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Abstract: This report presents LoadBuilder, a distributed environment designed to provide
a portable way of empirically studying the effects of various kinds of workloads in local area
networks of heterogeneous workstations. This tool is especially intended to build distributed
experimentations including composite workload setting, statistics collecting and performance
evaluations. The statistical analysis of the experimental results will help the dynamic load
balancing designer to select the most meaningful indicators out of the plethora available on
workstations, to establish behavior models of the workstations, to exhibit critical workload
thresholds and finally, to establish his own set of meaningful workload indicators. In the fol-
lowing, we first describe the architecture of the environment. Then, we present and discuss
the algorithms used to build (a) synthetic workloads, (b) statistics collectors and (c) mea-
surement procedures.
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LoadBuilder: un outil pour la génération et la modélisation de
charges en environnement réparti de stations de travail***

Résumé : Ce rapport présente LoadBuilder, un environnement réparti dont le but est de
fournir une solution portable afin d’étudier de manière empirique les effets des différents
types de charges dans les réseaux locaux de stations de travail hétérogènes. Cet outil est par-
ticulièrement adapté à la construction d’expériences réparties comprenant l’établissement
de niveaux de charges composites, la récupération de statistiques et l’évaluation de perfor-
mance. L’analyse statistique des résultats de ces expériences permet ainsi d’aider le concep-
teur d’algorithmes de répartition dynamique de charge à choisir les indicateurs les plus si-
gnificatifs parmi la multitude disponible sur les stations de travail, d’établir des modèles de
comportement des stations de travail, d’exhiber les niveaux de charge critiques et finalement,
d’établir son propre jeu d’indicateurs de charge significatifs. Dans ce qui suit, nous com-
mençons par décrire l’architecture de l’environnement. Puis nous présentons et discutons
les algorithmes utilisés pour (a) construire des charges synthétiques, (b) des collecteurs de
statistiques et (c) des procédures de mesure.

Mots-clé : Évaluation de performances, Caractérisation de charge, Informatique répartie,
Réseaux, Plans d’expériences.

*** Une version courte de ce papier a été publiée dans les Actes de 9
�����

Conference Internationale ISCA «Par-
allel and Distributed Computing Systems» organisée à Dijon en 1996 ([11]).



LoadBuilder: a tool for generating and modeling workloads 3

1 Introduction

Given the continuously increasing conjugate power of local area networks (LAN) and works-
tations with low price/performance ratio, and given the availability of distributed program-
ming environments providing common programming interfaces on numerous platforms (such
as PVM [1] or MPI [13]), network of workstations (NOW) has become the rational choice
to perform heavy parallel and distributed computations.

In order to find the distributed resources that match at best the distributed processes re-
quirements, many research efforts have been done (and are still done) on dynamic load ba-
lancing (DLB) algorithms [6, 16, 8, 12, 7, 10, 4].

Out of the many problems one is faced with the DLB algorithm design, we are especially
interested in the definitions and meanings of the load indicators : clearly, the best our know-
ledge of the global system state and behavior is, the wiser our workload sharing or balancing
policies should be.

The main difficulties to consider with NOWs are firstly, their multi-user and multi-pro-
gramming purpose and secondly, their heterogeneity. A quite usual solution used to face
the first difficulty, consist in building DLB algorithms that look for idle workstations [10,
4] : such algorithms are intended not to disturb the users/owners of the workstations and are
practically quite easy to implement, given the boolean nature of the load indicator (idle or
busy).

But this kind of algorithms also have noticeable drawbacks. In particular, it does not al-
low to fully consider NOWs’ heterogeneity. This heterogeneity appears at several levels :
computation power, memory configurations, operating systems, hardware components per-
formances, workstation architecture, LAN protocols, technologies and even topologies. Pre-
ferring an idle but slow workstation to an active but powerful one may not be a good choice
from the performances point of view. Furthermore, adding a few jobs to such a powerful
workstation does not necessarily implies a noticeable disturbance for its users/owners.

Thus, a single boolean idle indicator is clearly not adapted to choose the best, or even a
good target workstation for a job in an heterogeneous environment.

