N

N

Dynamic Scheduling of Parallel Computations
Zhen Liu

» To cite this version:

‘ Zhen Liu. Dynamic Scheduling of Parallel Computations. RR-3048, INRIA. 1996. inria-00073644

HAL 1d: inria-00073644
https://inria.hal.science/inria-00073644
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073644
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Scheduling of Parallel Computations
Zhen LI1U

N° 3048
Novembre 1996

THEME 1

apport
derecherche

VAV 1 IN IN 1T A

SOPHIA ANTIPOLIS

Dynamic Scheduling of Parallel Computations

Zhen LIU

Théme 1 — Réseaux et systémes

Projet MISTRAL

Rapport de recherche n 3048 — Novembre 1996 — 17 pages

Abstract: Structures of parallel programs are usually modeled by task graphs in the scheduling
literature. Such graphs are sometimes obtained while compiling the parallel programs. In many other
cases, however, they can be determined only at run time. In this paper, we consider the scheduling of
parallel computations whose task graphs are generated at run time. We analyze the case where the
task graph has a random out-tree structure. When the number of offspring of a task has geometric
distribution with a parameter which is decreasing and convex in the level, or the generation, then the
breadth first policy stochastically minimizes the makespan. If, however, this parameter is increasing
and concave, then the depth first policy stochastically minimizes the makespan.

Key-words: Dynamic Scheduling, Parallel Computation, Random Task Graph, Makespan, Schedule
Length, Stochastic Optimization.

(Résumé : tsup)

Correspondence: Zhen LIU, INRIA, Centre Sophia Antipolis, 2004 route des Lucioles, B.P. 93, 06902 Sophia-
Antipolis, France. e-mail: Zhen.Liu@sophia.inria.fr

Unité de recherche INRIA Sophia Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA ANTIPOLIS Cedex (France)
Téléphone: 049365 77 77 — Télécopie: 04 93 65 77 65

Ordonnancement dynamique du calcul parallele

Résumé : Les structures des programmes paralléles sont souvent modélisées par les graphes de taches
dans la littérature de 'ordonnancement. Tels graphes sont parfois obtenus lors de la compilation des
programmes paralleles. Cependant, dans d’autres cas, ils ne peuvent étre déterminés qu’au moment
d’exécution. Dans cet article, nous considérons I’ordonnancement du calcul parallele dont les graphes
de taches sont générés lors de leur exécution. Nous analysons le cas ou la structure du graphe est
une arborescence. Quand le nombre de descendants d’une tdche a une distribution géométrique avec
un parametre qui est décroissant et convexe en niveau, alors la politique “largeur d’abord” minimise
stochastiquement la durée d’ordonnancement. Par contre, si ce parameétre est croissant et concave en
niveau, alors la politique “profondeur d’abord” minimise stochastiquement la durée d’ordonnancement.

Mots-clé : ordonnancement dynamique, calcul parallele, graphe de taches aléatoire, durée d’ordonnancement,
optimisation stochastique.

Dynamac Scheduling of raraitiel Computations 5]

1 Introduction

Scheduling of parallel computations has been receiving increasing interest for more than two decades.
Researchers from both the communities of parallel computing and of combinatorial optimization have
obtained a number of results on the complexity of the problems and optimal solutions. The reader is

referred to the books [1, 3| for the recent development in the field.

In this paper, we are interested in a scheduling problem in multiprocessor systems with identical
parallel processors. The number of available processors can vary in time, so that we have a variable
profile. Parallel programs running in the system are composed of sets of (sequential) tasks. The
structure of a parallel program is represented by a task graph G = (V, E), where vertices in V represent
tasks, and arcs in E the precedence constraints between tasks. The scheduling problem is to assign
tasks to parallel processors in such a way that the makespan (or schedule length) of a parallel program,
i.e. the completion time of all the tasks of the program, is minimized. At any time, a processor can

execute at most one task and a task can be run on at most one processor.

Much literature exists on scheduling of parallel programs with known deterministic structure. The
interested reader is referred to [9] and [3]| for surveys. In particular, the results on scheduling with

variable profile and precedence constraints can be found in [10, 11] and the references therein.

