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Patterns in Random Binary Search Trees

Philippe FLAJOLET | Xavier GOURDON , Conrado MARTINEZ

Abstract. In a randomly grown binary search tree (BST) of size n, any fized
pattern occurs with a frequency that is on average proportional to n. Deviations
from the average case are highly unlikely and well quantified by a Gaussian law.
Trees with forbidden patterns occur with an exponentially small probability that is
characterized in terms of Bessel functions. The results obtained extend to BSTs
a type of property otherwise known for strings and combinatorial tree models.
They apply to paged trees or to quicksort with halting on short subfiles. As a
consequence, various pointer saving strategies for maintaining trees obeying the
random BST model can be precisely quantified. The methods used are based on
analytic models, especially bivariate generating functions subjected to singularity
perturbation asymptotics.

Motifs dans les arbres binaires de recherche
aléatoires

Résumé. Dans un arbre binaire de recherche (ABR) de taille n construit
par insertions aléatoires, chaque motif apparait avec une frequence qui est en
moyenne proportionnelle & n. Les déviations du cas moyen sont rares et bien
quantifiées par une loi gaussienne. Les arbres a motifs exclus apparaissent avec
une probabilité exponentiellement petite caractérisée en terme de fonctions de
Bessel. Ces résultats étendent aux ABR des propriétés connues par ailleurs
dans le cas des chaines de caractéres ou des arbres obéissant aux modéeles com-
binatoires uniformes. Ils s’appliquent & la pagination et aux arbres d’index ainsi
qu’au comportement du “tri-rapide” (quicksort). Comme conséquence, plusieurs
stratégies d’allocation de mémoire peuvent étre précisément quantifiées. Les
méthodes utilisées sont de nature analytique et reposent sur I’asymptotique de
perturbation de singularités appliquée aux séries génératrices multivariées.
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Abstract

In a randomly grown binary search tree (BST) of size n, any fixed pattern
occurs with a frequency that is on average proportional to n. Deviations
from the average case are highly unlikely and well quantified by a Gaus-
sian law. Trees with forbidden patterns occur with an exponentially small
probability that is characterized in terms of Bessel functions. The results
obtained extend to BSTs a type of property otherwise known for strings
and combinatorial tree models. They apply to paged trees or to quicksort
with halting on short subfiles. As a consequence, various pointer saving
strategies for maintaining trees obeying the random BST model can be
precisely quantified. The methods used are based on analytic models,
especially bivariate generating functions subjected to singularity pertur-
bation asymptotics.

1 Introduction

The model of randomly grown binary search trees, hereafter called the BST
model, is of interest in the analysis of binary search trees, their randomized ver-
sions —like treaps [1, 36] or rBSTs [38]—, and k-d-trees for multidimensional
search [30, 33, 40]. By a standard equivalence principle, this model also applies
to heap-ordered trees for priority queue maintenance [40, 43], to tree representa-
tions of permutations [4, 40, 42], as well as to quicksort [30, 40, 42]. In addition,
empirical studies by software engineers suggest that the BST model is perhaps
more adequate for syntax trees and term trees than the common combinatorial
model where all trees of a given size are taken with equal likelihood; a plausible

reason is that the combinatorial model tends to produce trees that are often



too “skinny” to model closely trees that occur naturally in this context (Gilles
Kahn, private communication, 1994).

In abstract terms, the BST model produces for each size n a random plane
binary tree which consists of an internal node (the root) connected to a left
subtree of size K and a right subtree of size n — 1 — K. There K is a random
variable uniformly distributed over its range,

1
Pr{K =k} = —, k=0,1,...,n—1, (1)
n
and the subtrees recursively obey the BST model. By design, the model of BSTs
applies to two closely related types of trees built on random permutations:

— the binary search tree where the first element of the permutation is placed
at the root, with elements smaller and larger than the root going respec-
tively to left and right root subtrees;

— the increasing binary tree (also called “heap-ordered” tree) where the
smallest element is placed at the root, with elements left and right of
the minimum going respectively to left and right root subtrees.

We refer to [30, 33, 40, 42] for basic combinatorial and probabilistic properties;
for instance, the trees produced have expected height ~ 4.31107 logn, their
path length is ~ 2nlogn so that a search costs ~ 2logn on average, and the
number of leaves (nodes with both descendents external) is ~ n/3 on average.

In this paper we investigate fine characteristics of the shape of trees produced
by the BST model. Given a fixed binary tree u, called the pattern, we examine
the number of occurrences wy[t] of u as a subtree! of a larger tree t called
the text. Taken over a random BST of size n, this random variable has an
expectation that is ~ ¢(u) - n for some effectively determined constant c(u), its
standard deviation is O(y/n), and its distribution is found to be asymptotically
normal. Thus, an overwhelming majority of trees will behave closely like what
the average case analysis predicts. Trees not containing pattern u, are found
to have an exponentially vanishing probability, where the exponential rate is
characterized in terms of zeros of Bessel function equations. (See [35] for a first
connection between Bessel functions and occurrence counts.)

These phenomena are analogous to what happens in random binary strings
where a pattern u has on average ~ n/?'“' occurrences, with a companion
Gaussian law. Strings with excluded patterns (for instance no sequence of 3
identical characters in a row) have exponentially small probability, with the
exponential rates being given as roots of correlation polynomials [15, 24, 40, 45].
Similar properties hold true for the combinatorial tree model as established

in [18, 41].