On the other hand, dynamic load balancing of parallel applications may also gain a lot
from multi-criteria load indicators [7]. For example, it is clear that the network traffic has
a significant effect on the communications performances and consequently on the perfor-
mances of a parallel application. Secondly, as pointed out by Pozzetti & Al. in [17] with
usual communications (TCP/IP), a message transmission implies a CPU demand depending
on the message length. This also means that communication performances and workstations
workloads are correlated. And while this may not appear of real importance with most of
the small bandwidth networks currently in use (such as 10 MBits/s CSMA/CD Ethernet),
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4 Olivier DALLE

this may become a significant factor with the new low latency, large bandwidth (over 100
MBits/s) and generally switched networks such as ATM, Myrinet or even Fast-Ethernet.

In order to build useful and meaningful workload indicators, and to model and compare
the behavior of the continuously changing set of LAN and workstations of modern hetero-
geneous NOWs, an empirical and, as much as possible, automated approach seems to be
unavoidable.

This is the general purpose of the LoadBuilder environment. It provides an easy way of
studying the system and network workloads in networks of workstations.

In section 2, we give a general overview of the LoadBuilder environment. Then we des-
cribe and discuss the design of the three service categories provided by the LoadBuilder en-
vironment: the workload services in section 3, the statistics services in section 4 and the
measurement services in section 5. Finally, we conclude in section 6, describing our current
and planned future works.

2 General description

The general architecture of our environment is, as often with distributed environments, based
on the client/server concept. Before we describe the general architecture of the environment,
let us detail our guidelines and motivations.

2.1 Guidelines and motivations

There already exists a plethora of distributed environments such as PVM or MPI imple-
mentations. However the guidelines that leaded the development of these environments are
really different of ours. For instance, providing robust and generally heavy runtimes, various
and complex communications protocols, fault tolerance, distributed debugging support, or
advanced features such as process communicators or task grouping is out of the scope of this
study.

On the contrary, the main qualities we focus on are primarily to be not intrusive, practi-
cal, and easily extensible and portable.

Minimal intrusion is obviously the first requirement of any measurement tool. It implies
that our environment needs to be as light as possible, not to disturb the behavior of the confi-
guration under study. Concerning the communication protocol, that leaded us to use the
unsafe but connection-less UDP/IP protocol. Anyway, the unsafe property of this protocol
(messages may be lost) is not a problem as long as communications are limited to transmit
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LoadBuilder: a tool for generating and modeling workloads 5

short control messages (requests) from one client to several servers which in turn, manage
to answer immediately.

Concerning the management processes running inside the configuration under study (the
servers), a special care has been taken to limit their interference with the workloads under
observation: they use a minimal amount of memory and have nearly no activity during an
experiment.

The most tricky part of the environment concerning this intrusion problem, is the statis-
tics collection. As we will see in section 4, the statistics collectors have two recording poli-
cies either minimizing I/O activity or memory occupancy, depending on the experiment de-
signer’s requirements. Furthermore, these statistics collectors have a cyclic behavior (clock-
driven) and thus, their interaction with the experiment may be minimized. Indeed, the ex-
perimentation design may (and should) include, in a preliminary calibration step, several
experiments to modelize the effects of the monitoring tasks.

Finally, let us notice that the client front-end, from which the user defines and controls
his experiments does not minimize intrusion on the workstation it is running on, since it is
not intended to be run inside the configuration under study.

Practical This is achieved by providing the user a centralized interface to distribute and
control a set of specialized tasks in the distributed environment he wishes to study. This
set of specialized tasks includes all the components required to study workloads effects in
distributed workstations environments: synthetic workloads generators, performance mea-
surements tools and statistics collecting services. Thus, the LoadBuilder environment is a
particularly useful tool in the experimental design domain ([14]). Figure 1 gives an example
of such an analysis based on experimental design.

In this example, we assume we are interested in studying workloads related to the net-
work traffic using an isolated but not stand-alone subnetwork of workstations: any traffic
not concerning one of the selected workstations is supposed to be filtered. In this case, the
LoadBuilder environment is used to control the parameters and results of each experiment
from any workstation of the main network, with a very minimal intrusion on the configura-
tion under study.