However, in many applications such as branch-and-bound algorithms, structures of programs cannot
be obtained in advance. Thus, “off-line” or static scheduling algorithms no longer apply. Instead, one
has to use “on-line” or dynamic scheduling algorithms to deal with the dynamic structure of parallel
programs, see [2] and [8] for discussions and references therein. A theoretical work was presented in
[7] for the scheduling of dynamic binary trees on a ring of processors. Asymptotic optimality results

were obtained when the number of tasks goes to infinity.

In this paper, we analyze the case where the dynamic structure of parallel programs is an out-tree.
A parallel program starts with a single task. When a task finishes execution, it creates several other
tasks, referred to as offspring. The numbers of offspring of tasks, which are possibly zero, are random
variables. The running times of the tasks are constant with unit execution time (UET). The parallel

program is completed if all its tasks have finished execution.

The computational model can be considered as an extension of that of [7]. However, we shall not
take into account the interprocessor communication times when we analyze scheduling solutions. A
similar computational model was considered in [13] in the framework of load balancing where jobs are
represented by random out-trees and are to be assigned to different processors. Such a model was also

used in the framework of performance evaluation of parallel computations see e.g. [5, 12].

RR n " 3048

4 Z. Liu

Since the numbers of offspring of tasks are random variables, the resulting task graph of a parallel
program is also random, even if the tasks are UET. Thus, for any schedule, the makespan of the task

graph is a random variable too.

We present two optimal scheduling policies which stochastically minimize the makespan under
specific statistical assumptions about the random graph. More precisely we show that when the
number of offspring of a task has a geometric distribution with a parameter which is decreasing and
convex in the level (or the generation), then the breadth first (BF) policy, also called highest-level
first (HLF) or earliest-generation first (EGF), stochastically minimizes the makespan. When this
parameter is increasing and concave, then the depth first (DF) policy, also called lowest-level first

(LLF) or latest-generation first (LGF), stochastically minimizes the makespan.

In what follows, we first describe the problem in detail in section 2. We then state the results and

provide the proofs in section 3. Concluding remarks are made in section 4.

2 Problem Description and Notation

The initial task of a parallel program is said to be of generation 0. Its offspring are of generation 1.
In general, offspring of a task of generation ¢ are of generation ¢ + 1, ¢ = 0,1,.... The numbers of
offspring of tasks are mutually independent random variables. For any fixed 7,7 = 0,1, ..., the numbers
of offspring of tasks of generation ¢ are identically distributed, with generic random variable V; € IN,,
where IN; = {0,1,2,...}. The random variable N; has a geometric distribution with parameter g¢;

such that P(N; = n) = gq for all n € IN,, where P(A) denotes the probability of event A, and

g =1—gq;.

The multiprocessor system is composed of identical processors. The number of processors available,
referred to as profile, for the execution of the parallel program varies in time. We assume that the
profile varies only at integer time instants. These profile change epochs are arbitrarily random variables

and are assumed to be independent of the random variables of the numbers of offspring of the tasks.

The running times of the tasks are constant with unit execution time (UET). Since the number
of offspring of tasks are random variables, the resulting task graph G of a parallel program is also

random, even if the profile is constant.

In this paper we consider dynamic, or on-line schedules, where all scheduling decisions are made
with partial knowledge of the task graph. More precisely, the scheduler only knows the currently
enabled tasks (those without unfinished predecessors) as well as their generations. The number of

offspring of any task is unknown until it is finished.

INRIA

Dynamac Scheduling of raraitiel Computations)

No preemptive schedule is allowed so that once a processor starts execution of a task, it has to finish
the execution before dealing with another task. Since the profile change occurs only at integer time
instants, and the schedules are nonpreemptive, all schedules make decisions at integer time instants as

well.

The following list schedules, referred to as breadth first (BF) and depth first (DF) denoted by
and 8, respectively, will be of particular interest. The BF policy can also be called highest-level first
or earliest-generation first policies, and the DF policy called lowest-level first or latest-generation first

policies.

