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Théme 1 — Réseaux et systémes

Projet Para
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Abstract: We define a weak A-calculus, Aoy, as a subsystem of the full A-calculus with
explicit substitutions Aoy. We claim that Ao, could be the archetypal output language of
functional compilers, just as the A-calculus is their universal input language. Furthermore,
Aoy could be the adequate theory to establish the correctness of simplified functional com-
pilers. Here, we illustrate these claims by proving the correctness of four simplified compilers
and runtime systems modeled as abstract machines. The four machines we prove are the
Krivine machine, the SECD, the FAM and the CAM. Thereby, we give the first formal proofs
of Cardelli’s FAM and of its compiler.
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guages, compilation of functional languages
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Compilation et exécution fonctionnelles dans le
Lambda-Sigma calcul

Résumé : Nous définissons un A-calcul faible Ao,, comme un sous-systeme du A-calcul
avec substitutions explicites Aoy. Notre systéme Aoy, est une abstraction du langage de
bas niveau produit par les compilateurs de langages fonctionnels, au sens ou le A-calcul est
une abstraction des langages fonctionnels eux-mémes. En outre, le calcul fort des substitu-
tions explicites Aoy pourrait bien étre une bonne théorie syntaxique pour décrire et prouver
la correction de compilateurs fonctionnels simplifiés. Dans ce travail, nous donnons quatre
exemples de cette démarche en prouvant des versions simplifiées de compilateurs et d’envi-
ronnements d’exécution. Les compilateurs sont modélisés par des réécritures de Ao-termes
et les environnements d’exécution par quatre machines abstraites : la machine de Krivine, la
SECD, la FAM et la CAM. Notre formalisme nous permet de presenter la premiére preuve
connue de la FAM.

Mots-clé : Lambda calcul faible, substitutions explicites, sémantique des langages fonc-
tionnels, compilation des langages fonctionels



Functional Back-Ends
within the Lambda-Sigma Calculus

1 Introduction

It is folklore to define a compiler as a translator from a high-level language intended for humans
to a low-level language intended for machines. For mostly theoretical issues such as semantics or
correctness of high-level program transformations, real programming languages are too complicated
and lack generality. Instead, it is convenient to use an archetypal language, standing as a suitable
abstraction of a whole class of programming languages. The A-calculus is widely accepted as such a
paradigm of all functional programming languages, due to its simplicity, consistency and generality.
More precisely, the A-calculus captures the essence of functionality. It is a non-ambiguous (i.e.,
Church-Rosser) reduction system where any strategy can be specified, yielding call-by-value or
call-by-name functional languages. Moreover, it can be extended by adding extra rewriting rules
to treat arithmetic or data structures [22].

In opposition to this commonly accepted view of A-calculus as universal abstract syntax, there
is no consensus among writers of functional compilers about the choice of an archetypal target
language. With respect to the formal description of their output, published compilers for functional
languages fall into three classes: they either compile to combinator or supercombinator [5] terms,
to A-terms in continuation passing style (CPS) [2], or to abstract machines [16, 7, 6, 8, 18]. These
different approaches are praised for their peculiarities: combinators for their rewriting aspects and
adequation to lazy evaluation [23], CPS for its ability to encode explicitly a given strategy and
abstract machines for their closeness to real computers. None of these frameworks is designed to
express the others. In fact, they do not claim to be universal, but each claims to be the best.

Nevertheless, a few common concepts arise here. The functions are to be compiled, that is,
a fixed code should perform the actions specified in the body of a function, this code remaining
unchanged at every invocation of the function. The variables in a function are of two kinds: either
formal parameters or free variables. The values of parameters change at every function call, whereas
the values of free variables remain the same. Thus, the low-level object that represents a function
is a closure: a pair of a code and an environment that collects the values of the free variables at
function creation time. Therefore, our universal target language should be a calculus of closures.
Furthermore, the basic operations performed by the various existing runtime systems are the same:
applying a closure, creating a closure, or retrieving the value of a variable in some environment.
These operations are best unveiled in abstract machines. Thus, in the rest of this paper we focus
mostly on them, as a still widely accepted formal description of functional runtime systems, which
we intend to surpass.

Closures are naturally expressed in the A-calculus with explicit substitutions [1, 10] as a term
(AM)[s], where M is a term standing for a piece of code, and s is a substitution, that is, an
environment, collecting the values of free variables. We now need some rules to compute on closures.



First of all, we need to apply a closure (AM ) [s] to an argument N, yielding the explicit application
of the new substitution ¢ = N -s to the body M, written M [N -s]. Then, we have to propagate
the substitution ¢ inside the body M, until the substitution ¢ reaches a variable, which should then
be replaced by its value, or a A abstraction, whose body is code for a new closure. The rule for
applying closures along with simple rules to propagate substitutions define the weak Ao-calculus,
Ao,,. While designing Ao, as yet another calculus of explicit substitutions, we took particular care
to select only the term constructs and rewriting rules that are actually required to express the basic
steps performed by the existing abstract machines. We are satisfied that this pragmatic approach
yields a confluent subcalculus of Aoy, one of the Ag-calculi introduced in [10].

In this paper, we first introduce the weak Ao-calculus and give a unified presentation of abstract
machines. Afterwards, we show that the basic operations of abstract machines correspond to certain
rewriting steps in the weak Ao-calculus. More precisely, the deterministic evaluation strategy
implemented by an abstract machine is identified as a rewriting strategy in Ao,. We make this
correspondence fully explicit for the Krivine machine and the FAM. The latter example involves
a true compilation of the input A-term to a Ao-term. Thereby, we give the first known proof of
the correctness of a FAM-based compiler and runtime system. Other execution models are briefly
discussed in section 7.

We thus illustrate our claim that weak A-calculus with explicit substitutions is an adequate
tool to study the execution of compiled functional programs [1, 10, 20]. Moreover, as shown by
the FAM, the full A-calculus with explicit substitutions may be a good formal language to describe
the whole compilation process. This confirms the versatility of Ao, which has been used recently
to study advanced topics in the A-calculus, such as higher order unification [12], or issues in logic,
such as the interpretation of sequent calculus [15].

2 Preliminaries

2.1 The lambda-calculus with explicit substitutions

The traditional weak A-calculus is an attempt to model the execution of machine code within the
A-calculus; it conforms with the basic intuition that functions, once compiled, are code and cannot
change (otherwise, there would be no compilation). A tentative definition of weak reduction is thus
to suppress the (§) rule from the definition of the A-calculus.

M — M’
7 (&)
.M — M

This negative definition has the major drawback that it does not lead to a consistent definition
of the weak A-calculus as a Church-Rosser rewriting system. To see this, consider the following
derivations:

(Azy.y z) (Az.2) (Az.2))

N

Ay.y (Az.2) (Az.2)) (Azy.y z) (Az.2)



The problem lies in a discrepancy between intuition and formalism. Using ordinary A-terms only,
what is intuitively perceived as the invariable code Ay.y  with respect to the possibly changing bind-
ing [z\(Az.2) (Az.2)] has to be represented by the fully substituted abstraction Ay.y ((Az.2) (Az.2)),
so that the redex (Az.z) (Az.z) is now located under a A and cannot be contracted without invoking
the (£) rule. This undesirable divergence can be corrected by delaying substitution, that is, by
introducing explicit closures. Then we get:

(Azy.y z) (Az.2) (Az.2))

.
/

(Ay.y z)[z\(Az.2) (Az.2)] (Azy.y z) (Az.2)

/
\

(Ay.y z)[z\Az.2]

Informally, “reduction is not allowed under A’s” is replaced by “substitution does not cross \’s”.
A natural setting for a formal treatment of closures is Ao, the A-calculus with explicit substi-
tutions [1, 10]. We first recall the definition of A,, the two sorted algebra of Ao-terms.

TERMS: M == n| (MM)| AM | M[s], withn>1
SUBSTITUTIONS: s == id | | M-s ] sos

Note that variables are represented by De Bruijn indices. The new term construct M [s] represents
explicitly the application of substitution s to term M. The substitutions themselves are made
explicit: we have two special substitutions id and T, whereas substitutions are structured as lists
of terms M - s or as compositions s o s.

We note Apg the subset of A, that coincides with ordinary A-terms.

ApB-TERMS: N == n | (NN)| AN, withn>1

The propagation of substitutions inside terms and substitutions is defined by the following
rewriting system o,,:

(App) (M1 My)[s] — (My[s] May[s])
(FVar) 1M-s] — M

(RVar) nt+1[M-s] — nls]

(Clos) (M [s])[t] — Mlsot]
(AssEnv) (sot)ou — so(tou)
(MapEnv) (M-s)ot — MIJt]-(sot)
(ShiftCons) To(M-s) — s

(IdL) idos — s

There is one rule per term construct in the algebra of Ao-terms, except for A. The propagation of
substitutions through application nodes and accesses inside list-structured substitutions are handled
by the first three rules above in a straightforward manner. The case of functions is more subtle. In
the simplest case of the so-called “shared environment machines” (Krivine machine or SECD, for
instance), functions are compiled as abstractions — i.e., as code —, and execution will only pair



these abstractions with an environment, producing closures. The “copied environment machines”,
such as the FAM, are more sophisticated: a function AM is compiled into a closure (AM')[s],
where s collects the references of M to a global environment, whereas the free variables in AM’
refer only to s. At run-time, applying some substitution ¢ to the closure (AM')[s] will result
in applying ¢ to s, thus composing the two substitutions into one new substitution s o t — as
illustrated by the rewriting rule (Clos). Hence, we need rules to substitute inside substitutions; in
other words, rules to compose substitutions. These rules are the remaining four rules above. Here
again, there is one rule per term construct in the sort of substitutions.

As we need the composition operator on substitutions “o” to express certain computations, we
differ significantly from recent calculus of explicit substitutions without composition [19].

Since there is no rule for crossing \’s, a Ao-closure, i.e. a term of the form (AM)[s], cannot
be reduced at its root. Hence, Ao-closures are (weak) values, similar to weak head normal forms.
In our case of an archetypal target language, Ao-closures are the only values. In a more general
setting that would also consider arithmetic and data structures, additional values would be integers,
lists,. ..

In the weak setting, Ao-closures are destructured only by applying them to arguments:

(Beta) ((AMy)[s] My) — My [M;-s]

The system Aoy, is defined by the rules of ¢,, plus the rule (Beta). From [10], where a system
very close to Ao, is studied, we deduce that the weak substitution system o, is both strongly
normalizing and confluent and, by using the Yokouchi lemma, that the reduction system Ao, is
confluent. Moreover, our system Ao, is a subcalculus of Aoy, the most general A-calculus with
explicit substitutions.

(Lambda) AM)[s] — A4 ()
(VarShift1) n[]] — n+1
(VarShift2) n[los] — nt1]s]
(FVarLift1) 1 (s)] — 1
(FVarLift2) 1[f(s)ot] — 1t
(RVarLift1) nt+1[f(s)] — mn[sof]
(RVarLift2) n+i[f(s)ot] — nf[so(]ot)]
(ShiftLift1) Toft(s) — sof
(ShiftLift2) To(f(s)ot) — so(]ot)
(Lif1) Mot () — fison)
(Lift2) f(s)o(f(t)ou) — f(sot)ou
(LiftEnv) f(s)o(M-t) — M-(sot)
(LiftId) f(id) — id

(IdR) soid — s

(1d) M[d — M

Figure 1: Strong substitution rules

The terms of Aoy are the terms of Ao plus the additional “lifted” substitution construct 1 (s),
whereas the rules of the strong substitution system oy, are the rules of o, plus the strong substitution



rules of figure 1. With respect to strong substitution, Ao-closures are not values any more, since
any Ao-closure (AM) [s] now immediately reduces to A(M [} (s)]), by the rule (Lambda). Most of
the other rules of oy explicit the de Bruijn indices adjustments. The remaining two rules —(IdR)
and (Id)— define the substitution id as the identity. As it can be expected, oy is a terminating
and confluent rewriting system [10].