Extensible and portable Without going into implementation details, these two qualities
have been considered whenever it was possible. For instance, the communication protocol
uses a systematic encoding scheme (XDR, via the Sun rpcgen tool[18]) to support hete-
rogeneity, and the client command line interpreter is generated using the lex and yacc
languages which make it easily extensible.
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Figure 1: An example of configuration used to study workloads including network traffic:
the LoadBuilder environment provides a remote control on the configuration under study
with minimal intrusion.
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LoadBuilder: a tool for generating and modeling workloads 7

2.2 Architecture

The LoadBuilder environment is a collection of programs organized in a classical two levels
hierarchy (see figure 2): a single client process interprets the end-user’s commands and dis-
patch the corresponding requests to several server processes, thanks to a simple, lightweight
(UDP/IP connection-less based) remote procedure call (RPC) protocol. The following sec-
tion that describes the servers merely presents the technical aspects of the LoadBuilder envi-
ronment while the next section rather focus on its practical aspects by describing the client.

Client

Service Service

Server

Service Service

Server

Workstations
under study

User console

RPC RPC

IPC IPC IPC IPC

Figure 2: The LoadBuilder environment architecture: a two level hierarchy of processes in-
teracting through Inter-Process Communications (IPC) schemes or Remote Procedure Calls
(RPC).
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8 Olivier DALLE

2.2.1 The servers

On each workstation of the configuration under study, one of these server processes is suppo-
sed to be running. There, it has to (a) process and reply to the client requests and (b) manage
several local processes.

Most of these processes are executing a LoadBuilder service (see table 2, page 21 for a
complete list). As further explained in section 3.1, it is worth stressing that every time an
experiment service is spawn, a new process is created. The remaining processes that may be
run are the transient processes the server may have to spawn to answer the complex “data file
encoding and transfer” request1; since these are not intended to be visible from the end-user,
they only require a very minimal management.

The requests the servers currently recognize are the following :
� spawn a new service;
� return service status (process still running or terminated, process output if any);
� terminate service execution preserving its/their status;
� terminate service execution removing its/their status;
� wait for some service completion;
� collect/gather distributed datas.

Everywhere it makes sense to apply a request to more than one service, the server ac-
cepts the following selection policies:

� select a single service;
� select any service matching a given type;
� select any service.

The main idea behind the synthetic workload service is to provide a way to the expe-
rimental designer to build his workload by combining the execution of several specialized
processes (see discussion, section 3). Each of these processes belongs to a specific class of
workload : CPU, memory, network, I/O and Operating System workloads.

As we will further explain in section 5 the measurement procedures depend on the final
goal of the workload study. In our case, we want to build a communication model, thus we
specifically designed a measurement procedure to evaluate the performances of some inter-
esting communication schemes. But the behavior modeling can be extended to any other
part of the distributed system through different performance evaluation tools (benchmarks
or specifically designed algorithms).

1Since this request is meant to be run at the end of the experiment, it should never interfere with an expe-
riment.
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LoadBuilder: a tool for generating and modeling workloads 9

Finally, the statistics recording services are provided by processes collecting on the fly
any interesting indicators concerning the system states (traces, logs, usual kernels internal
statistics).

Figure 3 shows a schematic point of view of such a server node configuration.
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Figure 3: During an experiment, a LoadBuilder environment server node usually run a few
workload services, a statistics recording service and some measurement procedure.

2.2.2 The client

The user interface of the client is a simple command-line interpreter proposing two running
modes: an “on-line” one, producing customized outputs and an “off-line” (batch) one for an
automated use. In fact, this client is primarily meant to be run in second mode, that is coupled
to an external program automically generating instructions according to a given experiment
design. To ease such a coupling, the client only accepts single-line instructions composed
in the following syntax:
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10 Olivier DALLE

1. keyword

2. keyword host [host ...]

3. keyword service [service ...]

4. keyword global_svc_id [global_svc_id ...]

5. keyword host service [service ...]

6. keyword host service parameters

7. keyword host process_id [process_id ...]

8. keyword parameters

The table 1 page 20 lists and describes available keywords while the table 2 page 21 lists
and describes the available services.

