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Abstract: Recent developments in statistics now allow maximum likelihood
estimators for the parameters of Markov Random Fields to be constructed.
We detail the theory required, and present an algorithm which is easily im-
plemented and practical in terms of computation time. We demonstrate this
algorithm on three MRF models — the standard Potts model, an inhomoge-
neous variation of the Potts model, and a long-range interaction model, better
adapted to modeling real-world images. We estimate the parameters from a
synthetic and a real image, and then resynthesise the models to demonstrate
which features of the image have been captured by the model. Segmentations
are computed based on the estimated parameters and conclusions drawn.
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Estimation au sens du Maximum de
Vraisemblance des parametres d’'un modele
markovien par méthode de Monte Carlo

Résumé : De récents développements en statistiques rendent maintenant
possible I'estimation au sens du maximum de vraisemblance des parametres
associés aux champs de Markov. Dans ce rapport, nous détaillons la théorie
requise et présentons un algorithme facilement implémentable et abordable du
point de vue du temps CPU. Nous appliquons cet algorithme & trois modeles
markoviens : le modele de Potts, une variante inhomogene de ce modele et au
chien-modele (modele comprenant des interactions mettant en jeu plus de deux
pixels et plus adapté pour modéliser des images réelles). Nous estimons les pa-
rametres a partir d’images de synthese et d’images réelles, puis re-synthétisons
les modeles pour étudier les caractéristiques de I'image captées par le modele.
Nous faisons aussi des segmentations en utilisant les parameters que nous avons
estimés, et nous donnons des conclusions.

Mots-clé : Estimation, Maximum de Vraisemblance, modele de Potts, chien-
modele, segmentation d’images, restauration d’images
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1 Introduction

Early vision algorithms extract some information from observed data without
any specific knowledge about the scene. However, these data (remote sensing
data, medical images,...) are usually disturbed by noise. To improve the
algorithms, regularization techniques are used, incorporating constraints on
the solution. These constraints represent a general knowledge about what
a natural scene should be. A popular way to define these constraints is to
consider a probabilistic model (the prior) of the expected result. Using the
Bayesian approach, we search for a realization which optimizes the probability
of the solution, given the data. A key point to obtain unsupervised algorithms
in this paradigm is to be able to estimate the different parameters involved
in the prior. Accurate estimators of these parameters are necessary to control
the impact of the prior on the properties desired for the solution.

Because of their ability to model global properties using local constraints,
Markov Random Fields (MRFs) are very popular priors. Several optimization
algorithms converging either toward a global minimum of the energy [1] or a lo-
cal one 2], |3] are now well defined. But accurate estimation of the parameters
is still an open issue. Indeed, the partition function (normalization constant)
leads to intractable computation. Parameter estimation methods are then ei-
ther devoted to very specific models [4], [5] or based on approximations such
as Maximum Pseudo Likelihood (MPL) [6], [7]. Unfortunately, these approxi-
mations lead to inaccurate estimators for the prior parameters. Maximum
Likelihood Estimators (MLEs) have more interesting properties. Gidas proves
in [8] that MLEs are consistent. Asymptotic normality can be reached in some
special case, such as the 2-dimensional Ising model. For high dependency
models, the MPL gives poor results as reported in [9]. The aim of MRFs in
image processing is to obtained regularized solutions. High dependencies are
required to get homogeneous realizations. Thus, MLEs should improve image
segmentation and image restoration algorithms based on Markovian priors.

Markov Chain Monte Carlo algorithms (MCMC) [10] are very popular in
image processing to derive optimization methods when using a Markovian
prior [2], [1]. In fact, MCMC algorithms can be developed for other purposes
than Bayesian inference. Indeed, they can be used to derive MLE. The par-
tition function of Gibbs Fields can be estimated using an MCMC procedure.

INRIA
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A Maximum Likelihood estimation using an MCMC algorithm is proposed
in [11]. Geyer proves the convergence in probability of the MCMC toward the
MLE. This method can be applied to a wide range of models such a Point Pro-
cesses [12| or Markov Random Fields. In this paper, we propose an estimation
algorithm for Markovian prior parameters based on an MCMCML procedure.
We validate this algorithm on three different priors.