The full system Aoy, is defined by the strong substitution rules of oq plus the following rule for
applying A-abstractions to their arguments:

(BetaStrong) ((AMy) M3) — M;[M,-id]

The system Aoy is both confluent and correct with respect to the A-calculus [10].
One easily sees that Ao, is a subcalculus of Aoy, since the weak 3-rule (Beta) is a shortcut for
the following Aoy-derivation:

(M) [s] My) P2 O [ (9)]) M) P22 (a4 (9)]) (M- 1] (S

My (s) o (Ma-id)] P8 ar [0y (s 0 10)] "2 by (Mg - o]

Thus, as a subsystem of the strong system Aoy, the weak system Aoy, is also correct with respect
to the A-calculus. This correctness is to be understood as follows: given any Ao-term M, the oy-
normal form oy (M) is a Apg-term. Furthermore, if M reduces to M’ by the rule (StrongBeta), then
on(M) B-reduces to og(M') in one or more steps. Conversely, 3-reduction in App can be simulated
by a (StrongBeta) rewriting step followed by oy-normalization. Again, refer to [10][Section 5] for
details and proofs.

In this paper, functional programs are modelized as closed A-terms. More precisely, given a
A-term in De Bruijn notation N, the free variables in N are collected by calculating Fo(N ), where,
for any integer d, Fy is defined by:

Fi(n) 0 ifn<d
Fi(n) = {n—-d} ifn>d
Fi(N1 Ny) = Fa(Ny)U Fy(Nsy)

fd(/\IV) = fd_}_l(JV)

By definition, a Apg-term N is closed, if and only if, the set Fo(N) is empty. Furthermore,
given any Ao-term M, we say that M is closed, if and only if its oy-normal form is closed. This
closeness property is preserved by reduction:

Ao
Lemma 1 Let M be a closed Ao-term. Then, for all M such that M == M', the Ao-term M’ is
also closed.

Proof: The property holds for Apg-terms and §-reduction. It smoothly extends to Ao-terms and
Aoy reduction. a

2.2 Abstract machines

In the rest of this paper, we describe four machines, while unifying their presentations.
Instructions differ between machines, but, for any machine, a code segment is a possibly empty
list of instructions:
CODE == () | INSTRUCTION;CODE



A closure is a code segment associated with an environment, an environment being a list of closures:

CLOSURE = (CODE/ENVIRONMENT)

ENVIRONMENT :i= () | CLOSURE - ENVIRONMENT

A typical code segment will be written C', a typical environment e and a typical closure f or (C'/e).
The states of the machines are non-empty lists of frames, the exact structure of frames depending
upon the machines.
STATE = FRAME | FRAME :: STATE

The behavior of an abstract machine is specified by a deterministic transition system. Briefly,
a transition system is a triple (£, Ey, —), where E is a set of states, F; is the subset of terminal
states and — is the transition relation defined over (£ — F;) X E. The transitive closure of — is
written —*. A transition system is deterministic when, for every state D, there exists at most one
state D’ such that D — D’.

At this point, the puzzled reader may have a look at the machine descriptions in the following
four sections 3, 4, 5, and 6. keeping in mind the following notations:

Convention: Qur stacks grow right to left. For instance, pushing the element x onto the stack S
yields the new stack x : S. When appropriate, we freely interprel stacks as sequences or arrays.

That is, given n elements &1, T3, ..., T, the stack S = x, @ -+ : @3 1 @1 : () is simply written
Tptooeixg . A subsequence x; - - x; is written T;;. For instance, Ty ,—; S is a stack with
the v elements ©,, Tp_1, ..., Tn_; Standing on top of il.

2.3 Implementation of a strategy by a machine

In [24], bisimulations are used to establish the equivalence of two transition systems ; and 5. In
our work, Y always defines an abstract machine whereas X5 is a subsystem of Ao,,. The states of 3y
are Ao-terms and its transition relation is a rewriting strategy —S—>, a strategy being a deterministic
subrelation of the general Ao,-reduction relation.

We present a simplified setting, where a bisimulation is given by two partial functions, the
compile-and-load function £ that translates Ao-terms into machine states, and the decompilation
function ~ that translates machine states into Ao-terms. We say that a machine implements a
strategy S when the following three conditions are satisfied:

1. Initial condition: Let M be a Ao-term such that £(M) exists. Then £(M) = M [id].

2. The machine follows the strategy S: If D1 — Dy and D; exists, then Dj exists and we have

either Dy = Dy —and we say the machine performs a silent transition— or D_li>E

3. Terminal states translate to normal forms: Let M be a Ao-term such that £(M) exists. If
L(M)—* D and D is a terminal state, then D is a S-normal form.

4. Machine and strategy progress at the same pace. There cannot be infinitely many consecutive
silent transitions.

The condition 1 is justified by the strong rule (Id): M [id] — M of Aoy. Basically, the rule (Id)
states that “id” is the identity substitution that maps variables to themselves. This point is
important, since it is a first illustration of using the strong Ac-calculus to assert a correctness

property.



As defined in condition 2, silent transitions perform only administrative work on the abstract
machinery.
The following diagram summarizes the bisimulation conditions:

Machine states and transitions

/DO D,y Dy (terminal state)
L

My M, My (S-normal form)

Ao-terms and Ao,-steps

This diagram illustrates the ideal case when they are no silent transitions.

3 The Krivine Machine

As a gentle introduction to our framework, we describe the Krivine Machine [8]. This machine is
very simple:

INSTRUCTION ::= Grab | Push(coDE) | Access(n)
FRAME = CLOSURE
A typical state D is thus a stack of closures, which we write f, 1 fo_1 1. f1.

A Appg-term is compiled as follows:

[n] = Access(n)
[AN] = Grab;[N]
[[(Nl ]\72)]] = PUSh(IIJVQ]]), H*Nl]]

Loading of compiled code is just pairing with the empty environment: £(N)= ([N ]/()).
The execution of programs is defined by the following transition rules:

(Access(1)/(Co/eg)-€) :: D lvay (Co/eo) :: D
(Access(n + 1)/(Co/eo)-€) : D =2 (Access(n)/e) :: D
(Push(C");C/e) :: D push (Cle)::(C'/e):: D
(Grab; C/e) :: (C"/€e') :: D grab (C/(C'[e')-e):: D
Then, we define the decompilation procedure from machine states to Ao-terms. First, we just
reverse the compilation scheme [ ], and extend the resulting decompilation procedure to closures



and environments:

Access(n) = n
Grab;C = AC
Push(C");C = (C C7)

Cle) = Tl

Finally, observing that new frames are introduced by the execution of the Push instruction, which
is the code equivalent of an application, the state constructor :: is decompiled as an application:

Foitiiafi=(olTo Tt D)

In the expression above, the Ao-term f, is said to be in head position. The head position is the
leftmost position with respect to application nodes, since f,, = C, [€,] is not an application.

Now, we show several properties of the compilation and decompilation functions. First, these
two transformations are one another inverse:

Lemma 2 [N] = N, for any Apg-term N.

As a corollary, we get the initial condition 1. Then, we show a weakened condition 2, in order
to make the strategy of the Krivine machine appear naturally.

Lemma 3 Let D and D' be two machine states such that D is defined and D — D'. Then D'
ezists and we have the reduction D 22¢* .

Proof: We give the example of a push transition:

ush
(Push(C");C'/e) :: Dy = (CJe)::(C'/e) :: Dy

__J _ AOy _ _'_J _
(...(cchle ...fry —— (...(Clel C'[e]) ... fr)

Therefore, the execution of the instruction Push is equivalent to the application of the Ao,-reduction
rule (App). Similarly, the transitions lvar, rvar, and grab implement the reduction rules (¥ Var),
(RVar) and (Beta). Finally, all reductions are performed in head position. ]

By the detailed proof of the previous lemma, it is not difficult to see that the Krivine machine
follows the weak leftmost strategy, or K-strategy, described below in the small step formalism:

1[M-s] — M n+1[M-s] — nls]
(N1 N3)[s] — (Nq[s] N2 [s]) (AN)[s] M) == N [M -]

K
le — LM{

(My My) — (M M,)

It remains to show condition 3 on terminal states.



Lemma 4 Let D be a reachable, terminal state, then D is a K-normal form:
Proof: The Krivine machine may stop for two reasons:
e When D = (Grab;C/e). Then, we get D = (AC)[€], which is a Ao-closure and a K-normal form.

e When D = (Access(m)/()) :: Do, i.e, when an access fails. Then, D = (...(m fu_1)... f1),
which is also a K-normal form. Moreover, since we have oy(My My) = (o4(M1) oy(M3)), the
oq-normal form o (D) admits at least m as a free variable. Thus, by lemma 1, this case can occur
only when the initial program is not a closed App-term. a

Finally, as the Krivine machine does not perform silent transition, the final result of this section
immediately follows from previous lemmas.

Theorem 1 The Krivine machine implements the K-strategy.

4 The SECD machine

4.1 SECD in the Apgp-calculus

The original SECD machine of [16] used named variables. In our presentation, we consider a slightly
modified SECD machine that reduces Apg-terms. Our choice to define machine states as lists of
frames also induces minor syntactic modifications with respect to usual presentations of the SECD
machine.

An instruction is a Apg-term or a new symbol @.

INSTRUCTION := App-TERM | @
An argument stack AS is a list of closures.
STACK := () | CLOSURE : STACK
Finally, a frame of the SECD machine is a (AS, e, C) triple:
FRAME := (STACK , ENVIRONMENT , CODE)

Thus, a SECD state is written D = (AS,,e,,Cy) 2 -+ 11 (AS2,e2,Cq) =t (AS1,e1,C1).

The transition rules are as follows:

app
—

(AS,e,(Ny1 N3);C) = D AS,e,Ny; Ny;@;C) 2 D
(AS,e,AN;C):: D 2=
) D

(
((N/e): AS,e,C) 2 D
((No/eg) : [+ AS,e,@;C) @, ((), f-e0, No) :: (AS,e,C):: D
(f,e, () (AS, €, C") 2 D (
(

dump f:AS €, C") D
(Asvfl"'fn'evn;c)::D Xa_l; fn:Asvfl"'fn'evc)::D

The SECD machine looks very much like an interpreter and the compile and load function is
minimal: for any Apg-term N, we define L(N) = ((),(), N).



4.2 The decompilation

As in the previous case of the Krivine machine we view the decompilation function as an inverse
of the compilation function. For the most simple structures —environments, closures and stacks—
there is very little to do.

~—
|

—-

jo

Environments: { _ _

Fe=Te

Closures: (N/e) = (AN)[e

Stacks: fn:foci:- i fi = faifac1ioooif1

From the SECD point of view, the results of computations are closures (N/e). From the general Ao
point of view, results are weak values, i.e., closure terms AN [s], where N is a App-term and s is a
substitution. In the more precise case of the interpretation of the SECD in the Ao,,-calculus, values
are translations of SECD closures. These Landin values or L-values are defined by the following
grammar:

L-vALUES: Vo= (AN)[e]

L-ENVIRONMENTS: e == id | V-e

Observe that a L-value (AN)[e] is a Aoy-normal form, since N is a App-term, which is irreducible
by the rules of Aay,.

The decompilation of frames and states is a bit more complicated, it is best described as the
composition of two functions. The first decompilation phase ® decompiles the closures appearing
inside environments and stacks.

B((AS,, €,,Cr) i+ (AS1,e1,Ch)) = (AS,,&,,C) 2 --- 1 (ASy, &7, Ch)
Given a state D = (AS,,e,,Cp) 1 -+ 2 (AS1,e1,C1), we write ®(D) = (5, 8,,Cp) 1 -+

(51, 51,C1), where the new S;’s are stacks of L-values and the s;’s are Ao-substitutions, that stand
for the respective translations of argument stacks AS; and environments ;.