Figure 4 shows a typical interactive session during which the user run an experiment on
three workstations (cheers, sante and prosit) from a fourth one, so the client will
not disturb the system under study. This example also reflects a typical experiment sequence:

� Start the local and network statistics recording services lstat and nstat. Wi-
thout any parameters, their default policy is to use the “memory only” stategy that
minimizes I/O activity (all the data collected are bufferized until the process is stop-
ped).

� Start some synthetic workload services, such as the lcpu one that runs an infinite
loop to load the CPU.

� Start a measurement: in this example we start an UDP/IP “ping-pong” measurement
between two workstations, using the uping and upong services. The uping pro-
cess will record the completion times of several hundred message exchanges with the
upong process for various message sizes.

� Wait for the measurement completion. For experiments not involving finite time
measurements such as the previous “ping-pong” test, another scheme is to wait here
until a given duration has elapsed, depending on the requirements of the later statistical
analysis of the data being collected.

� Stop services. Without any parameter this command apply to any service still run-
ning. This term command notify the services that the experiment is over and that they
should save their data and possibly perform some final computations. In this example,
this command is mainly destinated to the statistics recording services: whenever they
receive this request, the lstat and nstat services save the contents of their buffers
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LoadBuilder: a tool for generating and modeling workloads 11

to disk and write the corresponding number of records and the data file name on their
standard output.

� Collect data. Here, we only collect information written on standard outputs using the
get command. We could also request a data file transfer using the coll command.

� Reset servers. This kill command kills the services still running (in fact, none in
this example) and remove their entries from the servers tables. Any information about
a service is lost after it has been killed.

3 Loading modules

In the following, we first discuss the reasons that leaded us to the concept of the specialized
workload service. Then we describe the algorithms we used in order to build CPU, memory,
network and system synthetic workloads.

3.1 Discussion

In [9], Calzarossa & Al. give a hierarchical classification of workloads: a system is running
applications which may be decomposed into sequences of algorithms which in turn may be
decomposed into sequences of basic routines.

Using this classification, we can mainly derive two methods to build workloads. Either
we use a high-level one, by running typical standard applications (such as compilers, text
processors, data bases, interpreters, and so on) or algorithms (matrix products, data sorting
or scatter/gather communications scheme for instance), or we use a low level one by running
synthetic programs.

Obviously, the higher the workload is built in this hierarchy, the more realistic it is. But
while the high level approach may be of interest in a more comparison-oriented performance
evaluation domain (as with benchmark suites, for instance), its use in a more behavior-ori-
ented modeling domain leads to a few drawbacks. First, there is a high risk for workload
situations built that way to cover only a subset of all the possible states of system, depen-
ding on the initial pool of test applications or algorithms. In order to minimize this risk, one
will have to oversize this pool, which on the other hand will also lengthen the measurement
procedures and globally the whole modeling. Let us notice also that the behavior of such
applications may vary from one architecture to another, depending on implementation de-
tails. Consequently, it is clear that a behavior modeling based on such an analysis method is
heavy, complex and hardly portable.

At a lower level, we can easily make an inventory of the basic routines onto which any
algorithm is built : it uses some CPU time and memory space for computations, accesses the
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12 Olivier DALLE

Commands, parameters, outputs

LB>start cheers lstat
#1 <cheers:5172>(running) LSTAT
LB>start prosit nstat
#2 <prosit:8423>(running) NSTAT
LB>start cheers lcpu
#3 <cheers:5173>(running) LCPU

[Comments]

[Start a local statistics recorder on cheers]
[Return global id, host name, pid and state]
[Start a network statistics recorder on prosit]
[Start a CPU workload service on cheers]

... Start a few other workload and statistics services ...
LB>start cheers upong
#10 <cheers:5180>(running) UPONG
LB>start sante uping
#11 <sante:25283>(running) UPING
LB>wait uping
Waiting for 1 services

[Start a slave UDP/IP measurement process on
cheers]
[Start the master UDP/IP measurement process
on sante]
[Wait for the measurement completion]
[Only 1 service matches the wait request]

The console hangs until the expected completion happens
Notification from sante: Ok
LB>term
#1 <cheers:5172>(running) LSTAT
#2 <prosit:8423>(running) NSTAT
#3 <cheers:5173>(running) LCPU
#10 <cheers:5180>(end: 0) UPONG
#11 <sante:25283>(end: 0) UPING

[The expected completion happens]
[Terminate every service still running]
[List of all the services to be terminated and their
current status. Their entries that are still needed
for some commands (such as get) are kept by
the RPC servers as long as they are not explicitly
deleted (kill).]