In section 2, we compute the Maximum Likelihood estimators of a given
Gibbs Field whose energy is linear with respect to parameters. Importance
sampling is also introduced. This allows us to compute statistics of the model
associated with given parameters using samples obtained with other parameter
values. These results lead to an MCMCML estimation method described in
section 3. Results are detailed in section 4. We consider three different Marko-
vian priors: the Potts model, an inhomogeneous variation of the Potts model
and the Chien-model. This Maximum Likelihood estimation allows us to de-
rive some comments about the priors. Section 5 is devoted to a comparison
between the priors considered. Finally, we conclude in section 6.

2 Maximum Likelihood estimators

2.1 The log-likelihood

Let Py be a random field defined on S and parameterized with vector © = (6;).
We consider Py to be a Gibbs Field, whose energy is linear with respect to the
parameters 6;. We then have :

Po(Y) = 2(1@) exp—(0,Y) = Z(1®) exp [—ZQiNi(Y)], (1)

where N;(Y') are functions of the configuration Y. In this paper, we consider
a continuous framework for the state space A. Results are still valid in the
discrete case by changing integrals into sums. The partition function Z(©) is
then written:

Z(0) = /A _exp l— Z OiNi(X)] dx, 2)

where S is the site set and A is the state space.

RR n-"3015



6 X. Descombes, R. Morris, J. Zerubia, M. Berthod

We consider that we have data Y. We want to fit the model to the data.
The log-likelihood is then defined by :

log P(Y|0) = log [ﬁ exp -y eiNz-(Y)] , (3)

log P(Y|O) = 29 N;(Y) —log Z(©). (4)

The maximum likelihood estimators are obtained by maximizing the log-likelihood.
We then have: d10g P(Y]0)
. Olog A\
VZ, 8—92 (@) = 0, (5)
and then:

Jas Ni(X) exp [= 22 6;N;(X)] dX _

Vi, —N;(Y) + ~
Jas exp [— 2 QiNi(X)] dX

where 91 is the maximum likelihood estimator of 6;.
Denoting by < a(x) >e, the expectation of a(z) with respect to Pg, we
finally get:
Vi, (N;(X))g = Ni(Y). (7)

To evaluate the log-likelihood function, we have to compute the partition func-
tion. The partial derivatives of the log-likelihood requires the computation of
the different (NV;(X))g. Unfortunately, the computation of these quantities
is intractable. We can estimate the (NV;(X))g by sampling the distribution.
Nevertheless, to sample the distribution for each value of © is inconceivable
from CPU time considerations.

2.2 Importance sampling

We introduce importance sampling to avoid having to sample the model for
each value of ©. Indeed, importance sampling allows us to estimate statistical
moments corresponding to Pg using samples obtained from Py.

Consider first the partition function. We have:

Z(0) = /exp[ ZGN ] ®)

INRIA
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then:

1

2©) = [lex |- 0~ N O] exp [ S wiicx) | ax
20) = [ ex [ S0~ w8 (0)] Z(0)aR(X). o

%

For each couple (O, V), the ratio of the partition functions is given by:
)

where Fy refers to the expectation with respect to the law Pg.

The partition function corresponding to Pg can thus be estimated from
the sampling of Py. We just have to sample the law with parameter ¥ to get
an estimator of the ratio % for all © by computing from the samples the
expectation given by formula (10).

Consider now the log-likelihood. The maximum likelihood estimator is
given by the vector © which maximizes formula (3). This is equivalent to
minimizing the following expression:

The partial derivative of the partition function can be written:

O = [N [— 3 (6 — )Ny (X)

J

Z(¥)dPy(X)

) . (12)

By (N:(X) exp [ 53, (6; — ;) N;(X)])
Ey (exp -3, (0 — 4)N;(X)])

G
09,

~—

= —Z(V)Ey (Ni(X) exp [— > (0; — ) N;(X)

J

Then, we have:

0 —log Po(Y)

20, )

(13)

RR n~"3015



8 X. Descombes, R. Morris, J. Zerubia, M. Berthod

From a sampling of Py we thus can theoretically estimate the log-likelihood of
Py and its partial derivatives for all ©. The same kind of computation allows
us to compute the Hessian, and we have:

0?2 —log Po(Y) Ey (Ni(X)N;(X) exp — [k (6 — ) Ne(X)])

ga.00;, N ) — o Br — B M (X)) o

3 An MCMCML algorithm

3.1 Estimate a robustness criterion

Consider an image Y from which we wish to compute the maximum likelihood
estimator of © using Pg as a model. From the image we can extract the
value of the N;(Y). Then, we can sample the law Py for a given ¥. From
the samples, the different expectations involved in formulas (10) and (13) can
be estimated. Then, for all ©, we can estimate the log-likelihood and its
derivatives. An optimization algorithm (gradient descent, conjugate gradient
for example) leads then to the maximum likelihood estimator of ©, when the
log-likelihood is a convex function.