Then, the decompilation D of a state D is computed by proving a judgment ®(D) || D, using
the following rules:

(AM, s, ()) ~U« M (Res) ((), s, JV) ~U« N [S] (Code)
(5,s,C) I M (5,s,C) My (where S # ())
(AppRight) (AppLeft)
(5,5,C;N; @)L (N [s] M) (5:My,s,C;Q) |} (My M)
(Sn, 80, Cr) d My, (My 2 Sn1,80-1,Cr1) 1121 (91,81,C1) § M (State
tate
(SnasnaCn) = (Sn—175n—17cn—1) el (‘917517C1) ‘U’ M

In the decompilation rules above, the stacks S grow right-to-left and we use shortcuts in no-
tations: the empty stack is written () (rule (Code)), a stack with a single element M is simply
written M (rule (Res)), in a stack S : My, M, is the bottom element of the stack (rule (AppLeft))
and in a stack (M; : S2), My is the topmost element of the stack (rule (State)). Finally, it is
worth noticing that a side condition S # () (i.e., S is not empty) applies to the premise of the
rule (AppLeft).
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: Tn_2 (State)
; T .
T (State)
: — (State)
(jwn : Sn—lasn—laCn) N "'::(SlyslaCl)U’D e )
— (State
(Sn, 80, Ch) it (Sn—1,80-1,Cn) 1o+ 1 (S1,81,C1) U D

Figure 2: Structure of the proof of ®(D) |} D.

The basic idea of our decompilation procedure is as follows: in a triple (5,s,C) such that
(5,s,C) | M holds, the stack S is a list of the subterms of M that have already been computed
by the machine, whereas the code segment C' represents the part of M whose computation is still
pending, the external references in C' being relative to the current substitution s. Decompilation
is by induction on the (9, s, ') triple structure. At each inductive decompilation step, some sub-
terms are combined. One of these subterms is neither fully reduced nor yet-to-be-computed: it is
being computed. As such, it is produced, by the decompilation of a sub-state of (5,s,C') (cf. the
rules (AppLeft) and (AppRight)).

The simplest cases are when everything has been computed (rule (Res)) and when computations
have not even started (rule (Code)). Things get more interesting in the intermediate situation where
a computation is being performed. Consider a state D = (AS,e,C;@). We get &(D) = (9,s,C; Q@)
and thus D = (P, P,). If P, is not fully reduced yet, then it is the decompilation of a sub-state
of D, whereas Py is N [s] where N is an instruction (here a Apg-term) whose execution has not even
started (rule (AppRight)). If P, is a reduced term, then it stands at the bottom of the stack S : P,
(i.e., My = Py), while the term P; is the decompilation of a sub-state of D (rule (AppLeft)).
The last rule (State), which performs the decompilation of multi-frame states, is inspired by the
transition dump.

In the next section we prove that, given a state D such that D exists, then, for any state D’
that can be computed from D by the SECD machine, the Ao-term D’ also exists. At present, we
just state two simple results on judgments and proof trees:

Lemma 5 Let D be a state of the SECD machine, such that D exists. Then the following properties
hold:

1. Let (8,5,C) | M be a judgment thal appears in the proof tree of ®(D) | D. Then, all the
Ao-terms in S except, possibly, the topmost one are L-values.

2. The Ao-term D is unique.

Proof: The first proposition is easy, once one understands the structure of the proof of ®(D) | D.
Consider a state D = (AS,,€e,,Cy) it (ASp—1,€n-1,Cr_1) 11 -+ 1t (AS1,€1,C1), we get (D) =
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(Sms 80, Cr) it (Sne1y8n1,Cno1) it -+ (S1,51,C1). The proof tree of ®(D) |} D is schematized in
figure 2. In this figure, 7}, stands for a proof tree whose conclusion is (S, sn,Cy) || M,,. The only
inference rules that can appear inside 7T}, are either rules (AppRight) or rules (AppLeft). In the
first case, the stack component of the premise is the same as the stack component of the conclusion.
In the second case, the stack component of the premise is built by taking all the elements of the
stack component of the conclusion except the bottom one. Thus, any judgment (S5,s,C) | M
occurring inside T}, is such that S is a prefix of S,,. Therefore, since 5, is AS,, all the Ao-terms in
S are L-values. Moreover, given an integer i € [1...n — 1], the proof tree T; admits the judgment
(Mt :5;,8,Ci) | M; as its conclusion. Thus, given any judgment (9,s,C') |} M occurring inside
T;, the stack S is a prefix of M;y; : S;, where S; is AS;. Therefore, all the Ao-terms in S except,
possibly, the first one are L-values. The Ao-term M;; is a decompilation result. In general, this is
not a L-value.

The second proposition follows from a more general result: given any triple (5, s, C'), there exists
at most one proof tree of a judgment (5,s,C) | M. Ambiguity may only occur when C' = C’; @
and we just need to check that the decompilation rules (AppLeft) and (AppRight) may not apply
simultaneously. Otherwise, there would exist a state (5,s,C"; @) = (5" : M), s,C"; N"; @), such
that the following two proof nodes hold:

(5',s,C"; N"Y || M (5" My, s,C"Y | M"

! ! n n ! ! (AppLeft) ! ! n " n " (Appnght)
(8" M;,s,C"; N"; @) || (M My) (8" M;,s,C"; N"; @) L (N"[s] M")

However, the judgment (5',s,C"; N") |l M{ can only be proved by the axiom (Code), because N"
is a App-term and that no other rule applies in this case. Thus, we get S’ = (), which is impossible
because of the side condition of (AppLeft) 5" # (). O

In the following, we assume that all the proof trees we consider are proofs of judgments ®(D) |} D.
Thus they have the structure pictured in figure 2, where all the stacks in T, hold L-values and all
the elements except, possibly, the topmost in the stacksin 1),_1, ..., T1 are L-values.

4.3 Correctness

In this section, we show the correctness of the SECD machine by establishing a bisimulation between
this machine and a strategy in the Ao-calculus. Thus, we review the conditions of section 2.3, one
after the other:

Lemma 6 (Initial condition) Let N be a App-term. Then, we have L(N) = N [id]

Proof: Quite straightforward, since we have L(M) = ((),(), N) and thus we get ((),(), N)J N [id]
by the decompilation rule (Code). O

Our idea is first to guess the strategy of the SECD machine (the L-strategy), and then to prove
formally that the SECD implements the L-strategy.

We guess the axioms of the L-strategy, by considering some simple SECD transitions D — D',
First consider the state D = ((),e,(N1 Nz)), by the decompilation rule (Code), we get D =
(N1 Ny)[e]. Moreover, we have the SECD transition ((),e, (N1 N3)) 222 ((), e, No; Ni; @). The
Ao-term D’ = (N [€] Ny [€]) is computed by the following proof tree:

((),€ N2) |} Ny [€] (Code)
(();& N2; N1; @) J (N1 [e] No[e])

(AppRight)
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Hence we get the strategy axiom
(N1 No)[s] — (N [s] N2[s]) (avp)

Similarly, from the transitions var and @, we guess the following two extra axioms:

L

n [le My M, - 5] — M, (Var®)

M is a L-value

(Beta)
(AN)[s] M) == N [M -]

Notice that the remaining two transitions lam and dump do not suggest any new axiom, since, for
these transitions D — D', we get D = D’. Therefore these two transitions are silent transitions.

Our presentation of the axiom (Beta) highlights an important point: at the time of function
application, the argument M is not any Ao-term, it is a L-value.

Then, we guess the inference rules of the L-strategy. We consider a state D = (AS,e,C; N; @)
such that D — D' with D' = (AS’,e,C"; N; @) (i.e, the code C'is not empty and we do not consider
the case of a transition @). Thus we get:

(AS,e,C) I M (AS" e, C"y | M’

— (AppRight) and —
(AS,e,C;N; @)l (N[e] M) (AS",e,C'; N;@) | (N [e] M")

(AppRight)

Assume that the reduction M —— M’ holds. We get a first context rule:

L
My — jMé

y (AppRight)
(My My) -2 (M, Ms)

By considering the case where both Ao-terms D and D’ are computed using the decompilation
rule (AppLeft), we get a second context rule:

M, N M] and M, is a L-value

(AppLeft)
(My My) — (M M)

Here again, we enforce the condition that the argument M, is a L-value, in order to ensure that
the L-strategy is deterministic.

The rule (State) plugs the term A, into the hole X of the context (X : 5,_1,5,-1,Cp-1) =:
-+t (81,81,C1). The following lemma shows that this combination of subterm and context is
compatible with the L-strategy.

Lemma 7 Consider any provable judgment (P :S,s,C'):: D || M and any Ao-term P', such that
P p. Then, there exists a Ao-term M' such that the judgment (P':S,s,C):: D | M’ holds

and we have M —— M.

Proof: Simple induction on the proof of (P :5,s,C) D | M.

1. The base case of rule (Res) is obvious.

13



2. In the case of the rule (AppRight), we have:
(P:5,s,C) M
(P:S5,s,C;N;Q) | (N[s] M)

By induction hypothesis and by the decompilation rule (AppRight), there exists M’, such that
we get:

(P':8,s,C) ) M’
(P':8,s,C;N;@) |l (N[s] M)

Hence the result, by the rule (AppRight) of the L-strategy.

3. In the case of the decompilation rule (AppLeft), by a similar argument, we get:
(P:5,s,C) M 4 (P':8,s,C) | M
an
(P:5S:M;,s,C;Q)| (M M;) (P:S:My,s,C;Q) | (M] M)

Observe that My cannot be the topmost element of the stack P : S : My. Therefore, M, is a
L-value (cf. lemma 5-1). Hence the result, by the rule (AppLeft) of the L-strategy.

4. In the case of the rule (State), assuming D = (5',s',C’) :: D', we have:
(P:S,s,C)y My (My:5.8,C"YuD | M
(P:5,s,C)=D M

By induction hypothesis, there exists My, such that (P’ :5,s,C) | M{ holds and M; N M.
Therefore, still by induction hypothesis, there exists M’, such that (M] : 5, ¢',C"):: D" | M’

holds and M —— M’. Hence the result, since (P': 5,s,C):: D | M’ holds, by the decompilation
rule (State). ]

Then, our idea is to interpret the instruction to be executed next as a Ao-term to be plugged
in the same context (X : 5,s,C) :: D that holds the terms P and P’ in the previous lemma. In a
first case, the instruction itself is a Ao-term or, more precisely, a Apg-term.

Lemma 8 Let N be any Apgp-term, such that the judgment (S,s, N;C):: D || M holds. Then the
Judgment (N [s]: S,s,C) = D | M holds.

Proof: By induction on states. There are two base cases. First assume that C' is empty. We get:

((),s,N) I N [s] (Code) (N [s],s,0)) 4 N [s] (Res)
The second base case is when C' = @, we get:
(P787())‘U’P (AppRight) (*N [8]757())‘U’*N [8] (AppLeft)
(Ps,N;@)J(N[s] P) (N[s]: P,s,@) 4 (N[s] P)

Then, we consider the inductive cases, first assuming that D is empty. That is, we consider a
judgment (5,s, N;C’; @) || M, where C’ is not empty. We have two subcases:

14



o If we have the proof node:
(8,8, N;C") 1 Q
(S,s,N;C"; P;@) |} (P[s] Q)

(AppRight)

Then, by induction hypothesis, the judgment (N [s] : §,s,C") |} @ holds. Therefore, so does the
judgment (N [s]: 5,s,C"; P;@) || (P[s] @), by the inference rule (AppRight).

o The other case, where the judgments are proved by the rule (AppLeft), is similar.
Finally consider the case where D = (5',s',C”) :: D" is not empty. We have:
(S,s, N;C)} P (P:5,8,C"YuD | M
(S,8,N;C)::(8,8,C"Y: D" | M
By a simple inductive argument, the judgment (N [s] : 5,s,C) |} P hold and we get:
(N[s]:8,s,C) P (P:5,8,C"yuD | M
(N[s]:9,s,C)u:(5,s,CYuD | M

(State)

(State)

O

When the next instruction to be executed is @, it must be given two arguments to be interpreted
as an application node in A,.

Lemma 9 If (M;: M;:5,5,@;C):: DI M holds, then (My; My):5,s,C):: D | M also holds.
Proof: Easy induction on proof trees. a

Now we show that the SECD machine indeed follows the L-strategy.