... list of all other workload and statistics services that are to be terminated ...
LB>get
#1 LSTAT:’258 lstat.cheers.5172’
#2 NSTAT:’250 nstat.prosit.8423’
#3 LCPU:”

[Collect every service output]
[Statistics services return a filename and its
number of records]
[Some services do not output results.]

... list of all the others service outputs ...
LB>kill
#1 <cheers:5172>(sig: 15) LSTAT
#2 <prosit:8423>(sig: 15) NSTAT
#3 <cheers:5173>(sig: 15) LCPU
#11 <sante:25283>(end: 0) UPING

[Terminate services still running and delete their
entry. There are two kinds of service
terminations: services that are terminated through
a demon request (signal), and services that
terminate by their own (exit).]

... list of all other workload and statistics services that are to be cleared ...

Figure 4: An sample interactive session with the LoadBuilder environment
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LoadBuilder: a tool for generating and modeling workloads 13

network and I/O subsystems via system calls and asks for some system kernel services. The
main difficulty with this approach is then to exhibit the typical generic routines that belong
to each of these class of services.

Hereafter, we describe some of these routines we have implemented in our environment.

3.2 CPU Load

Only loading a CPU is quite easy, especially to reach a constantly busy state, since a CPU
knows only two states : working or not working. Thus a single infinite loop is usually en-
ough to place a CPU in a constantly busy state. Nevertheless, on a time-sharing system,
“constantly busy” does not necessarily mean “very loaded”, but only “never idle” (i.e. a
“very loaded” state dramatically slows down the execution performances of the running ap-
plication while a “never idle” state may have no consequence at all). So, in order to bypass
the priority rules of the system and reach a “very loaded” state, one should launch several
of these greedy processes. Something more difficult to obtain is to set the CPU in a “some-
time busy” state which is the most frequent state of a CPU. The easiest way to do so is by
alternating active periods (running a loop for instance) and sleep periods (via a system call).

In the current implementation, the service has two starting parameters : the length of the
sleep period and the length of the active period (both given in microseconds). With no pa-
rameter the service executes an infinite loop. However, one should consider that the mecha-
nism used to swap the process state (signal/interrupt handler) increases noticeably the system
activity. In particular, we experienced that giving an identical value to the two parameters
does not produce a “half time busy” state of the CPU (the busy time increases monotonically
as the period decreases).

3.3 Memory Load

In fact, there are two kinds of memory loads : an allocation one and an utilization one. In-
deed, nowadays, any Unix system has at least a three level memory architecture : at least
one level of cache memory between the CPU (and/or DMA) and the main memory boards,
the main core memory (RAM) and some swapping/paging space (disk). Schematically, the
allocation policy of the algorithm essentially has effects on the high levels (RAM and disk),
while the utilization policy has effects on the low level one (cache).

The way our algorithm manages to give a control over these two dimensions of the load
is by defining the following parameters :

� the global amount of memory it uses ;
� the size of the memory chunks it self-allocates to reach this global amount ;
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14 Olivier DALLE

� the size of the data vectors it translates from one of the previous chunk to another (to
generate cache faults) ;

� the time ratio it spends in each of the previous allocation and translation activity ;
� the time ratio between its active and sleep periods ;

Let us also notice that this memory load, and especially the utilization oriented one, has
a significant side-effect on the CPU activity.

3.4 Network Load

Internet local traffic has a clearly random behavior, especially when the underlying network
is Ethernet ([2]). Nevertheless, as pointed out by Jain and Routhier in [15], this randomness
does not follow a Poisson process model. It rather follows a packet train model. The main
characteristic of this model is not only the “train” one (i.e. messages larger than a packet
are transmitted using several successive packets) but also the fact that several of these trains
may be exchanged (thus, in the two directions) between the peer hosts.

