Bezout Factors and $\Lu$-Optimal Controllers for Delay Systems using a two-parameter Compensator Scheme

Abstract : We consider in this paper the simultaneous problem of optimal robust stabilization and optimal tracking for SISO systems in an $L^\infty$-setting using a two-parameter compensator scheme. Optimal robustness is linked to the work done by Georgiou and Smith in the $L^2$-setting. Optimal tracking involves the resolution of $L^1$-optimization problems. We consider in particular the robust control of delay systems. We determine explicit expressions of the Bezout factors for general delay systems which are in the Callier-Desoer class $\hat{\cal B}(0)$. Finally, we solve several general $L^1$-optimization problems and give an algorithm to solve the optimal robust control problem for a large class of delay systems.
Type de document :
Rapport
[Research Report] RR-3023, INRIA. 1996
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073670
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:27:20
Dernière modification le : vendredi 25 mai 2018 - 12:02:04
Document(s) archivé(s) le : dimanche 4 avril 2010 - 22:05:32

Fichiers

Identifiants

  • HAL Id : inria-00073670, version 1

Collections

Citation

Catherine Bonnet, Jonathan R. Partington. Bezout Factors and $\Lu$-Optimal Controllers for Delay Systems using a two-parameter Compensator Scheme. [Research Report] RR-3023, INRIA. 1996. 〈inria-00073670〉

Partager

Métriques

Consultations de la notice

153

Téléchargements de fichiers

182