Lemma 10 Let D and D' be two states of the SECD machine such that D exists and D — D' by
one transition step. Then, D' exists and we have two possibilities:

1. D' =D, if — is a transition dump or lam.

2. D= D', otherwise.

Proof: First consider the transition dump, which is special. We have D = (f,e,()) :: (45", ¢, C") =
Do and D' = (f : AS",€',C") :: Dy. Computing D, we have:
(e T (J:AS,€,C") = @(Do) U M
(f,8,0) : (AS",e',C") :: ®(Do) 4 M

Observe that the right premise of the rule above is ®(D’) |l M. In other words, we get D' = D.

All other transitions correspond to the execution of an instruction. First, consider the case of
the instruction @. Thus, we state D = ((No/eg) : f : AS,e,@;C') :: Dy and D' = ((), f-eg, No) ::
(AS,e,C) :: Dg. On the one hand, by lemma 9, we get (((ANo)[eo] f): AS,e,C) :: (Do) | D.
On the other hand, by the decompilation rule (State), we get (No[f €] : AS,e,C):: ®(Dg) | D'.
Moreover, by the axiom (Beta) and since f is a L-value, we get:

(State)

(((ANo) [ea] T) — No|[f -]

Hence the result, by lemma 7.
Then, in the three remaining cases, we have D = (AS,e, N;C):: Dy, where N is a App-term.
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1. If N is a variable n (i.e., D = (AS,e,n;C):: Dy where e = fy--- f, - €, ), then, on the one hand,
by lemma 8, we get:

(nfe]: AS,e,C) = ®(Do) | D

On the other hand, we get:
(fn: AS,€,C):: ®(Dg) |} D’

Hence the result, by the strategy axiom (Var™) and lemma 7.

2. If N is an abstraction ANg, then, on the one hand, by lemma 8, we get:

(ANo)[e] : A8,%,C) =: ®(Do) I D

Thus, since D' = ((Ng/e) : AS,e,C):: Dy and (No/e) = (ANo) [€], we get D = D'.
3. If N is an application (N; N3), then, by lemma 8, we get:
((Ny Ny)[e]: AS,e,C) = ®(Do) || D

Here, we have D' = (AS, e, No; N1;@; C') :: Dg. Thus, by two applications of lemma 8, first to
N3 and then to Ny, followed by one application of lemma 9, we get:

((N1[e] No[e]) : AS,e,C) = @(Dg) | D’
Hence, the result, by the strategy axiom (App) and by lemma 7. a

Now, we prove the final condition 3.

Lemma 11 Let N be Apg-term, and D be a terminal state, with L(N) —* D. Then, D is a
L-normal form.
Proof: Let us state D = (AS,,e,,Cy) -+ 2 (ASy, ey, Cy). First observe that, by lemma 10, D
exists. Then, by studying the SECD transitions, we distinguish three possibilities for D to be a
terminal state:

1. n = 1 and Cy = (), then, the stack AS; holds exactly one closure f (Otherwise it cannot be
decompiled) and we get D = (f,(),()) = f, which is a L-value and a L-normal form.

2. C, = @;C! and the stack AS,, has zero or one element. In fact, this case cannot occur here, since
®(D) || M holds. The proof of this judgment must include a proof (AS,,&,,@;C.) || M,, which
in turn must include a proof of (5,€,, @) |} P, where S is a stack with less elements than AS,,.
This latter judgment can be proved only by the rule (AppLeft). Thus, the stack S has at least
two elements and so does the stack AY,,.

3. C,, =m;C! and e, = f1--- fr-id, with & < m. Then, D is a L-failure term W, where L-failure
terms are defined as follows:
W o= m[fi - f-id] with & < m
| MW |WFf

where M stands for a Ao-term and f for a L-value. The subterm m[f; --- f; -id] is a L-normal
form which is not a L-value. It stands in L-redex position inside D. Thus, D is a L-normal form
which is not a value. Moreover, the oq-normal form o4(D) is not a closed Apg-term, since it
admits at least one free variable m—k = oq(m[f; - -+ fi -id]). Therefore, by lemma 1, this case

may only occur when the initial program is not a closed App-term. a
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Lemma 12 The SECD cannot perform infinitely many consecutive silent transilions.

Proof: Let § be a measure on states, code segments and App-terms, defined as follows:

S((ASp, 50y Co) it -+ 52 (AS1,81,m)) = n+8(Ci)+---8(Cy)
5(@;C) = S(C)
S(N;C) = S(N)+S8(C)
S(() = 0
S(Ny N3) = 1+ 8(Ny) +S(Ny)
S(AN) =1
Sn) = 1

Now, given a transition D — D’ that is not app, we have §(D) > S(D’). Thus, any computation
of the SECD that does not include the transition app must be finite. Since the transition app
corresponds to the rewriting axiom (Beta), it is not silent. Hence the result. O

Finally, we conclude:
Theorem 2 The SECD machine implements the L-strategy.

S

5 The Functional Abstract Machine

5.1 Basics

The Functional Abstract Machine (FAM) was designed by L. Cardelli [6] as a “SECD machine
optimized to allow very fast function application and the use of true stack”.
The FAM has four instructions:

INSTRUCTION ::= Local
Global(n) (n>1)

|
| Apply
|  Fun(n,cobpe) (n>0)

The frames of the FAM consist in an argument stack, an environment and a code.

STACK == () | CLOSURE :STACK

FRAME = (STACK,ENVIRONMENT,CODE)

The transitions rules of the FAM are defined as follows:

(AS : f,e,Local; C) :: D local

)
(AS, fln,GlobaI() )
((Co/e) 1 g+ AS e, Apply; C) =:
C)
)

(f:AS: f.e,C)
global (1. A8, i, C) i D
AP (4 6o, Co) it (AS, e, C)
closure ((Co/fin) : AS,e,C)::
(

fiAS e, C)

(fnl AS, e, Fun(n,Cy);
(f:5,50)(AS,e,C)

@6@5

return
—
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Specifically, observe how the instructig} Local selects the bottom element f of the argument stack
(AS: f) and how the n arguments f, that the instruction Fun(n,Co) pops are taken in reverse
order to build a new environment f; ,. By contrast with the Krivine machine, the FAM builds
a full environment when it creates a closure. One says that the FAM has “copied environments”
(whereas the Krivine machine has “shared environments”).

In [6], L. Cardelli only gives a few “compilation hints” for the FAM. One of these hints consists in
compiling a function AN as a closure (C'/e), where the environment e has been optimized to retain
only the global variables of AN. This idea is described as a simple transformation in Ae. For instance
the A-abstraction N = A(1 (5 7)) is transformed into the Ao-closure M = (A(1 (2 3)))[4-6-id].
That is, the free variables 5 and 7 are “abstracted out” or “lifted” and regrouped in the closure
environment 4-6-id, whereas, in the body of M, the lifted variables 5 and 7 are replaced by 2
and 3 respectively, the new indices reflecting the final positions of lifted variables in the closure
environment. As a first intuition of the correctness of such a transformation, observe that the
terms N [id] and M are the same function. For any argument P, we get:

(Beta)

(N[id] P) —" (1 (57))[P-id] Z%* P (4 6)
M P (1 (23))[P-4-6-id] 2=* P (4 6)
We now describe our general free variable abstraction procedure. The set Fo(N) = {n1,...,n,}
of the free variables in a Apg-term N can be arbitrarily ordered as a list 7y, = ny :...: n,y,. This

list is then given as a first argument to our abstraction scheme C, which, given any Apg-term N,
outputs a Ao-term C(Fo(N),N).

C(m,ni) = i
C(nim, (N1 No)) = (C(1,m, N1) C(1 5 N2))
C(TIm, AN) = (AC(L:pi+1:patl - ppt1l,N))[C(R1m,p1-P2- - P -id)]
R o where py 1 py - pr = Fo(AN)
C(mvN'S) = C('mvjv)'c(mvs)

C(nym,id) = 1™

To get the intuition behind the scheme C, think that the output Ao-term is to be executed at run-
time in an environment s = My ---M; --- M, -id, where M; is the run-time value of the variable n;
of the input term.

The translation (AM) [t] of a A-abstraction AN is also to be interpreted in this environment s. At
run-time the current substitution s will be applied to ¢, in order to yield a new current substitution
that only retains the values of the free variables of AN. Thus, ¢ is the list of the positions in s of
these free variables. The substitution ¢ ends with the new special substitution 1™, which ultimately
discards s. This discarding operator is an ordinary Ac-substitution:

19=id, 1t=1, 1™ =101""! when m > 1
The action of 1™ is then expressed by the following o,,-derivation:

1™ o (My-My - M, -id) (AS_SEI;V)

T o (Tm—l ¢) (]Wl . jMQ e M, ld)) T

1o (M, -id) MR g
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The correctness of the procedure C with respect to the substitution rules of the full (strong)
og-calculus can be stated quite simply. We first prove two technical lemmas on free variables and
substitutions.

Lemma 13 For any App-term N and any integer d, we have the following implication:
ne€Fy(N) = mn=1lorn—1¢€Fz1(N)
Proof: By induction on NV:

o If N =n, then we have three subcases. If n < d, then Fy(N) = Fyy1(N)=0. If n = d + 1 then
Fa(N)=1and Fyp1(N)=0. If n > d + 1, then F4(N) = {n — d} and Fy41(N)={n —d - 1}.

o If N =(N; Nj), then we get the result by direct induction.

o If N = ANy, then, by definition, we get F4(N) = Fyi1(No) and Fyp1(N) = Fypa(Nog). Hence the
result, since we have n € F311(Ng) = mn=1orn—1¢€ Fiy2(Ng) by induction hypothesis.
O

Lemma 14 Let N be a Apgterm. The following oy equality holds, for any substitution s and
integer d:

N[ ()] =y N[1-2-+d(s0 %)

d limes

(Where 2 (s) stands for (- 1 (s)--+))

Proof: A simple proof by induction on N is possible. In fact, as exposed in the sections 3.2 and 4.1
of [10], ¢ (s) and 1-2---d-(s o 1) perform the same replacements on terms. Operationally, both
substitutions behave as s after it went through d nested levels of A’s. a

Proposition 1 (Correctness of compilation) The C compilation scheme never fails and is cor-
rect. More precisely, given a Apg-term N, let ny , such that Fo(N) C 0y ,,,. Then C(nq,, ,N) is a
Ao-term M, such that M [nq---ng-id] and N are oy-equivalent.

Proof: We prove the following proposition: for any App-term N and any vector of indices ny ,,,
such that Fo(N) C nq,,, the Ao-term M = C(nq,, , N) exists. Moreover, given any substitution s,

we have the following conversion:
Mng - ny-s] A Y
The proof is by induction on N. In the proof, we state {(71,,,,5) =nq---ng-s.

o If N is a variable n, then, by hypothesis, n is one of the n; and we have C(nq,,,N) = i.
Furthermore, by the o,,-rules (RVar) and (FVar), we get

i[t(n1m,s)] Tw* g

o If N = (N; N;), then, by definition of F, we have Fy(N) = Fo(N1) U Fo(Nz), and thus
Fo(N1) C iy, and Fo(Na) C #ig,,. Thus, we can apply the induction hypothesis and both
My = C(fgm ,N1) and My = C(n1,,, N2) exist. So does M = C(n1,,,N) = (My Ms). Further-
more, we have

M [{(Rg ., 8)] —%%

by the o,-rule (App) and by induction hypothesis.
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o If N = ANy, then let m be Fo(N), the set of the free variables of N, expressed as De Bruijn
indices with respect to the scope of IV itself.

By definition of F, we have py = F1(Ng) and thus, by lemma 13, we have Fo(Ng) C 1: py+1:
-+t pg+1. Therefore, the Ao-term My = C(1:p1+1:---: pe+1, Ny) exists, by induction hy-
pothesis. Now, all the variables in the substitution v = pq ---px -id belong to Fo(N ). Thus they
can be compiled in the compile-time environment ny, 2 F5(N) and so does the substitution u.
Let ug be C(fiym, ,u). Finally, the Ao-term M = (ANg) [ug] exists.