1 As usual, a subtree of a tree t is defined by a node of ¢ together with all its descendents.
We are thus counting here occurrences of “terminal” subtrees.



Such analyses, apart from being of combinatorial interest, are relevant to
efficient storage representations of trees. A straightforward implementation of
a binary tree of size n involves a total of 2n pointers amongst which n + 1 are
attached to an external node and are void of information content. By distin-
guishing between the 4 basic types of possible nodes —binary, left unary, right
unary, and leaves— one obtains a representation of trees that only requires n—1
pointers. Pushing the idea further leads to pointer-free representations for small
subtrees occurring at the fringe of the tree. For instance, our analysis shows
that the number of pointers is reduced to ~ 4n/5 when fringe subtrees of the 3

types

are encoded as special pointer-free nodes. (Similarideas are often used to obtain
compacted form of digital trie dictionaries, see for instance [37].)

Pushed to its limits, the pointer-free representation gives rise to the directed
acyclic graph (DAG) representation, also known in parsing and compiling as
common subexpression factoring [18]. Naturally, this technique would not apply
directly to BSTs, where internal nodes contain important informations, but,
with minor adjustments, it is applicable to parse trees statistically governed by
the BST model. We show here that the expected size K,, of the DAG associated
to a BST of size n is of order at most n/logn. This result contrasts with the
corresponding estimate of @(n/+/logn) under the combinatorial model [18] and
it confirms that trees obeying the BST model are better suited for compaction.

Another consequence of the methods developed here is a distributional anal-
ysis of the storage requirements of paged BSTs, or equivalently of the number
of recursive calls of quicksort under the strategy of halting on subfiles of size
less than a fixed threshold b.

Some of the distributional results of Section 5 are quite similar in spirit to
theorems obtained by Devroye [10]. Devroye develops a general framework for
the study of local order patterns in random permutations that is based on the
central limit theorem of probability theory extended to random variables with
restricted dependencies. In particular, Devroye’s approach yields central limit
laws for leaves and for nodes with k& descendents (compare with our Thm. 5).
The approaches of this paper and of [10] are complementary. Devroye’s method
applies more naturally to problems expressed on the linear representation of
permutations, especially local order patterns of close neighbours. Our method,
being based on the tree decomposition, seems more suitable for recursively de-
fined parameters of the tree structure, like occurrences of subtrees and paging.
In addition, it may give local limit laws (Thm. 6) and quantify rare events
(Thm. 2,3) as well as convergence rates (Thm. 4,5).



2 Mean, variance, and generating function

The probability A(u) for a given unlabelled tree u to be the shape of a random
BST of size |u| is well-known to satisfy [30, 40]

ORI ﬁ

v<UuU

where the product is over all subtrees v of u. The parameter A has been studied
in detail by Fill [14]. All analyses relative to the occurrences of pattern u involve
crucially A = A(u) as well as the pattern size m = |u|. We will often omit the
dependence on u in parameters or generating functions.

Let w[t] = wy[t] denote the number of occurrences of pattern u as a subtree
of the BST t (possible labels of ¢ are not taken into account). Then, one has
the obvious recurrence:

wt] = [t = u] +wlto] +wlta],

where tg,?; denote the left and right subtrees of t and where the bracket notation
[P] is the indicator of P with value 1 if the predicate P is true and 0 otherwise.
The bivariate generating function (BGF) F(z,y) defined by

Fz,y) = Z /\(t)y‘“[t]zltl

is such that the coefficient [z"y*]F'(z, y) represents the probability that a random
BST of size n has & occurrences of u. We have:

Lemma 1 The bivariate generating function F(z,y) satisfies the Riccati equa-
tion

a—zF(z,y)IFQ(Z,y)Jr(y—1)A(U)|U|Z'“'_1, F(0,y) = 1. (2)

Proof. The tree function y*[* satisfies the recursive relation

yw[t] — o It=ul yw[tg]yw[tl]’
which means that y“[] is multiplicative over subtrees, except in the single case
when ¢ = u for which ¥° = 1 should be replaced by y' = y. By the shape of the

splitting probabilities —check directly by means of recurrences implied by (1),
or see [40, 42] for more general approaches— this gives the integral equation

Flz,y) =1+ /0 F(w,y) dw + (y — DA(u)2l"l,

The statement then follows by differentiation with respect to z. O



Mean and variance. By a classical process, the moments of the number of
occurrences of u are obtained by successive differentiation of the BGF F(z,y)
with respect to y, upon setting y = 1. The easy computation is summarized by
the following statement that is of folklore knowledge.

Theorem 1 (Moments of occurrences) The number €, of occurrences of
a pattern u of size m in a random BST of size n has mean p, = E{Q,} and
variance 02 =V {Q,} that satisfy

922
PO, S,
Hn ™ m+ 1)(m + 2)

y 2 222(11m? + 22m + 6)

o, ~ — - n,

n (m+1)(m+2) (m4+1)2(m+2)22m+ 1)(2m + 3)
where A = A(u) is the probability of a BST with shape u.

Proof. We have

e OF(z,y
#n:[z]% ) 0721:¢n+:un_/172m
Yy

y=1

where ¢,, is the second factorial moment,

1 O?F(z,y)

&n = E[zn] ayz

y=1

By differentiation with respect to y of the basic equation (2), the ordinary
generating functions M(z) := ), un, 2" and ®(z) := ), &,2" satisfy the first
order differential equations:

2
1—=z

M(2) + Amz™"1, d'(z2) L(D(z) +2M?(z).