Nevertheless, if the two parameters © and ¥ are too far from each other,
the estimation of the expectations will be inaccurate. Indeed, the robustness
of the estimation of the expectations requires the overlap between the two dis-
tributions Py and Py to be large enough. The proposed method is practically
valid only in a neighborhood of parameter ¥. During the optimization, when
the current value of © is too far from ¥, we have to re-sample the model using
a new value for ¥ (we take the current value of © for ¥). Such a sampling
requires CPU time. So, we need a criteria to define the neighborhood of ¥ on
which the estimation is robust to avoid un-necessary sampling. A first idea is
to use a metric between the distributions Py and Pg given by:

d(Po, Py) = 2/|P9 — Py(X)|dX. (15)

By definition, we have:

P@(X)_P\I,(X):exp—<X,®)_exp—(X,\Il)7 (16)

INRIA
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Pa(x) = Pu(t) = (7] exol- (x.0) + ] - 1) P22
Thus, we define a distance between the distribution by:
[1pax) = Puilax = [ (S ewl- (x.0) + )\d
Ey (‘ggg; exp [— (X, 0) + (X, ¥)] — D
By using formula (10), we then have:
e (12 e _

We can compute this distance to test the robustness of estimates and decide
whether we should sample the model once more or not. However, this distance
is also estimated and can be biased. Therefore, we define a heuristic criterion,
considering the current samples used for estimating the expectations. For each
sample X;, we define a weight by:

wi = (6; = T;)N;(X5). (21)
J
Computing the expectations, we use the following trick to avoid overflow and
numerical instabilities:

Y expl—wi] = exp[—Wmas] D, exp[—(Wi — Wmaz)l, (22)

samples 1 samples 1

where Wier = MaXamples; Wi-

Consider the different samples. If w,,q. is too far from most of the w; the
quantity exp [—(w; — Wmaz)] Will be close to 0 and results in a poor estimation.
So, we can consider the estimation robust only if w4z — Wimen is lower than a
given threshold.

RR n"3015
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3.2

Estimation algorithm

We can now derive an algorithm based on the conjugate gradient principle.
Consider the current parameter estimate © and a sampling of Pg. We can
estimate the gradient and the Hessian of the log-likelihood function at 6. We
then compute the conjugate directions [13|. Along each conjugate direction
we define an interval using the distance defined by equation (19), where the
log-likelihood estimation is robust. We then maximize the log-likelihood along
these intervals.
The algorithm can be written as follows:

1.

2.

Compute the N;(Y)
Initialize ©g, n = 0

Sample the distribution P

. Estimate the gradient and the Hessian of the log-likelihood at ©,,, using

equations (13) and (14)
Compute the conjugate directions A;

For each conjugate direction define a search interval using either the
distance defined in equation (19): I; = [@n — o;A;,0, + @Ai] where
o; = Supa€R+ {Oz :d (P(;)n, P(:)nfaAi) < T} ,

B; = SUP g R+ {ﬁ od (Pén, Pén‘f’ﬂAi) < T} where T is a threshold, or the
proposed heuristic criterion.

A

Compute 0,41 by maximizing the log-likelihood along each search inter-
val using golden section search [13]

L if Hénﬂ —(:)n|| > Ty put n = n+1 and go back to 3, where T5 is another

threshold.

INRIA
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4 Validation on Markovian priors

In this section, we consider different Markov models used as priors in image
processing. We validate the estimation method on these models and demons-
trate the generality of its applicability.