Furthermore, since we have C(nq ,, ,pi) [L{71,m, 5)] 0% b3 (by induction) and 1™ o {(ny ,,,s) = s

(by o,-reduction), we get:
e I *
Ug © t(an,S) — P1-""Pk-S

Thus, we get the following oy-conversions:

M [, 9)] S22 (AMo) [ug 0 (i, )] % (AMo) [p1 -+ px - 5]

Now, by the strong substitution rule (Lambda), we get

Mo [t(im, )] —2* A(Mo [ (p1 -+ Pk - 8)])

Let us consider N(, the oy-normal form of My, which is a App-term ([10][Lemma 4.8]). By
definition of reduction, we get:

Mo 4771, )] =5 A(NG[ 41 (p1 -+ Pk - 8)])
Our lemma 14 applies here and we get:
Mo [, 9)] =oq AN [L-((p1 - -Px-5) 0 )]}
Hence, by the oy-rules (MapEnv) and (VarShiftl), on the one hand we finally get:
Mo [t(R1m: 8)] =oq MNG[1-P1+1- - petl-(so 1)) (1)
On the other hand, by application of the induction hypothesis to Ny we get:
Mo [1-p1+1---prti-(so])] -5 N
Therefore, by the Church-Rosser property and since Ny is a o4 normal form, we get:
N§[1-pat1--prti-(s o )] =5 Ny (2)
Finally, still by the Church-Rosser property, from (1) and (2) above, we conclude:
M (A1, 8)] —%* ANy = N
O

It is important to notice that the Ao-terms N and M [id] only differ by substitution steps. As a
consequence, M [id] and N are more than just -equivalent A-terms, they are the same A-term.

Corollary 15 Let N be a closed App-term (i.e., a program) and M be its compilation C(},N).
The initial condition M [id] N holds.

:O.ﬂ
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The output M of C is not just any Ao-term. First, all substitutions in M are of the general form
s= My -My---M, -1%. The integer m is the length of substitution s and we write m = length(s).
Second, M = C(n1 %, N) itself can be characterized by a predicate Py that is defined as follows:

Pr(n)

Pr(My My)
Pe((AM)[s])
Pr(M

Pp(M-s
Pr(1"

)
)
)
Pr(s)

(n< k)
/Pk(ﬂfl) A 'Pk(ﬂfg)
Pr.41(M) A Pr(s), where [, = length(s)

false otherwise

Pr(M) A Pi(s)
(n=H)

false otherwise

Intuitively, Pr(M) holds, when M is to be evaluated with respect to an environment of size k. If
N is a closed Apg-term, then we get Po(C(0,N)).

Let M be a Ao-term that is a result of the first compilation procedure C. Giving M as input
to the second compilation procedure | ] generates FAM code.

[(My My)]

[1] = Local

[n+1] = Global(n)

[ M ]; [ Mi]; Apply

[T(AMy) [My---M,-1™]] = [Mi];...;[ Mn];Fun(n, [ Mo])

Finally, a closed Apg-term N is compiled first to the term M = C((), N) and then to the code
C =[M]. Execution starts from the initial state L(M) = ((),(),C).

5.2 The decompilation

First, we inverse the compilation procedure [ ]. We do so by proving judgments C' || M, which
read “the code segment C' stands for the Ao-term M in an environment of size m”.

Local U«m 1 (Local)

Global(7) ™ i+1 (Global)

Co V™ My, Cy ™ My

(Apply)

Cy; Cr; Apply L™ (My M)

Ci 4™ My Cn V" M;, Co U”H Mo
(Fun(n))
Cr;- -+ CpiFun(n, Co) 4™ (AMo) [My--- M, - 1]
The decompilation of FAM closures, environments and stacks naturally follows from code de-
compilation.
Closures: (Clfi-farfu) =AM [fi- fo- - fn], where C |1 M

Environments: f 1 foe

Jo=T- f2 fn-id

Stacks: Soios =
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Closures are the values of the FAM: they are expected as final results. Terms produced by de-
compiling closures are the counterparts of these results in Aog. We call them C-values, they can be
defined structurally:

C-VALUES: Vv (AM)[e] where m = length(e) and Pp,41(M)
C-ENVIRONMENTS: e == id | V-e

Lemma 16 Let M be a Ao-term such that P,,(M) holds. Then we have [ M ] |™ M.

Proof: Obvious induction on M. O

The decompilation of machine states is best understood as a two-stage process. In a first step,
we translate the frames (AS,e,C) into triples (5,s,C'). Roughly, the stack S is the translation
of the argument stack AS and the substitution s is the translation of the environment e. The
translation of the bottom element of AS is incorporated either in S or in s. In the latter case, this
bottom element is the argument of a pending function call. The following procedure ® operates
this first transformation:

O((AS, & fr,en,Cn) i i (ASy : fa,e2,C3) i1 (AS1,€1,Ch))
[
(Asnvf_naa Cn) Heeln (A—S%an C?) = (A—Shaa Cl)

In a second step, the value of D is computed by proving a judgment ®(D) || D, with the
following axioms and inference rules:

(M.s.0)4 4 S
M, s, M (Res) (Code)
((),s,C) I M[s]
(Sa S 02) ‘U’ AJQ Cl ‘U’m All (‘97 5 Cl) ‘U’ */wl
(AppRight) (AppLeft)
(S, s, Cq; Cq; Apply) |} (M [s] My) (S:My, s, C1; Apply) I (My My)
Sy, Ci) b My Cipa " Miyy -+ Co V™ M, Co V"' My
(Fun(n,i))
(S:M;_q1:--:Mq, s, Ci; Cigpq;- -3 Cps Fun(n, Cp)) || 7
(AMo) [My---M; (Mig1--- M, -1™) 0 s)]
(Sn78n7cn) ‘U’ Aln (*(Wn : Sn—173n—17cn—1) Lol (51751701) ‘U’ M (s |
tate

(Sna Sn;, Cn) = (Sn—h Sp—1, Cn—l) Lol (Sla 51, Cl) ‘U’ M
(Where S is a non-empty stack and m is the length of the substitution s)

Our decompilation procedure is a partial function from syntactic FAM states to Ao-terms. The
whole purpose of this section is to show that decompilation is total on accessible FAM states.

At first, our state decompilation procedure may seem a bit complicated. However, it is a simple
extension of the code decompilation procedure. In a triple (5,s,C), like in the case of the SECD,
the stack S is the list of the subterms that have already been computed by the machine, whereas
the code segment C' encodes the subterms that are still to be computed. Decompilation rules
combine these two sets of subterms. The rules (Res), (Code), (AppLeft), (AppRight) and (State)
are basically the same as the homonymous decompilation rules of the SECD.
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The new rule (Fun(n,?)) performs the decompilation of a triple (.9, s, C'; Fun(n, Cy)). This oper-
ation resembles the decompilation of a triple (.9, s, C’; Apply). More specifically, the Ao-substitution
My M;-(Miy1---M,-1™) o s) stands for a closure environment that is not fully computed yet,
where the term M; is the subterm being currently computed, while the subterms M;y,..., M;_; are
fully reduced and the computation of the subterms M;yq,..., M, is yet to be started.

We now prove that the decompilation rules effectively define a deterministic procedure for
decompiling FAM states. First, we prove a strong non-ambiguity property for code segments.

Lemma 17 A decompilable code is any code segment C', such that there exists an integer m and
a Ao-term M, with C ™ M. A strict suffix is any code segment C, such that there exisls a
non-empty code segment C' and that the concatenation C';C is a decompilable code.

1. In a proof tree, all the code segments that appear in judgments (S5,s,C) | M, where S is a
non-empty stack, are strict suffizes.

2. Strict suffizes cannot be decompiled.

Proof: The first proposition is proved by induction on proof trees, starting from the fact that
the empty code is a strict suffix. The second proposition is proved by induction on the length of
decompilable codes. a

Corollary 18 Code decompilation is non-ambiguous.

Proof: Let m be an integer and C' be a code. We show by induction on C' that there does not
exist two different terms M and M’ such that C' ™ M and C' ||™ M’ hold.

e The base case C' = Local or C' = Global(i 4 1) is straightforward.

e The code segment C' ends by the instruction Apply. Assume there were two different decomposi-
tions C' = Cq; Cy; Apply and C' = C4; C1; Apply. Then, for instance, C] would be a decompilable
suffix of C.

o A similar reasoning applies when C' ends by the instruction Fun(n, Cy). a
Lemma 19 The decompilation of machines states is non-ambiguous.

Proof: The proof is by induction on state size. Consider any state D, if D is made of two or
more frames, the deterministic decompilation rule (State) applies. Now, suppose that D is a single
frame, i.e., (D) = (9,s,C).

If the code C'is empty or ends by a Local or Global(7) instruction, only one non-recursive rule
may apply and decompilation is over.

Otherwise, we have two subcases, either C' ends by an Apply or by a Fun(n,Cy) instruction.
As far as ambiguity is concerned, these subcases are the same. Thus, for instance, we assume
®(D) = (9,s,C';Fun(n,Cy)). If the stack S is empty, then only the rule (Code) may apply
unambiguously (cf. corollary 18). If 5 contains at least one element, then we must apply the
decompilation rule (Fun(n,i)). By the previous lemma 17-2, there is at most one way to cut C’
into Cy; Cit1; - - -3 Cy, where C; is a strict suffix and Cyq, ..., C,, are decompilable code segments.
In other words, the rule (Fun(n,?)) is applied unambiguously. O

Then, as we did in the case of the SECD machine and by the same easy argument, we see that
all proof trees produced by decompiling real FAM states only contain judgments (5,s,C) | M,
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such that all the Ao-terms in S are C-values, except, possibly, the topmost one. Furthermore, let
D = (AS,e,Cyp) :: Dy be a state and let be a judgment (5,s,C') |} M that occurs inside the proof
tree of (AS,e,Co) | P. Then all the Ao-terms in S are C-values (see figure 2). From now on, we
only consider proof trees that meet this constraint.

5.3 Strategy and correctness

In this section we show that our decompilation scheme meets the conditions of section 2.3.

Lemma 20 (Initial state condition) Let N be a closed Apg-term. Let M be C(O,N), Then, we
have the equality,

L(M) = M [id]
Proof: By lemma 16, we have [ M ] {}° M. Hence the result, by the decompilation rule (Code).
[M]y™ M
(0),id, [ M]) 4 M [id]

(Code)

O

The rest of this section is devoted to the C-strategy that the FAM implements. By contrast
with the previous section on the L-strategy and the SECD, we introduce the C-strategy gradually,
in order to demonstrate how strategy rules are inferred from the correctness proof of the FAM.
However, the pattern of the proof for the FAM and the C-strategy is the same as the one for the
SECD and the L-strategy. Only our point of view changes, since we now infer the strategy instead
of just checking it.

First, we examine proofs of judgments (P :5,s,C'):: D | M. Such judgments are introduced
by the rule (State). Doing so, we infer some structural rule of the C-strategy from the structure of
these proof trees. (The similar lemma for the SECD is lemma 7).

Lemma 21 Consider any two Ao-terms P and P'. If the judgment (P :5S,s,C):: D || M holds
for some Ao-term M, then there exists a Ao-term M', such that judgment (P':S,s,C):: D | M’
holds. Furthermore, given any relation ~, such that P ~ P', we have M ~ M', provided ~ obeys
the following structural rules:

My ~ M, My is a C-value My ~ Mj
(My M3) ~ (My M)) (My My) ~ (M{ M,)
My is a C-value -+ M;_y is a C-value M; ~ M

(AMo) [My «+ Mi_1 - M; - s] ~ (AMg) [My - M;_y - M/ - s]

Proof: Simple induction over the proof of (P : S,s,C):: D || M. First consider the case when D
is empty:

1. The base case of rule (Res) is obvious.
2. Consider the rule (AppRight). We have

(P : S,S,Cg) ~U, JLIQ Cl U,m All
(P:8,s,Cq;Cr;Apply) |} (My My)

(AppRight)
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By induction hypothesis, there exists M} such that (P’ :5,s,Cy) |} Mj. Therefore, we get:
(P/ZS,S,CQ)U,JWQ Cl ~U,m 1\/[1
(P85, s,Cy; Cy; Apply) | (My M)

(AppRight)

3. In the case of the rule (AppLeft), we have

(P H S,S,Cl) ~U, 1\41
(P:S: My, s,Cq;Apply) | (M1 M;)

(AppLeft)

Thus, by direct induction, there exists M{ such that:

(P':5,s,C1) | My
(P': 5 : My,s,Cy;Apply) | (M; M)

(AppLeft)
Furthermore, observe that M, cannot be the topmost element of the stack P : 5 : My. Thus, M,
is a C-value.

