Estimation of Markov Random Field Prior Parameters Using Markov Chain Monte Carlo Maximum Likelihood

Abstract : Recent developments in statistics now allow maximum likelihood estimators for the parameters of Markov Random Fields to be constructed. We detail the theory required, and present an algorithm which is easily implemented and practical in terms of computation time. We demonstrate this algorithm on three MRF models -- the standard Potts model, an inhomogeneous variation of the Potts model, and a long-range interaction model, better adapted to modeling real-world images. We estimate the parameters from a synthetic and a real image, and then resynthesise the models to demonstrate which features of the image have been captured by the model. Segmentations are computed based on the estimated parameters and conclusions drawn.
Type de document :
Rapport
RR-3015, INRIA. 1996
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073679
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:29:44
Dernière modification le : jeudi 11 janvier 2018 - 16:43:00
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:54:28

Fichiers

Identifiants

  • HAL Id : inria-00073679, version 1

Collections

Citation

Xavier Descombes, Robin Morris, Josiane Zerubia, Marc Berthod. Estimation of Markov Random Field Prior Parameters Using Markov Chain Monte Carlo Maximum Likelihood. RR-3015, INRIA. 1996. 〈inria-00073679〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

634