At any time, schedule BF (resp. DF) arranges waiting tasks in a list in the increasing (resp.
decreasing) order of their generations, with the task of the earliest (resp. latest) generation at the
head of the list. As soon as a processor is available, the task at the head of the list is assigned to it.
When new tasks are created, they are inserted in the list according to their generations. The execution

of the program is finished when the list becomes empty.

Let M,(G) be the makespan obtained by a nonpreemptive schedule o on program G. Again, M,(G)

is a random variable.

We will prove that when the parameter ¢; is decreasing and convex (resp. increasing and concave)
in 4, schedule BF (resp. DF) stochastically minimizes the makespan of a program for any arbitrary

profile within the class of nonpreemptive schedules.

In order to prove the optimality of schedules of BF and DF, we need to use stochastic orders to

compare random variables.

Let IR, = [0,00). Random variable X € IR, is said to be stochastically smaller than Y € IR,
denoted X <y Y, if for all x € IRy, P(X > z) < P(Y > x). Stochastic dominance <g implies
dominance of moments: if X <y Y, then for alln =1,2,..., E[X"] < E[Y"].

The following result is due to Strassen [14].
Lemma 1 Two random variables X and Y satisfy X <g Y if and only if there exist two random

variables X and ¥ defined on a common probability space such that X =g X, Y =4 }A’, and X <Y

almost surely (a.s.).

3 Optimal Schedules for UET Tasks

We first consider the optimality of the BF schedule.

RR n " 3048

6 Z. Liu

Theorem 2 Assume that ¢; < 1/2 for all i € INy and that ¢; is decreasing and conver in i. Then
schedule BF' stochastically minimizes the makespan of the random task graph G within the class of

nonpreemptive schedules, i.e., for any nonpreemptive schedule o,

Mﬁ(G) <st MO’(G)'

Proof. Let the profile be arbitrarily fixed. Consider an arbitrary schedule o for this profile. If o
makes BF decisions all the time, then clearly Mg(G) = My(G), so that the result trivially holds.
Assume ¢ differs from B. Then, at some time, o assigns a task, say task v, of generation j to an

available processor, whereas there is a task, say task u, of generation ¢, ¢ < j, waiting for execution.

Consider task graph G. Let h > 0 (resp. k£ > 0) be the number of offspring of u (resp. v) in G.
Let [= min(h, k), m = max(h,k) and n = m — [. Denote by u1,---,u;, and if b > k, wi,---,wp,
the offspring of . Similarly, denote by wv1,---,v;, and if & > h, wi,---,wy, the offspring of v. For
1 <7 < n, let wy, have si,, offspring, denoted wy, 1, -, wr; s, . For 1 < ry < s1,, let wryr,
have s;,, », offspring, denoted wy, ry1,- - s Wry 79,89 01 g - More generally, vertex wy, . », has s¢r . r,

.- Let there be T' generations in total in the subtrees

..... L

offspring, denoted Wry,.,re, 1y 77 Wreyrg,se.0y

of wy, -, wp. For 1 <t <T,let S¢ =3, . Stri,..r, and So = n.

Construct a new task graph G’ as follows. G’ is identical to G except for the subtrees whose roots
are w and v. If h < k then u (resp. v) has k (resp. h) offspring in G’, denoted by uq,---,u; and
wi,- -+, w, (resp. denoted by vi,---,v;), see Figure 1. If h > k, see Figure 2, then, with probability
p (see the definition below), u (resp. v) has k (resp. h) offspring in G', denoted by wuq,---,u; (resp.
denoted by v1,---,v; and wi,---,wy), and with probability 1 —p, u (resp. v) has h (resp. k) offspring
in G', denoted by wui,---,u; and wi,---,w, (resp. denoted by vi,---,v;). The subtrees with roots

Ui, -+, U, V1, -+ ,v and wq, -+ -, w, are identical in G and G'.