:l—z

M’(z) =

These equations are a priori solvable by quadrature through the variation of
constant method; both functions turn out to be rational fractions with a pole
at z = 1 of respectively 2nd and 3rd order. For dominant asymptotics of o2,
one needs accordingly 2-term and 3-term expansions of M (z) and ®(z) near the
singularity z = 1. The computations are easily completed with the help of the
symbolic manipulation system Maple. O

In particular, a random BST of size n has on average ~ n/3 nodes that are
leaves, hence ~ n/3 binary nodes, a well-known fact. This indicates a better
balancing for BSTs than for trees under the combinatorial model where these
quantities are ~ n/4, see for instance [40].



Bessel function solutions. We now proceed with an explicit solution of
the Riccati differential equation (2). Solutions to such a nonlinear equation
are always reducible to quotients of solutions of second order linear differential
equations. We thus perform the basic change of variables

P = -2, Q

where w'(z,y) = w,(z,y) is the partial derivative with respect to z. The Riccati
equation of Lemma 1 induces the second order equation

62 m—1

a710(2,y)—Az w(z,y) =0, A=Xxm-(1-y)
with, again, A = A(u), m = |u|. This equation is readily solved by indeterminate
coefficients: with w, = [z"]w(z), we have the recurrence:

(n+m)(n+ m+ Dwppmer = Awy,.

Introduce now the two functions

4 B z 22
m(@) = I s DEm s )@ T
z 22
Mt Dm+2)  mr)m+2)Cmremts) '(’4)
so that any solution to the linear equation is a linear combination of A,,(z) and
2B (z). These are normalized Bessel functions [46] of orders —1/(m + 1) and

1/(m + 1) respectively. In effect, defining

Bm(z) = 1+

r

@(z)=Zr;(a+1)<a+2)~~<a+r)’

r=0

one has

).

Am(z) = j—l/(m+1)(ﬁ)a Bm(z) = jl/(m+1)((m_i 1)2

The initial conditions arising from the combinatorics of the problem entail that
—w'(z,y)/w(z,y) = 1 + 2z + O(z?) at the origin (for |u| > 2), and one may
impose additionally w(z) = 14+ O(z), which fully determines w(z). Hence:

Lemma 2 The bivariate generating function of the number of occurrences of
pattern u is given by

F(z,y):_iﬁ((:j)), w(z,y) = Am(AZ"FY) = 2By (A2™FY), (5)

with w'(z,y) = wi(z,y), A = |ulAX(u)(l —y), m = |u| > 2, and A, By, are
normalized Bessel functions given by (4).



3 Analysis of generating functions

For the reader’s convenience, we summarize here the basic principles of complex
analysis that are required in our subsequent analyses of the BST model.

The generating functions that occur throughout are meromorphic, in the
main variable z, which means that they are quotients of analytic (holomorphic)
functions. This fact is a direct reflection of the recursive binary form of the BST
model, which leads to Riccati equations, hence to quotients of analytic functions
by the basic linearizing transformation of (3). It is then well-known that the
location of polar singularities of a function dictates the asymptotic form of its
coefficients: this is a simple consequence of Cauchy’s coefficient formula detailed
in Henrici’s book [25] and briefly recalled when we first encounter it in Eq. (8).
This technique falls into the broad class of singularity analysis methods, and is
used in the univariate case for proving Theorems 2 3.

Our interest here is largely with multivariate asymptotics, where it is re-
quired to extract information on coefficients

fn,k = [Znyk]F(Z,y),

of a bivariate generating function F(z,y), like in Lemma 2. As is common
practice, we first perform one level of inversion, resulting in estimates of

faly) = ["1F (2, 9),

for some values of y. At this stage, the problem of estimating f,(y) belongs
to univariate asymptotics but is parameterized by y. Singularity analysis tech-
niques allow for uniform error bounds, a crucial feature for probability estimates.

The quantity f,(y) is by construction a probability generating function and
one more inversion is required in order to recover the individual probabilities
far as

far = [V 1 a(y).

The most direct approach consists in appealing to Levy’s continuity theorem
for characteristic functions; this implies estimating f,(y) for y = €%, but only
f near 0 is required because of scaling. Thus, we have a perturbation of the
univariate problem at y = 1. It turns out that f,(y) is a “quasi-power”, meaning
that it behaves very nearly like the powers of a fixed function, so that the scaled
version of f,(y) behaves like the characteristic function of a Gaussian variable,
see Eq. (13,14). In this way, a central limit law is derived in Theorems 4-
5. Analytically, the process is then essentially equivalent to Fourier inversion.
Additional results derive if one can estimate globally f,(y) by quasi-powers in
larger regions, like |y| = 1, and not merely locally near y = 1. In that case,
the recovery of f, » from f,(y) is achieved by subjecting a Cauchy coefficient
integral,

1 dy
Jok = ﬂj{f”(y) F;

7



to the saddle point method. Large powers and quasi-powers are known to lead
to local limit laws of the Gaussian type, and Theorem 6 is an instance of this
method.

In order to carry out this program, one must analyse the way the poles of
F depend on y. By the basic linearizing transformation, this requires analysing
the behaviour of roots of various sorts of equations

S(z,y) =0,

where S is analytic in both variables z, y; see Lemma 2 with S = w.