Out of the many factors that explain this behavior, we could for instance observe that
because of the unsafe nature of the underlying transmissions (Ethernet is the currently most
widely used) and for performance considerations, most of the communication protocols use
windowing algorithms to transmit the messages across the network (TCP/IP, and usually
end-users ones, when they are built over UDP/IP) .

So, to render this quite complex behavior, we first have decided to introduce some ran-
domness in our algorithm and secondly, to provide the two communications classes of the
Internet Protocol: TCP/IP, which is the safe and connected one (stream), and UDP/IP, which
is the unsafe and connection-less one (datagram).

The TCP/IP workload service follows a “ping-pong” scheme between the two works-
tations involved : the initiator sends a TPC/IP message to the receiver which immediately
returns the message. This service accepts the following parameters : the range limits of the
message lengths (randomly drawn in that range) and the lengths of the active and sleep per-
iods of the process.

On the other hand, the UDP/IP workload service is a bit more sophisticated : it allows
the definitions of multiple packet trains that are to be randomly chosen (according to the re-
lative weight they are given) and sent between the initiator and a greedy process running on
the target workstation (this process does not return the message). The characteristics that
may be given for each train are the following :

� the packet size;
� the inter-packet delay;
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LoadBuilder: a tool for generating and modeling workloads 15

� the train packet count;
� the weight of the train;

At last, the UDP/IP service also accepts a global parameter to fix the sleep period bet-
ween each train sending.

3.5 System Load

The system workload service is very similar to the CPU one, except that its infinite loop
contains an operating system call (time of day). The calling parameters are the same as the
CPU service one : the active and sleeping periods lengths.

4 Statistics modules

Except for a very few of them (such as CPU use ratio over the last second), these indica-
tors are still very hardware and operating system interdependent. As an example, one could
compare on some different configurations the behavior of the standard load indicators given
by the uptime command (a standard combination of some CPU, I/O, memory and wait-
queues indicators averaged over the last one, five, and fifteen minutes) with the effective
response time an end-user gets, to be convinced they cannot be used as is to compare dif-
ferent workstations workloads.

We distinguish two statistics classes: the local and the network statistics. The local one
refers to every indicator of the system activity that is specific to a given workstation, while
the network one refers to every indicator that is shared among every workstation (in parti-
cular the network global traffic indicators).

4.1 Local statistics

Whatever the architecture and the Operating System we choose, these statistics are very nu-
merous. Let us try to categorize them.

Firstly, we can distinguish two levels of specialization: a general one concerning the
global state of the system (the load indicators returned by the uptime command), and a
very specialized one concerning very particular components (subsystems) of the workstation
(such as the number of memory pages currently swapped out or the current cumulative count
of incoming IP packets).

Secondly, we can distinguish three levels of accessibility : the normal user commands,
which refer to the standard commands a normal user can execute (uptime, who, ps,. . . ),
the super user reserved commands, which refer to commands only available for the super
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16 Olivier DALLE

user (depending on the Operating System configuration, this may include the top, vmstat
or iostat standard commands) and at the lowest level, we can directly access the kernel
internal statistics. The lower the informations are collected, the better is their quality but
also the potentially less portable and easy to use they are.

Thirdly, we can distinguish the different kinds of data collected : these may be unboun-
ded cumulative totals, ratio indicators or just amounts of resource usage.

Finally, we can distinguish two kinds of accuracies, depending on the time policy of the
statistic source : the real time one gives better results while the delayed one (periodic up-
dates) gives less accurate results.

Currently our local statistics service records the statistics returned by the rstat Sun
RPC service which is widely available on different architectures and operating systems (Su-
nOS, Solaris, OSF/1 at least). It is a low accuracy (one second update period) but user-level,
portable, and complete service that provides 23 indicators, covering CPU, I/O, memory, sys-
tem and network subsystems. We are currently writing another service to record the output
of the iostat and vmstat commands and plan to provide soon a very low level service on
the SunOS system, accessing directly its internal indicators (the most accurate, but neither
portable nor user-level).