The probability p is defined by

T-1 — S
(@ +1Tjrev1)”
J J (1)

p= -
im0 (@igtTiven)™

For the example in Figures 1 and 2,

2=2 3 =3 o
_ G9%54+19+419+295+295+3
- 222 3 =3 o))
4 19119429429+ 3

(2)

We will show that the graph G’ has the same distribution as G. Let us start with proving that p
defined by (1) is smaller than 1. Under the assumptions of the theorem, it is easy to see that for any
t>0and <y,

Qi+t — ¢+t 2 0, decreasingness of ¢
INRIA

Dynamac Scheduling of raraitiel Computations

RR n " 3048

i+1 o

1+ 2

U11 U1 U22

Jj+1

Jj+2
vy V12 V13 Wa1 W22 Wa3

Graph G

1+1

1+ 2

311

41 U1 ng
Jj+2 O

vi1 V12 V13
Graph G’

Figure 1: Construction of graph G': case h < k.

Z. Liu

7 U
i+1 U1 2
i+2
U11 U1 U222
J
7+1
7+2 2
vy V12 V138 W1 Wa2 W23 31
311
) G’
i1+1
i+ 2 with probability p
u
U 22 Wy W22 Was
G
311
7 v ith probability 1 —p
j + 1 ?)1 Ov2
. O ,
J+2 vi1 vip V13 G
)
i+1
i+ 2
m
U1 22 Wy W22 Was
311
j v
j+1 u o O,
J+2 vi1 vz V13

Figure 2: Construction of graph G': case h > k.

INRIA

Dynamac Scheduling of raraitiel Computations J

Qitt+1 — Gi+t+1 < Qitt — gj41, convexity of ¢
Thus,
Qittitt+1 — Qj+tG5+t+1
= Qi+t — Qi+tQitt+1 — Qi+t T j+tQ5+t+1

= Qitt — Gt — GittQitt+1 T GreQite+1 — Gtditt+1 T GpeQe4+1

> Gitt — @Gt — Gipt+1(Gitt — Gtt) — Ge(Qite — Gi+¢)
= (@irt — Grt) (1 = Gitea1 — Gjve)
> 0,

where we used the fact that ¢’s are bounded by 1/2 in the last inequality. Therefore, the quantity p
defined by (1) is upper bounded by 1.

In order to show that G’ has the same distribution as G, we only need to show that the subtrees

with roots u and v have the same distribution in G and G'.

Let N(z) be the number of offspring of vertex x. Let A be an event of the forest rooted by vertices
u1,...,u;, and B an event of the forest rooted by vertices v1,...,v;. For example, in Figures 1 and 2,
A is the event that {N(u1) = 1, N(u2) = 2, N(u11) = N(u21) = N(u22) = 0}, and B the event that
{N(v1) =3,N(vg) = N(v11) = N(v12) = N(v13) = 0}.

Let C be the event of the forest rooted by vertices wy, . .., w,, where there are in total T’ generations,
and for 1 <7y < n, w,, has s1,, offspring, and for 1 < ry < 51, Wy, r, has s2,, , offspring, etc. More
generally, for 1 <t < T, vertex wy,,..r, has s¢r . r, offspring, denoted wy, .1, Wry 500y

----- Tt

Let S; = Z”’___’” Str1,..re, and Sp = n.

For the example in Figures 1 and 2, C' is the event that {T = 3, N(w1) = 0, N(w2) = 3, N(w3) =
1,N(U}21) = N(w22) - N(w23) = O,N(U}gl) = 1, N(wgn) = 0}.

We first compute the probability distribution of C' for graph G, denoted as P(C). Under the
assumption that the numbers of successors of tasks are mutually independent random variables, P(C)

has a product-form expression. For example, in Figure 1,

RR n " 3048

10

Z. Liu

_ 3 _ 3 _
= Gj+1(G+195+1)(T+195+1)Tj+2(Tj+205+2)Tj+3
3 4 _4 _
= 9+19+195+295+245+3,

and in Figure 2,

Il
N

(N(wy1) =0, N(wy) =3, N(ws)

L,

=

N(wsy1) = N(wag) = N(wag) =0,
= P(N;jy1 =0)P(Nj41 =3)P(Nij11 =1)
(P

P Nj+2 == 0) (Nz+2 == O)P(Nz+2 == O)P(Nz+2 == 1)P(N1+3 == 0)

= Qi+1(Qi+1Q§+1)(Cji+1qz‘+1)67?+2(@'+2%+2)@'+3

3 4 -4 _
= 9419 +19%+29:+29:+3-

In general, if w-tasks are successors of v, then

T-1 T-1
_S S _S — — S,
p©) = (T (g5%)) 257 =7 1] Gpmtynen)®

t=1 t=0

and if w’s are successors of u, then

T-1 T1
S, _S — _ S,
P(C) = <H (qzith;glt)> it =6 T (@ie@iern)™

t=1 t=0

Denote by P’ the probability distribution of graph G'.