For this category of problems, we refer to the very clear treatment by Hille
in [26]. The Weierstrass preparation theorem and the implicit function theorem
(see Section 9.4 of [26]) assert the following: if, for at yg, the equation S(z,y0) =
0 has an mth order root in z at z = 2o, then there exist also m roots {(;}7L,
of S((,y) that are near zo when y is sufficiently near to yo. Furthermore, these
local roots are algebraic functions, in the sense that they satisfy

"4 1(YCm-1+ -+ gm(y) =0,

for some functions g;(y) analytic at yo with g;(yo) = 0. Thus, functions defined
implicitly by bivariate analytic equations have a locally predictable behaviour.
We refer again to [26, p. 265-275] for details. In particular, there is no “spon-
taneous” appearance of roots of analytic equations S(z,y) = 0, as these roots
vary continuously on the Riemann sphere. Consequently, poles (in the z-plane)
of functions like F'(z,y) have a dependence on the parameter y that is of an
algebraic form (and governed by Puiseux expansions [27, Sec. 12.3]). We make
use of these properties throughout Sections 5-7.

4 Trees with excluded patterns

We now estimate the probability that a tree does not contain a given pattern
u. This problem is of combinatorial interest as it corresponds to enumerating
permutations with certain types of forbidden patterns, given the equivalence be-
tween the BST model, heap-ordered trees, and permutations. More importantly,
the analysis paves the way for the distributional results of the next section.

Asymptotic analysis of univariate and bivariate generating functions derived
from F'(z,y) depends on locating the zeros of w(z,y) where y is a parameter.
We thus define the function a,(y) to be the root of smallest modulus of the
Bessel type equation

Am(Aa™) — 2B, (Aa™t1), A =(1=y)|ulA(uw). (6)

This definition specifies a,(y) unambiguously, for |1 — y| not too large, as is
shown by the following lemma.



5

Lemma 3 For any constant c, |c| < 3,

and any pattern u of size m = |u| > 4,
the equation

A (e|ulMu) 2 — 2B, (clulA(u) 2" 1H1) = 0 (7)
admits ezactly one root in the domain |z| < 1t.

1
Proof. The idea of the proof is that, since A(u) is small, the equation is a small
perturbation of 1 — z = 0 corresponding to the first two Taylor terms of (5), so
that Rouché’s theorem [26] applies.

First, a uniform exponential upper bound on A(u) as a function of m = |u|
is needed. Asymptotically, it is known that A(u) decays at least exponentially
with |u|, see [14], and it is not hard to see that for all m > 4, one has:

lulA(u) < 27 1ul74,

(The actual asymptotic growth of |u|A(u) is exponentially smaller than the
upper bound above, so that any rough asymptotic analysis complemented by
exhaustive verifications for small m suffices to establish such a bound.)

Then the proof is completed by decomposing the left handside of (7) as
1 — z + R(z) where R(z) is the sum of terms of degree > 2. On |z| < 1, the
quantity R(z) is majorized by the sum of a geometric progression, and a simple
computation shows that |R(z)| < |1 —z| on |z| = 1. By Rouché’s theorem, the
number of solutions of the full equation (7) is the same as that of 1 — 2z = 0
inside |z| < 1. O

The proof above leaves aside six cases corresponding to the six types of trees
of sizes 2, 3,4 based on the values of {Ju|, A(u)). These cases are exhausted by
applying Rouché’s theorem to Taylor truncations of low degrees. For instance,
for ¢ = 1, the roots of smallest modulus (also called “dominant” roots) of the
characteristic equation (7) are well separated from subdominant roots and given
by the following table,

m=2 (o,(0,0,0),0) 1.10732
m=3 (o,(0,(0,0,0),0),0) 1.01762
(0,(0,0,0),(0,0,0)) 1.03748

with values 1.00861, 1.00567, 1.00280 for size m = 4.

Theorem 2 (Excluded patterns) The probability e, , that a random BST
of size n does not contain the pattern u satisfies

Cun = a (0™ H1+O(K™™))

where K is a constant strictly larger than 1, and o, (0) is the smallest positive
root of Equation (6) with y = 0, namely:

A (JulM (@)l FY) — 2B, (Ju|M(u)a!*1+1) = 0.



Proof. The probability is by definition [2"]F(z,0). By Lemma 3, the func-
tion F'(z,0) has a unique dominant singularity that is a simple pole, at a,(0)

that is positive and satisfies @, (0) < 1+ for |u| > 4. (The cases |u| < 4 are

covered by the remarks following Lemma 3.) The function —F is a logarithmic
derivative, so that its residue at «,(0) equals 1. Therefore,

_
ay(0) — z

where R(z) is analytic in a circle of radius strictly larger than a,(0).
The result follows by singularity analysis of meromorphic functions, accord-
ing to a classical process. For small enough ¢, ¢/, one has

[z"]F(z,0) = ! /||: F(zﬂ)%

lw
1 dz ]
:aUO‘"‘1+./ F(z0)—=_  (8)
© 27 J1 =(14¢)au(0) (2.0
= a,(0)" T+ O(K "y, (0)7"71),

by Cauchy’s coefficient formula, the residue theorem, and the triangular inequal-
ity. O

The same argument proves that, for small enough |y|,
["1F (2, y) ~ au(y) ™", (9)

with a uniform exponentially small error term. Now, the probability that a ran-
dom BST of size n has k occurrences of a pattern w is obtained by differentiating
k times:

F(z,0) = + R(z),

k
Pefunld =k | 1 =n} = g (el )

Differentiation of asymptotic expansions like (9) is valid for analytic functions,
so that the probability of k occurrences, for any fized k satisfies

Pri{wuft]=k | [t|=n}~ P{F (n)ag" .

y=0

There, Pzﬁk) is a polynomial of degree k whose coefficients depend on u by way
of values of «, and its derivatives at 0. Retaining only dominant asymptotics
leads to the following theorem.