As the amount of the data we need to record is quite important, a special care has been
taken to minimize the impact of this monitoring process on the system behavior. This is
achieved by implementing two buffering strategies : a “memory only” one that keeps the
whole recorded data in the memory until the end of the experiment and a “memory and disk”
one that periodically flushes the record buffer to the disk (every minute, for instance).

Consequently, this service has just one parameter, to designate which of these two stra-
tegies to use.

4.2 Network statistics

Unfortunately, the network statistics we are interested in (especially the traffic level and a
few distribution characteristics) are not easy and very expensive to collect. Not easy be-
cause it generally requires the super user privileges (for security considerations), and very
expensive because it usually requires to toggle the network interface of the workstation into
a special mode named “promiscuous mode2”, which disturbs a lot the normal behavior of the
selected workstation. This special mode deactivate the automatic low level filtering feature
of the network interface that prevent it to catch useless packets. On the other hand, we only
need one of these sonde workstation per (sub)network link since the traffic is common to
each of the workstations it connects. Furthermore, local network administrators often have

2On Ethernet networks.
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such sounding dedicated workstations for their own purpose. Indeed, sounding a network
does not necessarily require CPU power (especially if the only requested work is to count
the packets and possibly apply a minimal sort), so any deprecated workstation may be good
enough.

A few powerful standard tools, such as tcpdump or etherfind, for instance, may
be used to collect these statistics. But as we previously said, these all require the super user
privileges to be run.

There also exists a quite flexible Sun RPC service that provides a useful enough set of
network statistics : the etherstat service. Its main drawback is that it do not seem to be
available on others platforms.

Nevertheless, we have currently implemented our network statistics service using this
RPCetherstat service. The statistics we currently get with our service are the following:
the distribution of the packets according to main protocols (broadcasts, UDP/IP, TCP/IP,
ICMP, .. .), the distribution of the communications volume according to the packet sizes (16
size ranges), a global volume indicator and a global packet counter. Each of these values are
updated every second.

As previously, with the local statistics service, the network statistics service accepts one
parameter to designate the buffering strategy to use.

5 Measurement modules

Measurement modules are meant to evaluate the variations of some performances metrics
depending on the workload settings. But as emphasized by Raj Jain in [14], the definition
of such performance metrics is a critical point in the modeling study itself. Thus, it would
be pointless and probably impossible to try to provide measurement modules that exactly fit
any of the LoadBuilder users’ expectations.

Nevertheless, we managed to provide at least one measurement module for each of the
system’s activities we previously considered with the workload modules: CPU, memory,
I/O, system and communications activities. By widely but imperfectly covering all the sys-
tem’s activities, these modules may happen to be useful in order to have an idea of the global
performance variations and may detect unexpected phenomena.

Practically, these measurement modules are simply some instrumented and simplified
versions of their corresponding synthetic workload services, except for the last one (com-
munication). This instrumentation consists in collecting a few statistics about the module
activity, mainly its throughput variations (the variations of the rate at which it performs the
operations it is designed for, such as loop iterations per second for the CPU one).
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Concerning the communications performances, we did not reuse the complex packet
train scheme of the UDP/IP load module. The first obvious reason is that its complexity
makes it very difficult to instrument. The second is that communications performances, that
are currently our main topic of interest, are usually expressed using the two following me-
trics: latency and bandwidth.

Consequently, we designed two measurement procedures, one for the evaluation of the
TCP/IP protocol performances and the other for the UDP/IP protocol. These two procedures
use the same evaluation method based on a simple “ping-pong” scheme, in order to model
the transmission time of the messages according to their length, and off course, the global
workload of the system under study.

Thus, we implemented four services: an UDP/IP and a TCP/IP master services (the “ping”
side), and an UDP/IP and a TCP/IP slave services for the (“pong”) side.

