An Algebraic Design for the Simultaneous Stabilization of Two Systems

Abstract : In this report we present a unified description for studying the problem of the simultaneous stabilization of two plants. Three approaches for the simultaneous stabilizability are defined. The first one corresponds to the definition commonly used in the literature. For the third one, we show that, like for the first one, the design of a simultaneous compensator leads to a divisibility condition in the ring of $RH_\infty$. A simple formulation of the existence condition for simultaneous stabilization is proposed. Moreover, the equivalence between the existence conditions for the first and third approaches is shown. Finally an explicit method is given to compute simultaneous compensators.
Type de document :
[Research Report] RR-3043, INRIA. 1996, pp.36
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:24:53
Dernière modification le : samedi 17 septembre 2016 - 01:06:45
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:53:36



  • HAL Id : inria-00073649, version 1



Christophe Fonte, Christine Bernier-Kazantsev, Michel Zasadzinski. An Algebraic Design for the Simultaneous Stabilization of Two Systems. [Research Report] RR-3043, INRIA. 1996, pp.36. 〈inria-00073649〉



Consultations de la notice


Téléchargements de fichiers