4.1 The Potts model

The Potts model is commonly used as a prior in image segmentation. It
depends on a single parameter § and is defined by:

Ps(X) = Z(lﬂ) exp [—,3 > (Smsyéa:s,] ; (23)

c={s,s'}eC

where C is the set of cliques. In this case, a clique consists in two neighboring
pixels. We consider the case where the lattice S is a subset of ZZ*. For simula-
tions and estimations we have considered the 4 nearest-neighbors. The Potts
model can be embedded in the general form of equation (1):

1 1
P3(X) = ——exp|[—ONy(X)] = = exp [ B#x], 24
where Ny(X) = #x is the number of inhomogeneous cliques in the confi-

guration X. The model depends on one single parameter, so the proposed
algorithm is simplified as we do not have to compute the conjugate directions.
Table 1 shows estimates obtained using the MCMCML method for different
values of f3.

4.2 An inhomogeneous variation of the Potts model

We can extend the procedure to the case of a non-stationary Potts model.
Consider a Potts mode for which the parameter 4 depends on the localization
of the clique. We suppose for simplicity that this dependency is linear and
that 3 is written:

i+ i+
Be={z; ;,apq} = @ (—2 p) +b (]—2 q) + c. (25)

RR n-"3015
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Parameters | [ = 0.53 (N, = 48070) B = 0.5493 (N, = 35699)
Estimates | 3 = 0.529 ((No) = 48072) | § = 0.5488 ((No) = 35699)

o, o L Sl

Sample

Table 1: Estimation of the Potts model parameter

To estimate 3 we have to estimate a, b and ¢. The associated distribution is
written:

1 t+p Jt+q
Pope(X)=———exp|— (a( ) —l—b(—) +c) R I
Z(a,b,c) c_{g}ec 2 2 %
(26)
This model can be written in the form of equation (1):
Pa,b,c(X) = m exp [—CN()(X) — le(X) — U,Nz(X)] ; (27)
where:
No(X) = #x,the number of inhomogeneous cliques
+  +
M) =y Elemm (i)
inhomogeneous cliques inh.cl.
1+ p <z + p>
Ny(X) = = No(X
(%) 2 2 o(X) 2 /inhel.

inhomogeneous cliques

Table 2 shows samples from this model and the parameters estimated from
these samples.

INRIA
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0.3 | Ny | 26603 0.5 | Ny | 29171
Parameters 0.005 | N; | 1703201 0.005 | N; | 1816390
0.002 | Ny | 2777495 0.0 | Ny | 3704620
¢ 103002 | (Ng) | 27960 ¢ | 0.535 | (No) | 30495
Estimates b | 0.0052 | (N;) | 1771015 b | 0.0052 | (N;) | 1859293
a | 0.0025 | (Ny) | 2757615 a | 0.0003 | (Ny) | 3760871
Sample

Y

Table 2: Estimation of an inhomogeneous variation of the Potts model.

RR n-"3015
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4.3 The chien-model

To improve segmentations some more complex models have been proposed in
the last few years. These models consider cliques of more than two pixels
to define more accurately local configurations and their contribution to the
model. Such a model based on 3 x 3 cliques was proposed in [14]. Another
model on an hexagonal lattice can be found in [15]. These models consider
only the clique configurations. In [16], a binary model (the chien-model) taking
into account links between neighboring cliques is proposed. This model has
been generalized to the m-ary case in [17]. This model, although regularizing,
preserves fine structures and linear shapes in images. In this model, the set
of cliques is composed of 3 x 3 squares. The chien-model is defined from the
discrimination between noise, lines and edges. Three parameters (n, [ and e)
are associated to these patterns.

Before constructing the model the different configurations induced by a
3 X 3 square are classified using the symmetries (symmetry black-white, rota-
tions, etc.) This classification and the number of elements in each class are

N ﬁ N ﬁ ) E ) E . E . ﬁ ) E .
c® c(14) C(26) (50)
2 16 8

C(!

Figure 1: The different classes induced by a binary 3 x 3 model and
their number of elements

described in Figure 1. A parameter is associated to each class and refers to the
value of the potential function for the considered configuration. So, under the

INRIA
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hypothesis of isotropy of the model which induces the symmetries, we have for
such a topology (cliques of 3 x 3) fifty one degrees of freedom. The construction
of the model consists in imposing constraints by relations between its para-
meters. Two energy functions which differ only by a constant are equivalent,
so we suppose that the minimum of the energy is equal to 0. The global rea-
lization of 0 energy are called the ground states of the model and represent
the realization of maximal probability. We suppose that uniform realizations
are ground states, so we have the first equation for the parameters given by
C(1) = 0. We then define the different constraints with respect to those two
uniform realizations. The first class of constraints concerns the energy of edges
which is noted e per unit of length. Due to symmetries and rotations we just
have to define three orientations of edges corresponding to the eight ones in-
duced by the size of cliques. These constraints and the derived equations are
represented on figure 2. These constraints are defined for features of width at

