
dies away quickly once the Bérenger medium is reached. These results give
numerical support to the claim that the rectilinear and curvilinear Bérenger
method can be used to compute time harmonic solutions.

5.3 Time Dependent System

In this section we shall investigate in some detail the curvilinear Bérenger
method for the time dependent problem. Figure 12 shows a schematic of the
grid used for the numerical tests of the curvilinear PML. Inside the circle of
radius p = a we use isoparametric quadrilateral Nédélec elements without
lumping [22]. Outside for a < p < b, we use isoparametric quadrilateral
Nédélec elements with an extra unknown associated with the centroid of the
elements. The curved segments of the mesh (for example in the Bérenger layer)
are approximated by piecewise linear approximations. This means that there
is some geometric error in approximating the Bérenger layers.

The arrangement of degrees of freedom for the elements is shown in Figure
13. The magnetic degrees of freedom (for H or H(®) are associated with the
centroid of the elements and we use mapped piecewise constant basis functions
for the fields. The electric degrees of freedom for E, and Ej, are associated
with edges of the mesh.
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Matched FE/Nystrom

Viagnude
114262 ]
0.855527 _|
0.568432 _|
0.281336 _|
-0.00575994
-0.292856_|
-0.579952_]
-0.867047_|
-1.15414 _|
-1.44124 _|

0.0 25 5.0 75 10.0

Figure 9: The real part of the scattered field computed using the matched
finite element - integral equation approach. Here we plot the solution along
the line y = 0 (zero on the z axis corresponds to the left outer boundary of
the domain). The break in the solution is due to the perfectly conducting
scatterer.
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Berenger, Cartesian PML

114252 _]
0.85579 _|
0.569061 _|
0.282332 _|
-0.0043962 |
-0.291125_|
-0.577853_|
-0.864582_|
-1.15131 _|
-1.43804 _|

0.0 25 5.0 75 10.0

Figure 10: The real part of the scattered field computed using the Cartesian
Bérenger absorbing medium. Here we plot the solution along the line y = 0.
The break in the solution is due to the perfectly conducting scatterer.
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Berenger, Curvilinear PML

egpijude
114252 _]
0.855791 _|
0.569068 _|
0.282344 _|
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-0.291104_|
-0.577828_|
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-1.15128 _|
1438  _|

0.0 25 5.0 75 10.0

Figure 11: The real part of the scattered field computed using the curvilinear
Bérenger absorbing medium. Here we plot the solution along the line y = 0.
The break in the solution is due to the perfectly conducting scatterer.
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Circler=a Circler=a Circler=b

Standard Maxwell C Annular

Zone Beringer
Zone

Figure 12: A schematic of the grid used. Inside the circle p = a up to the scat-
terer we use standard linear Nédélec elements on isoparametric quadrilaterals.
Outside r = a, four sided isoparametric Bérenger elements are used.
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X X

A N\

(@ (b)

Figure 13: A schematic showing the arrangement of degrees of freedom for the
elements. The electric field unknowns are associated with edges in the mesh.
The magnetic field unknowns are associated with centroids of the elements.
(a) Standard Nédélec element, (b) Bérenger element.

On the outer edge of the domain (when || = b) we use the first order
absorbing boundary condition:

H+xnxE=0on |z| =0,

where x = ,/en. Note that this boundary condition is note the same as
the Sommerfeld absorbing boundary condition used in the frequency domain
calculations, but it is easier to implement for finite element methods.

Now let us detail the discrete problem. Let D, denote the bounded do-
main including the Bérenger layer. Let 7, be a mesh of linear isoparametric
quadrilaterals of maximum edge length h approximating the domain D, as
described above. Then the finite element space U, satisfies U, C H(curl; Q)
and is constructed using the standard space of isoparametric linear edge ele-
ments. Let Upg = {u € U, | n x u = 0 on I'} where I' is the surface of the
scatterer (in the results shown later the boundary is the circle of radius 0.1).
Let V}, be the corresponding set of mapped piecewise constant functions contai-
ning V X Uy,. Let At > 0 represent the time step (which must be sufficiently

n

small compared to h for stability). Then we seek E} € Uy, H h+1/ > €V, and
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H,(f)’nﬂ/z € Vj forn =0,1,--- such that EY and H,tﬂ approximate the fields
at t = 0 and t = At/2 respectively (the field H,’” is computed from ES and H?

by a Runge-Kutta step applied to the Maxwell system) and H ,(lp P2 0. Then
E}*! € U, satisfies (we denote by (.,.) the Ly(f) inner product for vector or
scalar functions and use standard = and y components of the electric field):

En+1 _ En En—|—1 + ETL
((F52) )+ (o (B )+
En+1 En
<Xn>< (7’1 2+ h) ,nx¢h>
b

= (Vx Hy P2 ,) = (I 4,) Ve, € Ung

nx Bt =12 onr
where (if = rcos(f) and y = rsin(0))

o= ( osin?(0) + T cos?(0) (7 — o) cos(f) sin(h) )
(@ — o) cos(8) sin(f) o cos?() +asin?(f) )

Next H”™ % ¢ V, is computed via

H}Sﬂ):n+3/2 _ H}(ZP):n+1/2 H}(lﬂ),n+3/2 + 111}(;0),71-1-1/2
1% At ) ¢h + uo 9 3 ¢h

0
= - (a—pEﬁl, ¢h> Vo € Vi,

where E;l’J,;l denotes the # component of E}*!. This computation is only

carried out in the Bérenger layer (the derivative of E;Lj;l is well defined by
virtue of having an annular grid in the Bérenger layer).