4. In the case of the rule (Fun(n,?)), we have:

(P:8,s,C) 4 My Cigq V™ Mipq -+ Co V™ M, Col"t" My
(P:S:Miq:---:My,s,Ci;---;Cps Fun(n, Co)) I (AMg) [My - M; -(Mig1--- My, -1™) 0 )]

By induction there exists M/, such that:

(P':8,5,C) M Ciyr V™ Myyy -+ Co V™ M, Col™" M,
(P':S:M;_y:--:My,8,Cs-;Cpi Fun(n,Co)) 4 (AMo) [My -+ M} -(Migq1--- M, -1™) 0 s)]

Furthermore, the Ao-terms My, ..., M;_, are C-values.

Finally, let us assume D = (5, s,,,Cy,) it D,,—1. We have the following proof tree:
(P:S,s,C)y M, (M,:S5,,8,,Cp):Dp1 4 M
(P:5,s,C)u=DI M

(State)

By induction there exists M/, such that (P’ :5,s,C) | M} holds, with M,, ~ M) . Therefore, by a
second application of the induction hypothesis, there exists M’, with (M : 5., 8,,Cp) :: Doy 4 M’
and M ~ M'. Hence we get:

(P':8,s,C) M, (M), :5,,8,,Cp) s Dy {4 M’
(P':5,s,C)D | M

(State)

Obviously, the C-strategy should be a deterministic subrelation of ~.

Then, as we did for the SECD (cf. lemma 8), our idea is to interpret the instruction to be
executed next as a Ao-term to be plugged in a context. However, we run across a first difficulty
here: unlike SECD instructions, FAM instructions are not Apg-terms.
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Lemma 22 Let D = (AS,e,I;C) :: Dy be a FAM state such that D exists and the execution of
I is enabled. Then, ®(D) can be written (St : S,s,1;C) :: ®(Dy) and there exists a Ao-term Mj
such that (S1,s,1) | My.

Proof: More precisely let us state D = (ASy, e, [;Cy) -+ 11 (AS1,e1,C1). By hypothesis, ®(D)
exists and we have ®(D) = (5, s,, [;Cy) o -+ 2 (S1,51,C1). Then, consider, for instance, the
case of the instruction Fun(ng,Cg). Since D can be decompiled, the proof tree T), exists (i.e., the
proof of (S, s,,I;Cy) | M,, see figure 2). There is no other choice for T}, than to terminate by
the following proof:

(Jos 50 () U Jrg (Res)  Co 4"°F! Mo
(m s ﬁv Sns Fun(n07 CO)) Y (’\ZVIO) [ﬁ ’ f_n(Tm ° Sn)]
Let us state S; = f,, :--+: fi and My = (AMo) [fi -+ fu -(1™ 0 5,,)]. By construction of proofs, Sy
is a prefix of 5, . In other words, we get 5, = 57 : 5.

The remaining three instructions are treated similarly. Results are summarized hereafter (we
state s = s, and m = length(s)):

(Fun(no,no))

1 St My
Local ) 1[s]
Global(%) 0 i+1s]
Apply fiih (fi [2)
Fun(n, Cy) E: et fy (AMy) [ﬁm(Tm 0 s)]

O

From the proof of the lemma above we easily infer the axioms of the C-strategy. To do so, we
consider states Dj = (AS, e, I), The execution of I yields a new state D, a new Ao-term D and

. = C —f
an axiom Dy — Dj.

(AMp) [s] is a C-value M is a C-value

. n[Mi-M, s| — M,
(AMo) [s] M) —— Mo [M - s]

My is a C-value ... M, is a C-value

(AMo) [My -+ M, (1™ o (Py -+ Py, -id))] — (AMo) [My - - -+ M,, -id]

Notice that the transition return is the only silent transition.

Designing an equivalent to lemma 8 for the FAM rises a second and more serious difficulty. The
“plugging” of a term X in a context (X : 5,s,C) :: D sometimes initiates a few substitution steps.
We encode these steps using a new relation >, which is a deterministic subrelation of ~.

Lemma 23 Consider an instruction I. Further assume that the judgments (St,s,I) | M and
(S7:8,s,I;C):: D M hold, where the Ao-terms in Sy and S are C-values. Then, there exists a
Ao-term M', such that (My:S,s,C):: D | M' holds. Furthermore, we have M >> M', where >>
1s a deterministic relation between Ao-lerms defined in figure 3.
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My is a C-value M, is a C-value

(Afl LMQ) >> (le AJQ)

n[s]oens]

M is a C-value ... M, is a C-value

(AMo) [My -+ M, -(1™ o 8)] o> (AMo) [My -+ - My, -(1™ o )]

M, [s] v> M, My o> M) M; is a C-value My o> M
(All JLJQ) [S] >> (le [8] 1\/15) (All JWQ) >> (le Afé) (All JLJQ) >b> (Af{ JWQ)

M [s] b> M
((AMo) [M7 - t]) [s] o> (AMy) [M] (L o s)]

My is a C-value -+ M;_qis a C-value M; > M/

(AMo) [My -+ M;_1 - M; - s] oo (AMg) [My - Mi_q - M - s]

M is a C-value --- M;is a C-value M;yq [s] o> M
(AMo) [My -+ M; -((Migq-1) o s)] oo (AMg) [My -+~ M;- M{ (1 0 5)]

Figure 3: Relation o>

Proof: We first consider the cases where D is empty.

1. If the code C' is empty, then we must have S = () and thus M = M;. Hence, we get M’ = M by
the decompilation rule (Res).

(lwfv 5, ()) I My (Res)
By the previous lemma 22, we get the first three rules that define the relation o.

2. If (S7:59,s,1;C) |} M is proved using the rule (Code), then both stacks S; and S are empty and
we get:

Lcym™p
((),s,1;C) 4 Ps]

Then, there are subcases, depending upon the structure of C'.

(Code)

a ' = (Cy;Cy; Apply, then we get:
()IfC' Cy:Cq; Apply, th g
I;Cy V™ My Cy ™ My
I;Cy; Cys Apply U™ (My My) (
((), 8,15 Co; Cy; Apply) | (M1 My) [s]

Moreover, by the decompilation rule (Code), we have:
I;C ™ My

(()7 871; CQ) U, JWQ [8]

(Apply)

Code)

(Code)
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Thus, by induction hypothesis, there exists M} such that the judgment (My, s, Cy) |} M} holds.
Furthermore, we have M, [s] >> M). Hence, we get:

(My,s,C5) b M, Cy U™ M,
(My,s,Ca; Cy; Apply) I (M [s] My)
With (M; My)[s] o> (My [s] M)).
(b) If C =1I;Cy1;Cy;- - -5 Cp; Fun(n, Cy), then we get:
LC V™ My, Col™ My, - C,l™ M, Col"™ M
I;C;Cq;- - -5 Cps Fun(n, Co) U™ (AMo) [My- My --- M, - T™
(()y8,1;C1;Cq5- -+ Cs Fun(n, Co)) I ((AMo) [My - My -+ - My, -1™]) [s]

Thus we have M = ((AMy) [My-My--- M, -1™])[s]. Then, by an argument similar to the one
used above, there exists a Ao-term M, such that M o> M’ and (M7, s,Cy;- - -;Cy; Fun(n, Co)) |
M’ hold. More precisely, we have M’ = (AMy) [M{-((M3---M,, -1™) o s)], with My [s] o> M.

(AppRight)

(Fun(n))
]

(Code)

3. If (S7:95,s,1;C) | M is proved using the rule (AppRight), then we have two subcases, depending
on the position of I with respect to the premises of the rule (AppRight)

(a) If I is the first instruction of the left premise,
(SI:S,S,I;CQ)U/JLIQ Cl U«m le
(S1:8,8,1;Cy; Cy; Apply) I (M [s] M)

Then, by induction there exists a Ao-term Mj, such that My o> M) and (M : S,s,Cq) |} Mj.
Observing that the stack My : S cannot be empty, we get:

(Al] : S,S,Cg) ~U, Alé Cl ~U,m All
(Mj: S,s,Cq; Cq; Apply) | (M; [s] M})

(AppRight)

(AppRight)

Hence the result.
(b) Otherwise, C; is empty and [ is the first instruction of the right premise. We have:
(Ma,s,() 4 My (Res) 1;C1 ™ My
(Ma, s, I;Cy; Apply) |} (M [s] M3)
Observe that, by hypothesis, My is a C-value, as we have S = My here.

Then, by the rule (Code), we have ((), s, I;C1) §§ My [s]. Thus, by induction, there exists a
Ao-term M{, such that (My,s,Cy) |} M and M; [s] >> M{. Hence the result, since, by the
decompilation rule (AppLeft) we get:

(My,s,C1) 4 M!
(My: My, s,Cy) | (M] My)
4. If (S7:95,s,1;C) | M is proved using the rule (AppLeft), that is, if we have:
(S1:85,s,1;Cy) || My
(S1:8: My, s, 1;Cy; Apply) ) (My M3)

(AppRight)

(AppLeft)

(AppLeft)

Then, by a straightforward application of the induction hypothesis, there exists Mj, such that
My o> M{ and
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(My:S,s,C1)d M
(M : S : My, s,Cy; Apply) |} (M] My)

(AppLeft)

5. If (57:9,s,1;C) | M is proved using the decompilation rule (Fun(n,:)), then we have two
subcases.

(a) If induction is straightforward, that is, if we have:
(S1: 8,8, C) UMy Copy U™ Migy - Co U™ My, Co Um0 M
(Sp:8:Mi—y:---:My,s,I;Cy;--+;Cp; Fun(n, Co)) U (AMo) [My--- M; -(Miy1--- M, -1™) 0 s)]
Where, by hypothesis, 57 : .5 is non-empty and My, ...M;_1 are C-values.
Then, there exists M/ such that M; o> M/ and

(Myp:85,5,CH)U M! Ciyr V™ Myyy -+ Co U™ M, Col™ My

(Mp:85:M;—q:---: My,s,C;;Ciqr; -+ Cp; Fun(n, Cyp)) |}
(AMo) [My---M]-(Miy1---M,-1™) 0 s)]

(b) Otherwise, C; is empty (or [ is the first instruction of C;41) and we have:
(Myys, DI M; I;Cigr V™ Myyy -+ Cpo ™ M, Co "t My
(M; 2+ My,s,1;Cip1;- -3 Cp; Fun(n, Co)) 4 (AMo) [My - Mi—q - M; -(Mig1--- M, -1™) 0 s)]
(Observe that S; and S must be empty here.)
By the decompilation rule (Code), we have ((), s, I;Ciy1) I Mi41 [s]. Therefore, by induction,

there exists M ,, such that (My,s,Ciy1) § M{,, and My [s] o> M{ . Therefore, by the
decompilation rule (Fun(i+1,n)) we get:

(Mp,8,Cix)) U M1y Cia V" Miys -+ Cp ™ M, Co "™ Mg
(Mp:M;:--: My,s,Cigr;- ;5 Cps Fun(n, Co)) 4 (AMo) [My -+ - M- My -(Miyo--- M, -1") 0 s)]

Hence the result, since M;, ... M; are C-values by hypothesis.

Now, assume that D is not empty. That is, we have:
(Sp:8,s,;CYV P (P:5.8,C"YuD' I M
(S1:8,8,1;C)::(8,8,C")y D' | M

Then, by induction, there exists P’, with P o> P’ and (M;:S5,s,C) | P'. Moreover, by our
lemma 21, there exists M', such that (P’ :5',s',C"):: D' || M'. Finally, we get:

(State)

(My:5,s,C)y P (P:5,¢,C")u:D || M
(My:5,s,C)u(8,s,C"y D" || M

(State)

Furthermore, we get M o> M, since > is included in ~. a

The C-strategy is a combination of the three axioms of lemma 22, of the relation ~ (cf.
lemma 21) and of the relation >> (cf. lemma 23). The exact combination is given by the proof that
the FAM implements a deterministic strategy.