EE
R W
EET

Figure 2: Equations associated with edges constraints

il ol

least equal to 3. For other features, we have to define other constraints. When
the width of the considered object is one pixel, it is referred as a line and has
energy per unit /. For larger features (double and triple lines), we consider that
the energy per unit is given by 2 X e, which correspond to left and right edge,
and get more equations. All these constraints induce eleven equations which
depend on fourteen parameters leading to the following solution (see [16] for
full details):

CB)=C(B)=¢ C(26)=1—e C(14) =Y
C(16)=C(23) = Ll—< C(11)=C(28) = §
C(35) =2 (C(29)=¥= C(13)=C(9)=C(1

6

9) =

Noise is defined by assigning to every other configuration a positive value n.

RR n-"3015
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To extend the binary chien-model in an m-ary model, we define the energy
of a given configuration as the sum of several energies given by the binary
model. Consider a configuration and a given label oq. We put every pixels of
the configuration which are in state oy to 0 and others to 1. We then have a
binary configuration. The energy of the m-ary model is the sum of the energies
obtained by these deduced binary configurations for the m labels (see figure 3).
The potential associated with each configuration is then a linear combination

N SENEEN §

Figure 3: M-ary extension of the chien-model

of the three parameters e, [ and n:
Vi=0,..,51 C(i) = e(i)e + A(i)l + n(i)n. (28)
The resulting distribution is written:

1

Pe nX = Y57 1
)= Ze 1 n)

exp [—eNy(X) — IN1(X) — nNy(X)], (29)

where:

N(X) = S M)
N(X) = 3 n@#(x)

#(X) being the number of configurations of type i in the realization X.

Results are summarized in table 3. The chosen parameter values show the
properties of the model. Indeed, we can control the total length of edges as
well as the total length of lines. Moreover, parameter n allows us to control
the amount of noise. The table also shows that we can accurately estimate the
parameters of this model.

INRIA
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e | 0.2 Ny | 32950 e | 0.4 Ny | 21089
Parameters {104 Ny | 11724 [ 108Ny | 1710
n | 0.6 | Ny | 49708 n| 1.0 | Ny | 2880
é | 0.2008 | (No) | 32857 € 10.3905 | (Ny) | 21358
Estimates [ 0.4038 | (N;) | 11669 [ 10.7843 | (N7) | 1585
7| 0.5997 | (Ns) | 49606 n | 0.9993 | (Ny) | 2947
Sample

RR n-"3015
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5 Pros and cons of the priors

5.1 Image constraints modeled by priors

In this section, we provide tests to evaluate the properties the different models
can incorporate into, for example, a segmentation result. First, we consider a
binary synthetic image (see figure 4.a). A segmented SPOT image is the se-
cond proposed test (see figure 4.b). We estimate the corresponding parameters
for each model and then synthesize the model using estimated parameters. In
this way, we can observe the properties of the initial image which are captu-
red by the different models. We first consider the synthetic image shown in
figure 4.a. Results obtained for the Potts and chien models using a MCMCML
estimation are summarized in table 4. As we consider a general model for seg-
mented images, the realization of the models are visually far from the original
image. Nevertheless, we can point out that in the case of the Potts model, the
only image characteristic represented in the simulation is the number of inho-
mogeneous cliques. For a given number of inhomogeneous cliques, there are
many more configurations composed of an uniform background with noise than
configurations composed of several homogeneous shapes. Therefore, using es-
timated parameters, the Potts model does not seem to be a regularizing prior.
As it considers cliques of 3 x 3 pixels, the chien-model allows us to define edge
and line lengths. The realization of the chien-model obtained with estimated
parameters contains different shapes. The global edge and line lengths are the
same as the original image. Therefore, it seems more appropriate to be used
as a prior for image modeling.

5.2 Bayesian inference using Markovian priors

We consider in this subsection a classical application to validate the previous
assertions concerning the priors in this study. We first consider a noisy version
of the binary synthetic image shown on figure 4.a. The original image is cor-
rupted by a channel noise of ratio 0.15 (15% of the original pixels are reversed)
(see figure 5). We perform a restoration in a Bayesian framework.