Theorem 3 (Poisson law for rare occurrences) Given a fized paitern u,
for each fixed k, one has as n — +oo:

Pri{w,t]=k | [t|=n} =a,0)™ " (,u:!) <1 _}_(f)(%)) ’ o= _2228;

(10)
For small number of occurrences, the asymptotic probability of this rare event

is thus the product of a Poisson law of parameter pun and of an exponentially
small scaling factor.

10



Permutations. Theorem 2 is in line with known enumerations of permu-
tations with excluded patterns, a fact to be expected since the BST model is
also isomorphic to the model of heap-ordered (i.e., increasing) trees that itself
bijectively correspond to permutations [4, 40, 43]. For instance the exponential
generating function of alternating (or “up-down”) permutations [7] is

A(z) =tanz = S 2

)
COos z

also the negative of a logarithmic derivative, satisfying the Riccati equation
A" = 1+ A% Accordingly, the function A(z) is meromorphic and the probability
for a permutation to be alternating decays like (7/2)~", an estimate of the same
form as Theorem 2; as alternating permutations correspond to trees that exclude
unary branching nodes, this is a type of excluded pattern that is only marginally
different from the ones considered here.

5 Gaussian limit laws

Finding the asymptotic distribution of the number of occurrences of a fixed
pattern belongs to bivariate asymptotics. The starting point of our approach
is the bivariate generating function F'(z,y). The method consists in analysing
the meromorphic function F'(z,y) and its z-coefficients in the vicinity of y =1
by a technique of singularity perturbation. In this way, one proves that the
probability generating function (PGF) of the number of occurrences is, near
y = 1, well-approximated by a large power of the fixed function ay(y), like in
Eq. (9). In the “pure” case of exact powers, this situation yields a Gaussian
limit distribution, in accordance with the central limit theorem of probability
theory. Here, PGFs obey a general scheme of “quasi-powers” already studied
by Bender, Richmond, Hwang, and others [3, 19, 21, 29].

Suitable adaptations of the technique also lead to a distributional analysis
of paging, where the bivariate GF is only known implicitly through differential
equations. A local limit law for leaves is also proved by means of typical saddle
point arguments.

5.1 Pattern occurrences

The first result, also called a central limit law (of the Gaussian type), describes
the probability of deviating more than a certain number of standard deviations
from the mean in terms of the Gaussian error function.

Central Limit Law (CLL): a sequence of random variables Q,
with mean p, and standard deviation o, satisfies a central limit law

if 9 .
PI‘{MSJJ}— 1 / e~ 2 gy
On \/277 — 0

11
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where ¢, — 0 as n — +o0.

An upper bound ¢, is called a speed of convergence to the central limit. Clearly,
a CLL is equivalent to a Gaussian approximation for the partial sums Ejgk fnjs

where f, ; = Pr{Q, = j} = ["¥]F(z,y).

Theorem 4 (Central law for occurrences) Given a patiern u, the number
of occurrences €, of u in a random BST of size n obeys a central limit law
(LLL) with speed of convergence O(1/+/n). The mean and variance p,, o2
given by Theorem 1.

Proof. The quantity f,(y) = [2"]F(z,y) is the probability generating function
(PGF) of Q,, that is to say fo(y) = E {yﬂn} The semi-normalized variable
QF = (2, — pn)/+/n then has characteristic function equal to

6nt) = E {6im;} = =itV g (i (11)

By Lévy’s continuity theorem for characteristic functions [5, 32], it is enough
to prove pointwise convergence of &,(t) (for any fixed ¢) to the characteristic
function of a Gaussian variable as n — oco. In that case, the argument of f,(y)
lies in a complex neighbourhood of 1 that is of vanishingly small radius. Thus,
only a local analysis of f,(y) near 1 is needed.

The analysis of trees with excluded patterns applies almost verbatim in this
context. By the implicit function theorem and the preparation theorem of Weier-
strass (see the previous section), there is a small complex neighbourhood of 1
such that the function a,(y) is analytic. In such a small neighbourhood, we
have, by the analysis of meromorphic functions and by Lemma 3,

Fa(y) = ou(y) "1+ O(K™)). (12)

In other words, f,(y) is closely approximated by a large power of a fixed func-
tion, a situation conducing to normal laws.
Combining (11,12), we get

logn(t) = —itpnn~ 2 — (n + Dlogau (™ Y+ O(K). (1)

We have ay(1) = 1, so that, from (13), as n — oo,

—it t?

log&n(t) = ﬁ(unﬂm;(l))*—; (ali(1) + (1) = (@i (1))*) +0(n™ 7). (14)
The derivatives ! (1), /(1) are readily computed from the bivariate Taylor
expansion of the entire function w(z,y) at (z,y) = (1,1). It is found that
al (1) = —limp .o pin/n, so that

tZ
bg“ﬂ:—¥5+0m””)
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for a constant s that also equals lim,_ o, 0,/+/n and is expressible in terms
of (1), &}/(1). Thisimplies that the variable 1Q converges in distribution to a
standard normal variable. In passing, the computation provides an independent
check of the variance computation done earlier in Theorem 1.