More precisely, we first define a new relation N by considering the three reduction axioms and
the inference rules of ~. That is, we state:
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(AMy) [s] and M are C-values

. (Beta) n [All M, - 5] ~ M, (Var™)
((AMo)[s] M) ~ Mo [M - 5]

M, is a C-value .-+ M, is a C-value

(Shift™)
(AMo) [My -+~ M, -(1™ o (Py -+ Py, -id)] ~ (AMq) [My - - - M,, -id]

My ~ M), My is a C-value My ~ M|
. (AppLeft) . (AppRight)
(M7 M) ~ (M; M) (M7 My) ~ (M| M,)
My is a C-value .-+ M;_;is a C-value M, ~ ] !
(Fun(n,:))

(AMo) [My«+ Mi_1 - M;-s] ~ (AMg) [My - Mi_q - M/ - 5]

Then, we define a step in the C-strategy as a pe step followed by a N step. Thus, for any two
Ao-terms M and M', we have M Z. M’ if and only if there exists M" such that M >> M" and
M" S M

Lemma 24 Let D be a FAM state such that D exists. Let D' be a state such that D reduces to D'
in one step. We have the following two cases:

1. If D Return 15/ yhen D = D'
2. Otherwise, D reduces to D' by the execution of one instruction I and we have D 2D

Proof: The first proposition is a direct corollary of definitions (cf. the decompilation rule (State)).
Let D be a state that evolves into D’ by the execution of one instruction I. Let us state

D = (AS,e, I;C) :: Dy. By lemma 22, ®(D) can be written as ®(D) = (57 : 5,s,1;C) :: ®(Dy),
where S7 is a stack such that (57, s,1) || M. Therefore, by lemma 23, there exists M such that:

(Myp:8,8,C)::®(Dg)d M and Dos M
Then, there are two cases, depending on whether a new frame is created or not:

1. First consider the case where I is Apply. Then, on the one hand, we have D = ((Co/eg) : f :
ASg, e, Apply; C) :: Dy and thus S; = (AMy) [€g] @ f, with mo = length(eg) and Co (™01 M.
On the Ao-term side, we get My = ((AMp) [€o] f)-

On the other hand, we have D' = (f, e, Co) :: (ASo,e,C) :: Do. Thus, if D’ exists, we have:

Co JJ™+ My
— — Code _ _
(0T 0, Co) b Mo [T el ) (Mo[F 5] : 8,5,C) i ®(Dg) 4 T
(D" D'

(State)

Now, let us state M} = My[f ). Notice that we have M, N Mj, by the axiom (Beta).
Therefore, by lemma 21, there exists M’ such that (M} :95,s,C) :: (Do) | M', with M ~ M

In other words, D’ exists and we have M =D
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(AMy) [s] and M are C-values

(Beta)
(AMo) [s] M) == Mo [M - 5]
n[Mi- M, s| — M, (Var") 1o (M- M, -id) — id (shift»)
c ’
M, [s] — M, Mannn)
apApp
(My Ms)[s] — (M [s] M})
M, S, M) M,y 2, M{ M, is a C-value
. (AppRight) . (AppLeft)
(All ZLIQ) — (A/Il Alé) (All IWQ) — (IM{ JLIQ)
sot — ¢ s — g
(MapClos) (ClosRight)
(AM)[s]) [1] — (AM) [¢] (AMo) [s] — (AMo) []
c / c / : C
M[s] — M M—M M is a C-value s — s
o (MapEnv) (ConsLeft) (ConsRight)
(M-t)os— M -(tos) M-s — M -s M-s—— M-s

Figure 4: The C-strategy

2. Otherwise [ is Global(7), Local or Fun(n,Cp). In these cases, there exists M} such that ®(D’) =
(M7 :5,5,C):: ®(Dg). The Ao-term Mj is G, where g is either a newly created closure (when

I is Fun(n, Cp)) or a closure retrieved from the current environment or from the stack (when I
is a variable access). Thus, by lemma 21, D’ exists and we have (M} :5,s,C):: ®(Dg) |} D'.

Naturally, by our choice of axioms, we have M; N M7 and thus M ~ D

Finally, since D o> M and M N D', we get D 2, D', by definition of =, a

Figure 4 exposes the C-strategy in the same small step formalism we used for other strategies.
Axioms are somehow simplified and inference rules are classified per term construct in the algebra
of Ao-terms.

As illustrated by the rules (AppRight), (AppLeft) and (Beta), the FAM follows a right-to-
left call-by-value strategy. With respect to the simpler strategies we already saw, the C-strategy
presents two innovative features. First, reduction is now possible inside the environment part s
of a closure (AMy) [s] (rule (ClosRight)). This reduction operates from the left to the right (rules
(ConsLeft) and (ConsRight)). By the nature of the closure environments that the C compilation
scheme produces, this reduction of environments ultimately amounts to replacing variables by their
values (axiom (Var™)) and then discarding this current substitution (axiom (Shift™)). The C-
strategy can cope with alternative and more sophisticated compilation schemes. In such schemes,

complete sub-expressions would be abstracted out of function body. Then, the premise M M
of rule (ConsLeft) could be any C-reduction. The second innovation lies in the propagation of
substitutions inside terms (rules (MapApp)), the C-strategy combines several o,,-reduction rules
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in one step. Finally, the rules (MapClos) and (MapEnv) ensures a similar propagation mechanism
inside the environment component of closures and inside environments themselves.

Remember that the starting terms of the C-strategy are particular: they are terms M [id] such
that the predicate Py(M) holds. Thus, the terms produced by the C-strategy are also particular.
They satisfy a predicate Q:

Qun) = (n<h)
Qr(My My) = Qr(My1) A Qu(Myz)
Q(AM) = Qppi(M)
Qr(M [s]) = Qi (M)A Qg(s), where [; = length(s)

Qu(M-s) = Qu(M)A Qx(s)
Qr(sot) = Qu(s)AQx(t), where Iy = length(t)
Qk(s) = false otherwise

length(1") = 0
length(M-s) = 1+ length(s)
length(s o t) = length(s), when Q,(s) where I, = length(¢)
length(s) is undefined otherwise

One easily checks that the new predicate Qp generalizes P;. That is, the following implication
holds:

Pk(ﬂ/[) = Qk(ﬂf)

Thus, given any closed Apg-term N, let M be C(0,N). Then, the predicate Qu(M [id]) holds, since
we have Py(M).

Intuitively, given a term M, the predicate Q(M) holds when M is being evaluated in an
environment of size k. As expected, this condition is preserved by the C-strategy:

Lemma 25 Lel M and M' be two Ao-terms, such that M —— M' and Qr(M). Then, we have
Qr(M').

Proof: Tedious. A key point is that, given two substitutions s and s’ such that s 2, s', we have

length(s) = length(s'). 0

Lemma 26 (Final state condition) Le N be a closed Apg-term and let M be C() ,N). Let D
be a terminal state computed by the FAM from L(M). Then, D is a C-normal form.

Proof: First observe that, by lemma 24, D exists and that we have M [id] —C—>* D. Let us state

= (AS,,e,,Cy) it -+ (AS1,e1,Cq1). There are three kinds of states from which no transition
is enabled. The first two cases are the same as for the SECD (cf. lemma 11), as concerns both
statement and proof:

1. n = 1 and Cy = (). then, the stack AS; holds exactly one closure f (otherwise it cannot be
decompiled) and we get D = (f,(),()) = f, which is a C-value and a C-normal form.
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2. If the head instruction of C,, is Fun(ng, Co) or Apply and if there are not enough arguments on the
state AS), for it to execute, then it can be shown that D cannot be decompiled either. Therefore,
this case cannot occur.

3. If an environment access fails, that is, if D = (AS,(),Local;C), D = ((),e, Local;C') :: Dy or
D = (AS, f1,m,Global(k); C) :: D' with k > n. Then, D is a C-failure term W, defined as follows:

W o= m[fi - fr-id] with £ < m
| MW
| WM where M is a C-value
[

(AMo) [My---M;—q - W-s] where My, ... M,;_1 are C-values

A C-failure term is a C-normal form, since a C-normal form which is not a value stands in C-redex
position.

In fact, such a case cannot occur. Any C-failure term W has a subterm W' = n[f; - fi -id]
with k£ < n, such that Qo(W’) does not hold. As a result, Qo(WW') cannot hold, which contradicts
the initial condition Qu(M [id]), by lemmas 24 and 25. o

The transition dump is the only silent transition of the FAM. Obviously, it cannot be performed
infinitely many times in a row. We conclude:

Theorem 3 The FAM implements the C-strategy.

6 The Categorical Abstract Machine

In this section, we prove that the categorical abstract machine (CAM) [7] implements a strategy
in Ao,,. For brevity, some proofs, which are very similar to previous ones, are only sketched.

6.1 Basics
The CAM has seven instructions.
INSTRUCTION == Fst | Snd | < | 9 | > | App | A(CODE)

CAM environments are structured as trees, they are written f (when they are closures) or e (when
they are pairs or nil).

ENVIRONMENT == () | CLOSURE | (ENVIRONMENT, ENVIRONMENT)

The states of the CAM (written D = (S5 o C')) are just pairs of a stack with a code.

STACK == () | ENVIRONMENT : STACK
FRAME = (STACK @ CODE)
STATE = FRAME
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The transitions of the CAM are as follows:

o
&
=

((e,;f): SeFst;C) — (e:Se()
((e,f): S eSnd;C) < (f:85eC)
(e:SeAC);CYy 2B ((Cle): S o0
(e:5e <;C) 2™ (c:e:50)
(fre:Se5;C) =2 (e:f: -C)
(f:g:50>:C) =5 ((g,f):5C)
(((Cle), f): S o App; C) 222 ((e,f): 5 0 C;C")

We have adopted a slightly unusual presentation of CAM transitions: for an instruction to execute,
not only must the proper number of arguments stand on top of the stack, but these arguments
must also be of the proper sort, either closure or tree node. Consider for instance the instruction s,
i.e. the transition swap. This instruction swaps the two topmost elements of the stack, provided
the topmost one is a closure and the other one is a tree node. Doing so, we make explicit the sort
discipline that is usually left implicit in standard categorical code.

Compilation of App-terms in CAM code follows the usual translation from A-terms to terms of
categorical cartesian logic (CCL).

[1] = Snd
[n+1] = Fst[n]
[(Ni1Ng)] = <[Ni]s[Na2]>App
[AN] = A(LN])
In the rules above we omit the separator “;” in code segments.

Finally, a code C' = [ N ] is loaded into the CAM as L(N) = (() e C).

6.2 The decompilation

First, we inverse the compilation procedure [ ]. We do so by proving judgments C' |} N, which
read “the code segment C' stands for the Apg-term N7.

Cil My Cy )l N,y CIN

Fst”;Snd || n+1 _
<Cyp9Cy>App )l (N1 Ny) AC) Y AN

For any Apg-term N and categorical code C, the equivalence [N ] = C < C |} N is easily shown.
The decompilation procedure extends naturally to environments and closures,

(C/e) = (AN)[e], where C' |} N
(67 ) = 7'5
) = id

A X-value is the decompilation of a closure. Thus, X-values are written f.
State decompilation is performed by proving a judgment D | D, using the following axioms
and inference rules:
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_ CUN

(f * ()) 4 (Res) m (Code)

(SeC)UM C'UN (SeC) U M
7 — (AppLeft) — (AppRight)
(S:eeCyC'>App) | (M Ne]) (S:feC>App) I (f M)

((f1, f2) ¢ App) I (/1 J2) (AppCons)

Decompilation rules follow a sort discipline, just as transition rules do. For instance, the rule (Res)

applies only when the stack S holds a single closure. Besides, decompilation rules are analog to
other machines rules and bear the same names. The only slight novelty is the rule (AppCons), which
derives from the transition cons, a transition that could easily be merged with the transition app.