Then, in case that u has a smaller number of offspring in G’ (cf. Figure 2), we have

P'(N(u) =1,N(v) =m,A,B,C)
= pP(N(u)=m,N(v)=1,A,B,C)

7-1

= pP(APB)(Ge")(@45)a; " T] (@ire@iver)™

t=0

T-1

= P(A)P(B)(@q?)(mé)qi_" H (Qj+t§7j+t+1)5t

t=0

= P(A)P(B)(q4d)(q4d}") H Gjdj+41)°

= P(N(u)=Il,N(@w)=m,A,B,C). from (3)

Thus, the probability distributions P’ and P are the same.

(ws1) =1, N(ws11) =

INRIA

Dynamac Scheduling of raraitiel Computations

In the case that u has larger number of offspring in G’, we have
P'(N(u)=m,N(v)=1,A,B,C)
= P(N(u)=1I1,N(v)=m,A,B,C)
+ (1 —p)P(N(u) =m,N(v)=1,4A,B,C)

T 1
= P(APB)(Gd)@GaM " [] (@+G4041)™
=0
T-1
+P(A)PB)(1 - p) @) @d)a " 1] (@irt@irer)™ from (3)and (4)
=0

T-1 T—1
= P(A)P(B)(q:a]")(T;d5)a; " { I (g+G+e40)” + @ =) II (qz‘+t(7i+t+1)5t}
=0 =0

= P(A)P(B)(¢:q;") %qj H QittGitt+1) 5t from (1)
= P(N(u)=m,N(v)=1,A,B,C) . from (4)
Thus, again, the probability distributions P’ and P are the same.

We now define a new schedule p on graph G’ as follows. Schedule p is identical to o except for the
two subtrees with roots v and v. Schedule p interchanges the assignment decisions of ¢ for v and v,
i.e., when o assigns v (resp. u) to an available processor, p assigns u (resp. v) to the processor. The
assignment decisions for the vertices of subtrees with roots wi,---,w, are kept the same under p as
under o. For each pair of vertices (ur,v,), 1 < r <[, if u, is assigned to a processor no later than
vr under o, then p follows the same assignments. If, however, u, is assigned to a processor strictly
later than v, under o, then p interchanges the assignment decisions of ¢ for these two vertices, and we

construct new subtrees with roots u, and v,, in a similar way as we do for the pair of vertices (u,v).

One can check that this new schedule p is a feasible schedule in the sense that a vertex is assigned

to a processor only after its predecessor is finished. Moreover, it is easily seen that

M,(G') = M, (G).

Note that this new schedule is possibly an idling schedule due to the fact the w-tasks are enabled
earlier. Thus, we can have a nonidling schedule p’ by removing some idle periods in p so that the
makespan is decreased. Thus,

M, (G") < M, (G).
As G’ and G have the same probabilistic distribution, we conclude that

My (G) <o My (G).
RR n*° 3048

12 Z. Liu

One can easily see that p’ has less non-BF decisions than ¢. An inductive argument yields

Mﬁ(G) <st MU(G)'

In a similar way, we can show the optimality of the DF schedule.

Theorem 3 Assume that ¢; < 1/2 for all i € INy and that g; is increasing and concave in i. Then
schedule DF stochastically minimizes the makespan of the random task graph G within the class of

nonpreemptive schedules, i.e., for any nonpreemptive schedule o,

Ms(G) <a M, (G).

Proof. The proof is similar to the previous one. We shall only sketch the arguments.