Following Feller and Hwang [13, 29], it is also possible to bound the speed
of convergence to the Gaussian limit by means of the Berry-Esseen inequali-
ties that relate the distance between distribution functions and characteristic
functions [13, 32]. Let F,G be two distribution functions with characteristic
functions ¢(¢),7(t), G being assumed to have a density G’, and let ||h||e be

the sup norm, ||h||cc = sup,¢g |h(2)]. Then, the Berry-Esseen inequalities state

that .
24 ”G/Hoo 1 ¢(t) - V(t)
— < - - — A N N
1P =Gl < =5 +W[T | dt, (15)

for any 7' > 0. Now, the main estimate (13) applies with a uniform error term
of the form O(t3n=1/2) provided |t| < ¢;n'/?, where ¢; is a positive constant
whose value is dictated by the radius of the analyticity region of ay(y) at 1.
Taking then 7' = ¢;n'/? in (15) entails that the speed of convergence in the
central limit law is O(1/+/n). (See also Hwang’s work [29] for an interesting
analytic framework of considerable generality.) O

5.2 Paged trees

Fix a “bucket size” parameter b > 2. Given a tree ¢, its b-indez is a tree that
is constructed by retaining only those internal nodes of ¢ which correspond to
subtrees of size > b. Such an index is well-suited to “paging”, where one has
a two-level hierarchical memory structure: the index resides in main memory
and the rest of the tree is kept in pages of capacity b on peripheral storage, see
for instance [28, 33]. We let ¢[t] = ¢3[t] denote the size —number of nodes— of
the b-index of ¢. The analysis is then clearly equivalent to determining the total
number of occurrences of all patterns of size > b, or dually those of size < b.

Theorem 5 (Paging distribution) For fized b > 2, the size I,, of the b-index
constructed on a random BST of size n has average p, and variance o2 that

satisfy
p :2(n+1)_1 0_2:2(b—1)b(b+1)
" b+ 2 ’ 3 (b+2)2

The random wvariable I, obeys a central limit law with speed of convergence

O(1/v/m).

Proof. Like in Lemma 1, the bivariate generating function

G(z,y) = Z A(t)y T 1

(n+1). (16)
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satisfies a Riccati equation that reflects the root decomposition of trees,

0 d [1— 21
—G = yG* (2,1 l—y)— [ ——]. 17
6 =1 + (-0 () an)
Mean and variance follow by differentiation at z = 1, like in the case of The-
orem 1. (The result for the mean is well-known, refer to quantity A, in the
analysis of quicksort on p. 122 of [30].)

Multiplying both sides of (17) by y now gives an equation satisfied by

H(z,y) = yG(z,y),

0 R d [1— 21
5, 1) =yl (2,9) +y(1 - y) = (ﬁ) :

that may as well be taken as a starting point since H(z,y) is the bivariate GF
of parameter 1+ ¢; (a quantity also equal to the number of external pages). In
order to apply the linearization transformation, one sets

Xi(z9)

H(z,y) = —m,

so that

0? d [1— 201
T X +aly = DAGX G =0, A6 = (L) 0
with X(0,y) = 1, X.(0,y) = —y. By the classical existence theorem of Cauchy,
the solution of (18) is an entire function of z for each fixed y, as the linear
differential equation has no singularity at a finite distance. Furthermore, the
dependency of X on y is also locally everywhere analytic; see the remarks of [44,
Sec. 24], for which a proof derives by inspection of the classical existence proof
based on indeterminate coefficients and majorant series. Thus, X (z,y) is actu-
ally an entire function of both complex variables z and y. As a consequence, for
any fixed y = yo, the function H(z,yo) is a meromorphic function of z whose
coefficients are amenable to singularity analysis.

In order to proceed further, we need to prove that, in a sufficiently small
neighbourhood of y = 1, X(z,y) has only one simple root, corresponding for
H(z,y) to a unique dominant and simple pole. This fact itself derives from the
Preparation Theorem of Weierstrass (see the discussion in the previous section):
in the vicinity of any point (20, yo) with X (zo,y0) = 0, the roots of the bivariate
analytic equation X(z,y) = 0 are locally branches of an algebraic function. Here,
we have X(z,1) =1 — z. Thus, as y tends to 1, all solutions of X(z,y) must
escape to infinity except for one branch f(y) that satisfies 3(1) = 1. By the
nonvanishing of X;(z, 1) and the implicit function theorem, the function f(y)
is additionally an analytic function about y = 1.
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The argument is now completed like in the proof of Theorem 4. We have,
for y in a sufficiently complex neighbourhood of 1,

[ H (2,y) = Bly) """ (1+ O(K™™))

for some fixed constant K > 0. Thus, the probability GF of ¢;[t] over trees of
size n is asymptotic to a large power, and by the computation of (11-14), the
Gaussian limit results. O

Sets of patterns. Note that the proof architecture is robust enough to
survive the disappearance of explicit Bessel function solutions. For this reasons,
it applies in full generality to any finite collection of patterns, S. In this way,
one can prove the following result: the occurrence count

wslt] ==Y wil[t],

SES

under the BST model of size n, has an expectation u, and a variance o, that are
linear in n; in addition, it satisfies a central limit law. In the general context of
this paper, the Laplace transform of the distribution of w also exists for real y
in a real interval strictly containing 1, and this fact implies ezponential tails
for large deviations from the mean, see [5, 19, 29]. Thus, there exist positive
constants A, B (depending only on S) such that

Pr{|ws[t] — pn| > zv/n | [t| =n} < Ae™P7.