The non-ambiguity of state decompilation follows quite easily from the rich structure of cat-
egorical code. Basically, proof trees are unique because the “<” and “>7 instructions act as
well-balanced parenthesis in code segments.

6.3 The strategy

As we did for the FAM, we introduce gradually the strategy implemented by the CAM. We call

this strategy the X-strategy (written —X—>)

In the absence of multi-frame CAM states, the proof that the CAM implements the X-strategy
differs slightly from the corresponding proofs for the SECD and the FAM. Specifically, induction is
now performed differently, by directly considering “sub-states”, instead of plugging a Ao-term on
top of the current active frame as we did for the previous two machines.

More specifically the two inductive decompilation rules (AppLeft) and (AppRight) both extract
a sub-state (5’ o C’) from a state (S e C') by removing some elements from the bottom of the
stack 5 and some instructions from the end of code C'. In other words, (5 @ C') is decomposed as
(5":5" e C";C"), where (57 : C') is a valid CAM state.

The following lemma exposes such a state decomposition designed for identifying strategy ax-
ioms.

Lemma 27 Let D be a CAM state such that the execution of any instruction is enabled, yielding
a new state D'. If D exists, then D can be wrilten (S7: S o Cr;C) and there exists a Ao-term My
such that (Sp e Cr) || My.

Additionally, D' can be written (S} : 5 o C};C) and there exists a Ao-term M) such that
(Sy e CP) 4 M},

Proof: A very constructive one: first assume that I is Snd, Fst, < or App. We get:
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I Snd Fst < App

Cy Snd Fst™; Snd <[N1]s[N2]>App App

St (e, f) (e, f) € ([N1]/e1), f2)
M| 1[f-e | n+1[f-7 (N1 N3) €] (AN [E1] f2)
C1 () | Fst"';Snd | [Ni]>[No]>App [N:]

St S e ee (e1, f2)
Mp 7 n [e] (N1 [e] Nae]) Ni[f; -]

Then assume [ is one of the remaining three instructions A, y or >:

I | A([No]) ) >

Cr | AINo]) | 9[N2]>App | >App

St e e forh
My | (ANo)[e] | (f N2[e]) | (A fa)
o (0 [N]>App | App

51| ([Ne]/e) e:f (f1, f2)
My | (ANo)[El | (F N2[E) | (Fi o)

O

The axioms of the X-strategy derive from the lemma above. These axioms are the four rules
JVIILAM}, where [ is any of the instructions Fst, Snd, < or App.

In the case of the transitions cur, swap and cons, we have M; = M}. Thus, these transitions
are good candidates for being silent.

Now, thanks to our induction technique on sub-states, we make explicit the inductive rules of
the X-strategy:

Lemma 28 Let D = (S7: 5 o Cr;C) be a CAM state such that both judgments D || M and
(SreCyr) I My hold. Let (S7 o C}) be any CAM state such that the judgment (57 e C7) | M;
holds. Let D' be the state (57 : S o C};C). Then, there exists a Ao-term M’ such that D' |} M’.
Furthermore, given any relation ~, such that My ~ M}, we have M ~ M', provided ~ obeys the
following structural rules:

My ~ M My is a X-value Moy ~ M)
(M1 M) ~ (M] M) (M, May) ~ (M; M)
Proof: By induction on the length of C'. Let us consider, for instance, the base case and assume

that C'is empty. Then, one shows by induction on the length of C'; that S must be empty and thus
M = M. O

First notice that, when the instruction I is A, 9 or > (and thus when M; = Mj), we just
proved that the corresponding transitions cur, swap and cons are silent.
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Then, we get the X-strategy, by combining the four axioms AII—X—MW} (where I is Fst, Snd, <

or App) with the inductive rules of lemma 28:

1 [LM . 8] —X—MM (FVar) n+1 [;M . s]—X—>n [S] (RVar)

X (AN)[s]is a X-value M is a X-value
(Nl LNQ) [S]—>(A71 [S] Ny [8]) (App) X (Beta)
((AN)[s] M)==N [M - s]

X . X
My =M, My is a X-value My—+ M,
(AppLeft) (AppRight)

(My My)-25(M] My) (My M3)-2(My My)
Finally, the X-strategy is simple left-to-right call-by-value.

Lemma 29 (Final state condition) Let N be a closed Apg-term and let D be a terminal state
computed by the CAM starting from L(N). Then, D is a X-normal form.

Proof: First observe that D exists and is computed by iterating the X-strategy starting from
N [id]. Let us then state D = (5 o C'). The CAM may stop for many reasons, which fall into three

classes:

1.

The code C' is empty. Then, D must be computed by the decompilation rule (Res). Thus, S
holds a single element which must be a closure f. Hence D is the X-value f. This is the normal

case.

. A variable access fails. That is, D = (() e Fst;Cg) or D = (() e Snd; C) Then, D is a X-failure

term W:
W = nlid] with n > 1
W M
MW where M is a X-value

One easily sees that X-failure terms are X-normal forms. Furthermore, they are not closed
Ao-terms. Hence, by lemma 1 and since N [id] is closed, this case cannot occur.

The code C' is not empty (i.e. C' = I;Cy), but the execution of the instruction I is not enabled,
because S holds too few arguments or because the sort discipline on transitions is violated. In
fact, such cases cannot occur here, precisely because D exists. The proof tree of (S e C) | M
must include the proof of a judgment (57 e Cy) |} My that “consumes” the instruction I, i.e. a
proof whose premises do not include I anymore. Moreover, by the inductive structure of proofs,
we have S = S7: 5’. When, for instance, I is “3”, we have Cr = 9 C'; > App and

(fo) U [ (Resy C7l Nj
(f:ee 9C7>App) I (f Ni[e])

Thus, we get S; = f :e. Hence, since S = Sy :.5’, the transition swap is enabled. a

(AppLeft)

Finally, all CAM transitions but the transition app consume one instruction. Therefore, any

computation of the CAM that does not include the transition app is finite. Thus, since the
transition app is not silent, there cannot be infinitely many silent CAM transitions successively.

We conclude:

Theorem 4 The CAM implements the X-stralegy
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7 Other execution models

In the previous sections, we have exhibited the Ao,,-calculus strategies hidden inside four machines.
By a simple improvement on [18], we also made explicit the strategy of the ZAM. Briefly, the ZAM
implements the L-strategy, that is, right-to-left call-by-value.

The G-machine and the TIM [13] can also be understood in the Ao-calculus, although these
machines look quite different from environment machines. In order to simplify the management
of variables at run-time, compilers for these machines translate input A-terms into supercombina-
tors, by the so-called A-lifting operation [23]. Supercombinators are n-ary functions without free
variables, that is, in terms of Aoy, closures (AX.. AM)[id], where M is a Ao-term whose variables
are all A-bound. We call such closures Ao-supercombinators. In the Ao-framework, A-lifting is
actually quite similar to the first phase C of the FAM compilation. Where, from a function, the
transformation C produces a closure, the A-lifting will produce the partial application of a Ao-
supercombinator. For instance, the abstraction, A(1 (5 7)) is translated by the scheme C into the
Ao-closure (A(1 (2 3))) [4-6-id], whereas it lambdalifts to the Ao-term ((AAA(1 (2 3))) [id]) 6 4.

Any Ao,-strategy that accounts for supercombinator reduction must include a n-ary (Beta)
rule, which expresses the application of a Ao-supercombinator to all its arguments in one step:

(Betan)  ((A...AM)[id]) Ny ... Ny — M[Ny--- N, -id]

The G-machine and the TIM implement a very similar strategy that basically amounts to contract-
ing the leftmost-outermost (Beta, ) redex and then propagating the generated substitution. This
simplified term-based presentation is sufficient for establishing the correctness of both machines.

The SML/NJ compiler departs from the abstract machine approach [2]. Roughly speaking, a
schematic SML/NJ compiler would first translate a source A-term into a A-term in continuation-
passing style (CPS). Then, this CPS A-term would be further transformed by the so-called closure
conversion. This conversion transforms functions into record data structures, which encode closures.
Such records can easily be expressed in our framework by adopting a more direct encoding of
closures. The resulting modified schematic compiler would now produce Ao-terms in continuation-
passing style. Note that the above schematic description of the SML/NJ compiler is ours and only
intends to show that Ao can also account for a schematic CPS-based compiler. By no way, do we
attempt to render the complexity of a full-fledged compiler as [2] does, using enriched A-calculus
(in CPS) as a formal language.

8 Related works and conclusion

The main contribution of this paper resides in the introduction the Ao,-calculus as “the” weak
A-calculus, that is, as the adequate framework for the formal study of the execution of compiled
functional programs. Additionally, the full Ao-calculus appears as an adequate formalism for prov-
ing the correctness of skeleton compilers. Presently, the most salient illustration of this claim is
our complete description and proof of a schematic FAM based compiler.

Rather than providing an “automatic” procedure for proving abstract machines, we introduced
a method to do such proofs. This method consists in extracting strategy axioms from machine
transitions and strategy structural rules from the machine structure. Doing so, we abstract on
implementation issues, such as stack management or closure format, focusing on semantics.

Our work is to be compared first with similar attempts to prove, formalize or derive several
functional back-ends in an unified formalism. In [9], the Krivine machine and the CAM, two shared
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environment abstract machines, are “derived” from deterministic strategies of Ap, a calculus of
closures. The system Ap is a conditional term rewriting system (see also [20]) and can be seen as
a predecessor of our standard term rewriting system Ao,. A recent publication [11] resembles our
work, since it models many compilers and abstract machines, using the A-calculus extended with
appropriate combinators as a formal language. We differ from this work on an important point:
we insist on what all functional runtime systems have in common, to the point of proposing a
definition for compiled functionality in a relatively well established formalism, whereas [11] focuses
more on modeling the exact structure of abstract machines, in order to establish their “taxonomy”
of functional languages implementation.

Our work is to be compared also with other works that formally prove one or a few abstract
machines. Here, a first benefit of our approach of describing abstract machines in terms of a Ao-
calculus rewriting strategy is that their correctness is a direct consequence of the correctness of
the Ao-calculus with respect to the A-calculus. As a consequence, our correctness proofs appear to
be quite simple. By contrast, the correctness proofs of the CAM in [4] and of the SECD machine
in [24] were complicated. Moreover, our simple technique enabled us to prove the correctness of
the FAM, which has never been done before. We believe that this simplicity owes much to the fact
that our overall framework (i.e., the Aoy calculus) includes both our archetypal source and target
languages as consistent (i.e., closed by reduction and Church-Rosser) subcalculi.

The second benefit of our approach lies in the generality and precision of our correctness results:
all machines are described in the same framework and we describe every step of their execution.
Here, we differ from [14], which relied upon natural or “big-step” semantics and from [8, 18], which
proved the Krivine machine and the ZAM in Ao but do not specify their Ao-strategies. Qur “small-
step” approach to semantics enables us to compare the termination properties of different machines
naturally. For instance, we can say that the Krivine machine terminates more often than the CAM
or the SECD, since it follows the leftmost-outermost strategy, which terminates more often than
any other strategy of the orthogonal weak A-calculus [20]. As a second example, given the same
A-term as input, the SECD and the CAM compute exactly the same closure, whereas the FAM
computes a different, Aoy-equivalent, closure.

A first direction for future work is to study graph-based implementations. Considering that
the call-by-need strategy is the natural implementation of call-by-name in graph rewriting systems,
such a strategy can be modeled in a simple extension to term-graphs of the weak A-calculus with
explicit substitutions. To render sharing while preserving the desirable simplicity of terms, sev-
eral techniques already exist, such as subterms labeling [20], explicit recursive equations [3], or
specialized bindings [17].

A second direction is to examine how the full Ao-calculus can be used to assert the correctness
of some phases of realistic compilers. Various optimizations at the closure level are a first natural
target for such a study. Considering skeleton compilers that are closer to real compilers would
require first to extend Ao to handle common programming constructs, such as data structures,
recursive bindings, exceptions,. ..
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