The masters services (see algorithm figure 5) accept the following parameters :
� The name of peer workstation running the matching service;
� The port number (to possibly enable the simultaneous running of several experiments);
� The number of message lengths to evaluate and the two bounds of the message lengths

interval: before it enters the main repetition loop (see the following algorithm descrip-
tion), the algorithm compute the set of message lengths it will use (uniform distribu-
tion of the lengths in the interval);

� The number of round-trips of the same message between the peers;
� The number of repetitions of each measurement;
� The results buffering strategy;
� A boolean to activate the random choice of the message lengths; more precisely, it

does not tell to draw a random length in the interval, but only to randomly choose the
next length in the set of the pre-computed lengths: this feature was added to avoid any
possible correlation due to a monotonic variation of the message lengths;

� A delay fixing the sleeping time between the successive repetitions of the experiment;

The slaves services only accept two parameters: the port number and the name of its peer
workstation.

6 Conclusion

By explaining the LoadBuilder environment design, implementations guidelines and func-
tionalities, we attempted to show how this environment may help the experiment designer
to put into practice experimental designs in a distributed workstation environment. But it

INRIA



LoadBuilder: a tool for generating and modeling workloads 19

begin
Compute the messages lengths;
for r:=1 to number of repetition of the experiment
do

for l:=1 to number of message lengths
do

(randomly) choose the l ��� message length;
transmit this length to the slave and wait for acknowledgment;
start CLOCK;
for i:=1 to number of round-trips
do

send a message of length l;
receive a message of length l;

done
stop CLOCK;
store the duration of these transmissions;

done
sleep(delay);

done
end

Figure 5: Communication measurement: the slave service’s algorithm

also exhibits the complexity of the experimental design itself, given the number of control
parameters provided to control the workload, and the number of factors we have to study.

Nevertheless, it already provides enough functionalities to investigate new models of
performances and behavior, including at least partially, the workload parameters. In particu-
lar, as a case study, we currently focus on a new model of the communication performances
that include the local and network workload parameters, first in an homogeneous dedicated
NOW interconnected via a 10 MBits Ethernet network, then on a different homogeneous
network connected via high bandwidth and low latency networks (100 MBits Fast-Ethernet
and 640 MBits Myrinet) and finally in an heterogeneous network.

From these modeling experiences, we expect to gain enough knowledge to exhibit au-
tomatic modeling procedures. In particular, we plan to define soon an interface between the
LoadBuilder environment and the University of Massachusetts EKSL’s CLIP tool[3], that
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allows the user to define and run experiments designs and to collect the resulting data in a
very simple manner.

It is also worth stressing that such behavior models are of great interest in the system ad-
ministration area, since they allow a fast and accurate detection of unusual workload confi-
gurations.

Eventually, depending on the results of these modeling studies, we also plan to imple-
ment efficient multi-criteria Dynamic Load Balancing algorithms, firstly in order to validate
the previous models and secondly to enhance the performances of the C++/ / object oriented,
distributed environment for parallel applications, developped inside the SLOOP project[5].

Annex

Keyword Syntax Description

QUIT 1 Exit from client

HELP 1,3 Online manual

RINFO 1,2,3,4,5,7 Query servers about services status

RUN 5,6 Spawn a new service

START 5,6 Spawn a new service

TERM 1,2,3,4,5,7 Terminate a service’s process, preserving its state record

KILL 1,2,3,4,5,7 Terminate a service’s process and remove its state record

GET 1,2,3,4,5,7 Collect standard output from a service’s process

WAIT 1,2,3,4,5,7,8
Either wait for a given amount of time (8th syntax), or
wait for a service’s process to terminate

COLLECT 1,2,3,4,5,7 Transfer data saved by service’s process (if any)

ECHO 1,8 Echo parameter (if any)

Table 1: The LoadBuilder client available keywords

INRIA



LoadBuilder: a tool for generating and modeling workloads 21

Class Name Description

Synthetic Workload

LCPU CPU bound workload

LMEM Memory bound workload

LSYS System bound workload

LUSVR UDP/IP network traffic producer

LUCLNT UDP/IP network traffic consumer

LTPING
TCP/IP “ping-pong” traffic generators

LTPONG

Measurement procedures

MCPU CPU throughput measurement

MMEM Memory throughput measurement

MSYS System throughput measurement

UPING UDP/IP network performance
measurement (“ping-pong”)UPONG

Statistics collectors
LSTAT Workstation local statistics

NSTAT Network statistics

Table 2: The LoadBuilder available services
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