Denote the noisy image by X = (z,)scs and the restored image by YV =
(ys)ses where S is the lattice and s = (4, ) is a pixel. The data are X and
we search for Y which minimizes some cost function under the probability

INRIA



MCMCML 19

a: Binary synthetic image b: Segmented SPOT image, 5 classes

Figure 4: Test images: 256 x 256

BT

a: channel noise corrupted (7 = 0.15) b: SPOT image

Figure 5: Test images: 256 x 256

RR n~"3015
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Model | Ny | Es. par. < Ny > N; | Es. par. | < DN; >
Potts | 8706 | 0.4981 8734

Chien | 3259 0.82 3261 1462 1.5 1464
Model | N, | Es. par. < Ny >

Potts

Chien | 1101 1.6 1094

Model | Sample with estimated parameters Comments

Inhomogeneous cliques are
represented.

The simulation is far from
the original image. It re-
presents noise in a homoge-
neous background.

Potts

Edge and line lengths are
captured.

Surface mean of black areas
is greater than in the origi-
nal image due to the double
and triple lines in the origi-
nal image (bone, birds, ho-
rizontal line...)

Chien

Table 4: Comparison of Potts model and chien-model as prior for the binary
synthetic image

INRIA
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Model | N, | Es. par. < Ny > N; | Es. par. | < DN; >
Potts | 18915 | 0.6043 18129

Chien | 17856 | 0.4261 18585 1605 | 1.0203 1651
Model N, Es. par. < Ny >

Potts

Chien | 11175 | 0.7353 11750

Model | Sample with estimated parameters Comments

3
ne

A

The Potts model results in
a noisy uniform image. The
amount of noise is defined
by the number of inhomoge-
neous cliques in the SPOT
image.

Potts

The resulting image is
composed of homogeneous
areas. The edge length is
" I . given by the SPOT image.
. e The lines in the SPOT
i #ﬁ‘ . image are  represented

Cav gy 4O by little segments in the

vy } ﬁ synthetic realization.

i ‘&

&

L e _g 4
S e T e B

Chien

Table 5: Comparison of Potts model and chien-model as prior for a segmented
SPOT image
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P(Y|X). Using Bayes law, we have:

P(X|Y)P(Y)

PYIX) = =5

x P(X|Y)P(Y). (30)
P(Y) is defined by the prior whereas P(X|Y) represents the data attachment

term. As we have considered an uncorrelated channel noise of ratio 0.15, we
have:

p(zs =0lys =0) =0.85
p(zs = 1lys =0) = 0.15
Vs €5, p(zs =0lys =1) =0.15 (31)
p(rs =1y, =1) =0.85
The global probability P(X|Y) is written as follows:
P(X|Y) = H p(x5|y3) = €xXp Z lnp(x5|y5)' (32)
ses ses
We consider a prior given by equation (1). We then have:
1
PYIX) o exp |- S ONY) + Shnplals)| . (33)
Z(@) % SES

As P(Y) is a Markov Random Field, N;(Y) is written as a sum of local po-
tentials: Y .cc Ve(ys, s € ¢). We use the Maximiser of the Posterior Marginal
(MPM) estimate, found using a Gibbs Sampler [18].

The results obtained are shown in table 6. The restored image obtained
with the Potts model is still noisy. It is not surprising when we consider the
simulation shown in table 4. However, we can find in the literature better
restorations using a Potts model as a prior. In that case the parameter 3
is increased in order to over-regularize the solution. By using this trick, the
noise is erased but details are lost (see figure 6). In some cases, the parameter
B is estimated using a Maximum Pseudo-likelihood criteria [19]. Such an
estimator tend to over-estimate the parameter [11]. The chien model, however,
successfully regularises the segmentation. The noise is removed and for the
most part the structures in the image are retained. The model has truly
captured the salient characteristics of the original image.
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Model

Restored image

Comments

The result is still noisy. We
can not have the right num-
ber of homogeneous cliques

Potts and obtain a regularized so-
lution. To regularize the re-
sult we have to increase the
parameter (3.

i L
=T (v et ® . k’.' 4 *
T TN The chien-model is more
VDA W o adapted to restoration as
Chien o i it controls edge and line

lengths. The prior really
models some of the image
characteristics.