Again, let the profile be arbitrarily fixed. Consider an arbitrary schedule o for this profile. Assume
o differs from 6. Then, at some time, o assigns a task, say task u, of generation ¢ to an available

processor, whereas there is a task, say task v, of generation j, 7 > 4, waiting for execution.

Consider task graph G. We use the same notation as in the proof of Theorem 2: h > 0 (resp.
k > 0) is the number of offspring of w (resp. v) in G, and | = min(h, k), m = max(h, k) and n = m —1.
The offspring of u are uy,---,u;, and if A > k, wy,---,wy,, and those of v are vy,---,v;, and if k£ > h,
wi,- -+, Wyn. There are T' generations in total in the subtrees of wy,-- -, w,, with S; being the number

of offspring of tasks of generation ¢, 0 < ¢ < T, and Sy = n.

Construct a new task graph G’ as follows. G’ is identical to G except for the subtrees whose roots
are v and v. If w-tasks are offspring of u in G, then these w-tasks become the offspring of v in G’, see
Figure 3. If w-tasks are offspring of v in G, then, with probability p (to be defined below in (5)), these
w-tasks become the offspring of w in G’, and with probability 1 — p these w-tasks remain the offspring
of v in G', see Figure 4. The subtrees with roots wuy,---,u;, v1,--+,v; and wyq, -+, w, are identical in

G and G’ for all these cases.

The probability p is defined by

(GittGitrer1)™" (5)

b= -
=0 (Qj-l—tQj-f—t—f—l)St

The quantity p defined in this way is again upper bounded by 1 under the assumptions of the
theorem. Indeed, for any ¢ > 0 and 7 < 7,

Qi+t — Givt = 0, increasingness of ¢
INRIA

Dynamac Scheduling of raraitiel Computations

i+1
i+2
311
j v
j+1 { O”Z

j+2 O

vi1 V12 V13

Graph G

‘ (7
1+ 1 %1 o
1+ 2
U11 Ug1 U22
J
7+1
7+2
vip V12 V13 Wa1 W2 W23 31
311
Graph G’

Figure 3: Construction of graph G': case h < k.

RR n " 3048

14

Z. Liu
)
i+1
w3
i+ 2
[w31
Uzt 722 wop W22 W23
311
j v
j+1 N v2
I+2 v v1p Y13
7 u
G
i+1 w s
i+2
U1t U1 U22 with probability p
G
J
j+1 ith probability 1 —p
7+2
vip V12 V138 W1 W22 W23 81
/
311 G
i u
141 ")
i+ 2
U11 U1 U222
J
.j +1 w3
iv2 O
vy Y1z V13 Wo1 Wa2 Wa3 81
311

Figure 4: Construction of graph G': case h > k.

INRIA

Dynamac Scheduling of raraitiel Computations

Qj+t+1 — Gitt+1 < @it — Qive, concavity of ¢
Thus,
Qj+tQ5+t+1 — Qi+t itt+1
= Qi+t — G+tQ+t+1 — Gitt T QiteGite+1

= Qi+t = Qi+t — G+t9i+t+1 t Gt Qiti+1 — Gittdi+t+1 T GiteQiti+1

> @it — Qitt — Gorr1 (@Gt — Gigt) — Girt(Qe — Gite)
= (¢j+t — Gire) (1 — Gpe+1 — Gitt)
> 0.

By mimicking the previous proof one can show that the graph G’ has the same distribution as G.

The remaining proof is analogous to that of Theorem 2 and is omitted. |

4 Concluding Remarks

In this paper we have shown that for parallel computations represented as random out trees, the breadth
first (resp. depth first) policy is optimal within the class of dynamic nonpreemptive schedules for the
stochastic minimization of the makespan when the numbers of offspring of tasks are geometrically

distributed with the parameters being decreasing and convex (resp. increasing and concave).