Finally H'™* € V}, is given by

e _ g2 Y2 L g
(M( L A7 L L on | + | pT | 2 5 L , O

+ (o =) HP™2 6)) = —(V x By ¢y) Von € Vi
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Note that we have not used a centered difference for the Bérenger term here.
Numerical experiments show that this choice gives a better solution than the
standard symmetric average of Bérenger variables, but is likely to be method
dependent.

5.4 Scattering from a circle.

We consider an infinite domain problem of scattering of a plane wave off a
circular perfect conductor. We assume that the incident plane wave is given
by

0
Ei(z,) = (x/uo/eo g((t—(x—o.wm)wg)) 47)
Hi,t) = g((t—(z - 0.1) /i) 10°). (48)

where g is given by

1—exp(—10)

exp(—10(s—1)2)—exp(—10) 0<s<?2
{ 0 s>2o0rs<0.

g(s) = (49)

This wave is incident on a perfectly conducting circular cylinder of radius 0.1m
centered at the origin. We choose

e=¢ = 885x1071*F/m?
p=po = 1.2566 x 107°N/A2.

Using special function theory, an exact solution is available for this problem
[17].

For the numerical problem we take an annular domain with inner radius
0.1m and an outer radius of 0.3m. Onr = 0.1 we impose nxX E =y = —nx FE;,
which describes how the incident field scatters off of a perfect conductor. The
grid used has mesh points distributed uniformly in the (r,0) plane, i.e. the
mesh points are (r;,0;), 0 <i < N,, 0 < j < Ny, where

0.140.2 ! and §; = 2 J
r; = 0. 2— nd §; = 27r—=—.
Nr ! NB
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Figure 14: The base mesh used in the numerical experiments reported later
on the time dependent Maxwell system. Additional layers of cells are added

to form the Bérenger layer.
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A typical grid is shown in Figure 14 with N, = 25 and Ny = 80. This is the
base mesh used for the calculations shown next.

The Bérenger boundary layer is implemented by adding extra layers of cells
outside the base mesh. We use a total of Ny, layers. The radial size the these
cells is the 0.2/N, (ie. the same as for the cells in the base mesh). The time
step used is At = 0.01 and the mesh size (measured as the longest edge in
a quadrilateral) ranges from approximately A = 0.007 near the scatterer to
h = 0.03 on the outer layer of the base mesh. The solution is computed for
0<t<T.

In Figure 15 we show a plot of H(z,y,t) against ¢ at the point (z,y) =
(—0.206, —0.0104). This is a grid point for the magnetic field. We can compute
a solution that is not degraded by mesh termination by computing on a grid
in which 150 extra layers have been added to the base mesh and in which the
Bérenger variables are set to zero. In this case the relative L, error is 0.18%.
Using the simple first order ABC (with 9 extra layers) gives a relative error
of 15.5%. We have tried three layers shown in Table 1. In each case o is
computed by

oi =00y "Iy

where o is the value in the first Bérenger layer, 7 is the index of the layer, v
is the growth factor, and h; is the radial mesh size in the layer.

From Table 2 we can see that our time domain results produce solutions
that have less than a tenth of the error of the first order absorbing boundary
condition results. Unfortunately, with the time step of At = 0.01 the error in
the Bérenger solution is about four times the error in the underlying finite ele-
ment method. With a smaller time step this can be reduced to approximately
twice the underlying error suggesting that the phase error in the finite element
method is polluting the results.

6 Conclusion.

In this paper we have presented a method for implementing the Bérenger PML
in curvilinear coordinates. Our theory and numerical experiments suggest that
such a layer can be used in the frequency domain with a standard finite element
method. In the time domain the layer can also be used and gives more accurate
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Figure 15: A graph of H(x,y,t) against ¢ at (z,y) = (—0.206,—0.0104). We
show the result of using a three different Bérenger layers with 9 shells in each
layer. The results are compared to an exact solution and the solution computed
using a first order absorbing boundary condition.
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| Index of shell | layer 1 (y = 1.6) layer 2 (y = 1.6)

layer 3 (y = 1.6) |

1

O 00 ~J O UL i W o

0.02

0.032
0.0512
0.08192
0.1310720
0.2097152
0.2097152
0.2097152
0.2097152

0.04

0.064
0.1024
0.16384
0.262144
0.4194304
0.4194304
0.4194304
0.4194304

0.02

0.032
0.0512
0.08192
0.1310720
0.2097152
0.3355443
0.5368709
0.8589935

Table 1: This table gives the value of h;o for each ring in the three different
Bérenger layers used in the paper.

H Thickness ‘ layer 1 layer 2 layer 3 H
6| 1.03 0.92 (0.54) 1.03
710.78 0.92 0.80
810.74 0.92 0.80
910.74 (0.42) 0.92 (0.54) 0.80 (0.48)

Table 2: This table shows the relative L, error (as a percentage) in the solution
at (z,y) = (—0.206, —0.0104) for various layers with various thicknesses. The
structure of each layer is given in Table 1, and the thickness is the number
of rings (Niayer)added to the base mesh. The finite difference error is 0.18%
(computed on a very large grid such that reflections from the outer boundary
do not pollute the solution). Numbers in parenthesis are for At = 0.001.
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results than the first order absorbing condition. These results indicate that
it is worthwhile to test curvilinear Bérenger layers in three dimensional time
harmonic computations which we are currently doing.

Much remains to be done. The theoretical analysis of the Bérenger system
is incomplete. The presence (or absence hopefully) of exceptional frequencies
needs to be investigated further, and an error estimate for the layer needs to
be derived. Finally other discretization schemes (for example the curvilinear
method in [24]) could be investigated to find the one best suited to the Bérenger
layer.
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