Table 6: Segmentation of a noisy binary image using MCMCML estimators

for the prior parameters

Figure 6: Restoration of figure 5 with a Potts model over-regularizing (5 = 1.0)
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We now consider the original SPOT image (see figure 5.b). We compare the
behavior of the models being studied when segmenting this image. We suppose
that each of the five classes can be represented by a normal law. The means
and variances of these classes are estimated using the empirical estimators on
the subsets defined on figure 4.b. The conditional probability P(Y'|X) is then
written as follows:

Z(1®) exp |— Z ON(Y)+> > (M — 1n(2m§)> 5%:0]

s€S class ¢ 205
(34)

This distribution is sampled and an MPM estimation performed. The resulting
segmentations using the Potts model and the chien model are given in table 7.
Both segmentations are close to that shown in figure 4. This is because the data
(figure 5.b) is very clear and noise free — it is in effect easy to segment; little
regularisation is required. The errors in the segmentations occur at the edges
of the regions. This partially explains the apparent success in the literature of
segmentations performed with the Potts model as prior — in many cases the
precise form of the regularisaton is unimportant. As we have seen with the
binary image corrupted by channel noise, this is not always true and accurate
prior modeling is important in these cases.

P(Y|X)

5.3 Sampling considerations

In the proposed MCMCML algorithm, more than 99% of the required CPU
time consists in sampling the model. Computing the log-likelihood and its
derivatives is very fast when we have the samples, indeed, once the samples
are in place performing the maximum likelihood estimation takes less than a
minute on a Sun-20. This sampling is obtained using a Metropolis-Hasting
algorithm. We first have to iterate the algorithm until we reach convergence
and then achieve enough iterations to get accurate estimates of the different
statistical moments involved in the MCMCML estimation. Among Metropolis-
Hasting algorithms, the Gibbs Sampler is the most used in image processing.
However, when considering the Potts model the Swendsen-Wang algorithm [20]
is more efficient. The Swendsen-Wang algorithm considers clusters instead
of pixels. The convergence rate is then faster than a single site updating
algorithm. Moreover, as it moves freely within the distribution, we need fewer
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Model

Restored image

Comments

Potts

The segmentation using the
Potts model consists mainly
of zones. The classification
errors are along the region
boundaries. The data is suf-
ficiently good that little re-
gularisation is needed.

Chien

The chien-model segmenta-
tion is visually very similar.
The model is well matched
to the data, but the data are
sufficiently good that the
exact form of the regulari-
sation is unimportant.

Table 7: Segmentation of a SPOT using MCMCML estimators for the prior

parameters
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samples to obtain accurate estimates of the statistical moments than when
using a Gibbs Sampler. Unfortunately, this algorithm can not be applied to
the Chien-model. Finding an auxiliary variable to define clusters in this case
is still an open issue. In a CPU time point of view, users may then prefer the
Potts model.

Notice that, for given parameters, we only ever have to sample the model
once. To compute the estimation, we need for each sample the values of the
N;. We can store these values in a data base. The parameter space can be
discretized. The discretization step depends on the robustness of the impor-
tance sampling. Once we have sample the model for each value of the discrete
parameter space the proposed algorithm requires a few seconds on a SUN 20.
We can initialize the parameters with the values corresponding to the closest
< N; > in the data base and derive the estimators without further sampling
of the model.

6 Conclusion

In this paper, we have used recent development in statistics to propose an
algorithm performing maximum likelihood estimation of Markovian prior pa-
rameters. Using importance sampling, the proposed algorithm avoids too much
sampling which would require huge CPU time. Moreover, a data base can be
computed which suppresses sampling. We are currently working on such a
data base.

Using the maximum likelihood criterion leads to accurate estimators of
the prior parameters. Therefore, we can compare the different priors and the
regularizing properties they handle. In this paper, we have considered three
Markovian priors: the Potts model and a nonstationary variation of this model,
and the Chien-model. The property handled by the two first models consists
essentially of homogeneous cliques. The chien model seems more appropriate
to image processing as it controls image features (edge length, line length,
noise) independently. On the other hand, this model requires more CPU time
as it considers higher order interactions. The quality of the data can also
influence on a practical level the choice of a priori model.
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