5.3 Local laws

As seen in Section 5.1, a central limit law approximates the distribution function
of the number of occurrences by a Gaussian error function. A local limit law
(of the Gaussian type) means a direct approximation of the the probabilities by

the Gaussian density (i.e., the normalized form of the function e‘x2/2).

Local Limit Law (LLL): a sequence of random variables Q,, with
mean u, and standard deviation o, satisfies a local limit law if, for
z in any fixed compact subset of ]0, 40|,

—z?/2

1
sup |0 Pr{Q, = |pn + 204} — \/Te — 0.
T T

Clearly, an LLL provides a direct estimation for the coefficients f, » = Pr{Q, =
k} = [2"y*]F(z,y). Local limit law usually accompany central limit laws, but
their proofs require strong regularity conditions on the distribution; see [2] for
a clear discussion.
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Theorem 6 (Local law for leaves) A local limit law in the sense of (LLL)
holds for the number of leaves in random BSTs, that is to say, the number of
occurrences of the particular pattern ‘o’. The mean u, and variance o, are

n+1 2(n+1)
n — s Op = ——— -
# 3 45

We present here a proof schema based on a lemma of greater generality that
also clearly delineates the power and limitations of the analytic method. For
an arbitrary pattern u, ay(y) may be defined as the root of smallest modulus
of the transcendental equation (7). By Lemma 3 and subsequent remarks, this
function is uniquely defined in a disc that properly contains the unit disc; for
instance, we may take |y| < %, for |u| > 4, by Lemma 3. As already noted,
ay(y) that is single-valued and locally analytic in such a disc is also globally an
analytic function of y.

Lemma 4 Given a pattern u, assume that the uniqueness condition holds:
Condition (C): |ay(y)| # 1 for all y with |y| =1, y # 1.
Then the random variable Q, satisfies a local limit law in the sense of (LLL).

Proof (sketch). The condition (C') means that for |y| = 1, the function F(z,y)
has, when y varies, a pole of modulus 1 in the sole case when y = 1. Also, for
|yl = L and y # 1, we must have |, (y)| always on the same side of 1, and, in fact,
we have |ay(y)| > 1 for all y # 1 by virtue of the property [2"]F(z,y) = O(1)
when |y| = 1.

By singularity analysis of the meromorphic function F(z,y), we have, by an
argument used repeatedly before,

£2l) = [P (2,0) = 0u0) "7 (14 O(K ™).

for some K > 1. The individual probabilities f, ; can then be recovered by
Cauchy’s coefficient formula,

A 1 —-n—1 dy
faw =Y faly) = %in /|y|=1 ou(y) yEFL T enks
where ¢,  is exponentially small.

As is classically known, coefficients of large indices in large powers can be
extracted by the saddle point method and, granted unicity of the saddle point
on the contour (here |y| = 1), the consequence is a local limit law (LLL). We
refer to [17, 20, 22, 23, 29] for this fact that is also an offspring of analytic
approaches to local and central limit theorems originally stemming from the
work of Daniels [8]. Here, there is a saddle point at y = 1 and the argument
establishes the local limit law, assuming the uniqueness condition (C). O
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Figure 1: A polar plot of |ay,(e!?)| as a function of @ in the case of leaves (u=‘0’).

Note also that a speed of convergence of O(1/+/n) in the local law derives
from the saddle point method.

Proof (Theorem 6). The preceding discussion specializes easily to the case of
leaves, where explicit expressions for F'(z,y) are available. The Riccati ODE,

TPy =Py, FO)=1,

reduces to a second order linear ODE that has constant coefficients. From there,
one finds

1 — étanh(éz)

F(z,y) = §=(1-y2 19
(z,9) 1 —é-1tanh(6z)’ (1-v) (19)
The function oy (y) is then explicit,
1 1 1+46
ay(y) = gatanh(é) =5 log li_—é’

and the uniqueness condition of Lemma 4 is easily checked to hold. O

As an illustration, we have
au(1) = 1, |ay(eX)] = 1.02267, |ay(e2%)] = 1.09659, |a, (3| = 1.24410,
and Figure 1 offers a polar plot of £(6) = |ay(e')|, with £(6) plotted on the

ray of angle 6. More generally, we believe the uniqueness condition (C) to
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hold true for any fixed pattern u, not just leaves. In any particular instance,
the condition of Lemma 4 could at least be tested by numerical analysis and
carefully controlled error bounds.

Permutations. By the bijective correspondence between increasing trees
and permutations, f, ; also equals the probability for a random permutation o
of size n to have k peaks, that is to say configurations such that o;_1 < o; >
0i+1. Thus, Theorems 4, 6 provide asymptotic laws for permutations counted
according to size and number of peaks; see also [9, Ch. 10]. The situation of
peaks then appears to be analogous to that of Eulerian numbers [7, 30, 40] that
count permutations according to size and number of ascents (configurations
such that o; < o;41), where both a central law [9, 39] and a local law [2, 31] are
known.