Moreover, in contrast to the static scheduling, our result holds for any arbitrary variable profile.
Indeed, it is well-known that the minimization of the makespan of UET tasks with tree structure
is NP-hard under general profile. The interested reader is referred to Garey et al. [6] who actually
proved the NP-completeness of P(t) decreasing | pi = 1,intree | Cpax (so is P(t) increasing | p; =
1, outtree | Cpax), where the decreasing profile refers to the case where the number of available pro-
cessors is decreasing in time. However, as we assumed the geometric distributions of the numbers
of offspring, the resulting outtree has a particular structure which is related to the class of uniform-

outforests introduced in [4].

When preemption is allowed, our result can be extended to the case where task running times are
random variables with an exponential distribution. The static-graph version of the problem has been

investigated in [4].

Although the work presented in the paper can be considered as one of the first theoretical results

on the makespan minimization of parallel computations with dynamic precedence constraints, the

RR n " 3048

16 Z. Liu

computational model used here is quite restrictive. We need to extend the model in order to deal with

more realistic problems.

Another future research direction is the on-line scheduling of random task graphs with interpro-
cessor communications. Interesting asymptotic results were obtained in [7] for binary trees when
processors connected by a ring. For the same architecture but more general structure of out-trees,

heuristics were evaluated empirically in [§].

Acknowledgements: The author is grateful to Professors Denis Trystram of INPG and Lixin

Gao of Smith College for their useful comments on the work.

References

[1] J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz, Scheduling in Computer and Manufacturing
Systems, Springer-Verlag, 1993.

[2] J. Briat, T. Gautier, and J.-L. Roch, “On-line scheduling”, Proc. of ESPPE’96, Parallel Program-
ming Environments for High Performance Computing, pp. 95-108, April 1996.

[3] P. Chretienne, E. G. Coffman, J. K. Lenstra, Z. Liu, (Eds.) Scheduling Theory and Its Applications,
J. Wiley, 1995.

[4] E. G. Coffman, Z. Liu, “On the Optimal Stochastic Scheduling of Out-Forests.” Operations Re-
search, Vol. 40, Supp. No. 1, pp. S67-S75, Jan. 1992.

[5] G. Fayolle, P. J. B. King, I. Mitrani, “On the Execution of Programs by Many Processors”, Proc.
of Performance 83, pp. 217-228, 1983.

[6] M. R. Garey, D. S. Johnson, R. E. Tarjan et M. Yannakakis, “Scheduling opposite forests”, STAM
J. Alg. Disc. Meth., Vol. 4, pp 72-93, 1983.

[7] L. Gao, A. L. Rosenberg, “Toward efficient scheduling of evolving computations on rings of pro-

cessors”, to appear in J. Parallel and Distributed Computing.

[8] D. E. Gregory, L. Gao, A. L. Rosenberg and P.R. Cohen, “An empirical study of dynamic schedu-
ling on rings of processors”, Proc. of the 8th IEEE Symp. on Parallel and Distributed Processing,
pp. 470-473, 1996

[9] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, “Sequencing and scheduling:

algorithms and complexity”, Report BS-R8909, CWI, Amsterdam, Holland, 1989.
INRIA

Dynamac Scheduling of raraitiel Computations

[10] Z. Liu, E. Sanlaville, “Preemptive Scheduling with Variable Profile, Precedence Constraints and
Due Dates”, Discrete Applied Mathematics, Vol. 58, pp. 253-280, April 1995.

[11] Z. Liu, E. Sanlaville, “Profile Scheduling by List Algorithms.” In Scheduling Theory and Its Ap-
plications, P. Chretienne et al. (Eds.), J. Wiley, 1995, pp. 95-114.

[12] P. Mussi, P. Nain, “Evaluation of Parallel Execution of Program Tree Structures”, ACM Sigmetrics,
Performance Evaluation Review, Special Issue Vol.12 No.3, pp.78-87, August 1984.

[13] D. M. Nicol, R. Simha, D. Towsley, “Static Assignment of Stochastic Tasks Using Majorization”,
IEEE Trans. on Computers, Vol. 45, pp. 730-740, 1996.

[14] V. Strassen, “The Existence of Probability Measures with Given Marginals”, Ann. Math. Stat.,
Vol. 336, pp. 423-439, 1965.

RR n " 3048

/<

Unité de recherche INRIA Lorraine, Technopodle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LESNANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 655, avenue de I’ Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