6 Factored representations of trees

We consider finally a global parameter [t] of trees that represents the number
of structurally different subtrees (i.e., number of different subtree shapes) that
occur in t. This parameter is of intrinsic interest as an indicator of the structural
“richness” of t. It also measures the optimal storage complexity of tree ¢ when all
common subtrees are factored and represented only once. Then, x[t] measures
the number of nodes of the maximally factored DAG (directed acyclic graph)
corresponding to ¢, a quantity that intervenes in parsing and data compression
applications [18]. We call «[t] the DAG size of tree t.
By its definition,

R = Y ue = 3 [wald] > 11,

ue7T ueT

where the sum is over the set 7 of all tree shapes, [-] is the indicator function,
and u € t is true if u occurs (at least once) as a subtree of t. We denote by K,
the average value of k[t] under the BST model of index n, so that

Ko=) M) s[t],

|t|=n

where A(%) is the probability of the tree shape ¢ under the BST model.

Under the combinatorial model where all trees are taken equally likely, the
corresponding expectation K, grows like n/+/logn, see [18]. In the BST model
where trees tend to be more balanced, we expect a prior: fewer different sub-
trees, that is to say K,, <€ K,. The following simple bound justifies this obser-
vation.
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Theorem 7 The average value of the DAG size of a random BST of size n
satisfies the upper bound,

K, < 4(log2) n ol loglogn .
logn (logn)?

Proof. Fix a cutpoint paramemeter b (to be adjusted later). An upper bound
vp[t] on k[t] is

vp[t] = Bo + By + - -+ By + w[t],

where ¢4[t] is the number of nodes in t whose subtrees have size > b, and

be (%)
kE+1\ k

is the Catalan number that counts the number of binary trees with % internal
nodes. Combinatorially, vp[¢] is the size of an approximate DAG representation
where all trees of size less than b are represented once, irrespective of their
possible nonoccurrence in ¢, and nodes commanding subtrees of size > b are
each represented irrespective of the fact that they may be associated to repeated
subtrees. In other words, v[t] is the size of a partly redundant and partially
factored DAG representation.

Let Uy, and I;,, be the expectations of v; and ¢; under the BST model of
size n. The analysis of ¢; is exactly that of paging in Section 5.2, and we have
by Theorem 5, for n > b,

2n b

Iyn = 12 12 (20)
As the Catalan numbers grow like 4*k~3/2 we also have, for any b:
4b
B°+Bl+"'Bb:O(b3T)' (21)
Thus, we have ,
K, < 2771 + (’)(b;%).

Equipped with this family of upper bounds, we can now optimize the choice
of the cutpoint b in (20,21). Adopting

logn —loglogn

b:L Ja

log4

so that
4% n n nloglogn
— =00 — Iy n = 4(log 2 0
ZE <<1ogn)5/2)’ b = Hllog2) oo + ( (logn)? )

19




Values of y | Combinatorial property

y=20 Excluded pattern Thm. 2
y=0 Rare occurrences Thm. 3
y=1 Moments Thm. 1
y=1 Central limit law Thm. 4, 5
ly| =1 Local limit law Thm. 6

Figure 2: The correspondence between regions of the auxiliary variable y and
combinatorial properties of pattern occurrences.

yields the stated inequality. O

Based on simulations and heuristic analysis, we have reasons to believe that
the upper bound on K, is of the right order. We know by Thm. 1 that any fixed
pattern occurs almost surely in a large random tree. The argument of the upper
bound suggests that, almost surely in a large BST of size n, all the patterns of
size a bit less than log, n occur at least once while all the patterns of size a bit
more than log, n occur at most once. (Analogous laws are known for random
strings [15].) Second moment methods based on Theorem 1 seem to crude to
establish such properties. Perhaps the thresholds could be precisely quantified
along the lines of Theorems 2, 3, 4, by allowing for uniform error terms when
|u| grows with n; see [15] for strings. This would lead to a precise asymptotic
estimation of K.

7 Conclusions

There are two aspects of possible interest in the present work, one relative to
the “physics” of random trees and permutations, the other concerning method-
ologies for multivariate asymptotics.

Regarding methodology, the analysis of pattern occurrences as presented
here is attached to the general domain of bivariate asymptotics. Here, the com-
binatorial problems translate into nonlinear differential equations that, being of
the Riccati type, lead to linear second-order ODE’s. Singularities in the main
variable z drive the asymptotic behaviour of the bivariate generating function,
with the auxiliary variable y entering as a parameter. It is interesting to note,
and typical, that different regions of values of the auxiliary variable provide
information on excluded patterns, rare ocurrences, as well as central or local
limit laws, as summarized in Fig. 2. Globally, the process belongs to the class
of singularity perturbation methods; see [4, 12, 16] for related situations.

Regarding the physics of the problem, random structures of a large size
tend to have any small subconfiguration whose occurrences obey a Gaussian
law, whether local or global. This is a well-established fact for random strings
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(see, e.g., [15]) with implications in computational biology [45, Chap. 12], for
random combinatorial trees as implied by the results of [18, 41], as well as
for random graphs of various sorts [6]. Our work adds random binary search
trees to the collection, and recent analyses by Devroye [11] suggest that such
universal behaviour should persist for many other types of trees. Consideration
of multiway search trees that exhibit some sort of Gaussian behaviour, as shown
by Mahmoud and Pittel [34], also supports this expectation.
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