B. , M. D. Berkemeier, and R. S. Fearing, Control of a two-link robot to achieve sliding and hopping gaits, Proc. of IEEE Conf. on Robotics and Automation, pp.286-291, 1992.

B. , P. Berg-e, Y. Pomeau, and C. Vidal, Order within chaos Mechanical design & control of the pendubot, SAE Earthmoving Industry Conference, P eoria, IL, 1984.

B. Bavarian, B. F. Wyman, and H. Hemami, Control of the constrained planar simple inverted pendulum???, International Journal of Control, vol.1, issue.4, pp.344-358, 1983.
DOI : 10.1080/00207178308933006

B. Espiau and A. Goswami, Compass gait revisited, Proc. IFAC S y m posium on Robot Control (SYROCO), pages 839{846, 1994.

]. C. Fra96 and . Frann-cois, Contribution a l a l o comotion articul ee dynamiquement stable (in French), 1996.

M. Garcia, A. Chatterjee, M. Coleman, and A. Ruina, Complex behavior of the simplest walking model, 1996.

G. A. Goswami, B. Espiau, and A. Keramane, Limit cycles and their stability in a passive bipedal gait, Proceedings of IEEE International Conference on Robotics and Automation, pp.246-251, 1996.
DOI : 10.1109/ROBOT.1996.503785

G. , A. A. Grishin, A. M. Formalsky, A. V. Lensky, and S. V. Zhitomirsky, D y namic walking of a vehicule with two telescopic legs controlled by t wo drives, The International Journal of Robotics Research, vol.13, issue.2, pp.137-147, 1994.

G. , C. L. Golliday, and H. Hemami, An approach to analyzing biped locomotion dynamics and designing robot locomotion controls, IEEE Trans. on Aut. Cont, vol.22, issue.6, pp.963-972, 1977.
DOI : 10.1109/tac.1977.1101650

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations, 1983.
DOI : 10.1115/1.3167759

G. A. Goswami, A. Keramane, and B. Espiau, Compass-like biped robot Part II: Control Strategies, 1996.

K. Gajewski and B. Radziszewski, On the stability of impact systems, Bulletin of the Polish Academy of Sciences, vol.35, pp.3-4183, 1987.

]. C. Hay85 and . Hayashi, Nonlinear Oscillations in Physical Systems, NJ, 1985.

Y. Hurmuzlu and T. H. Chang, Rigid body collisions of a special class of planar kinematic chains, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.5, pp.964-971
DOI : 10.1109/21.179836

Y. Hurmuzlu and G. D. Moskowitz, The role of impact in the stability of bipedal locomotion, Dynamics and Stability of Systems, vol.1, issue.3, 1986.

D. Koditschek and M. B. Uhler, Analysis of a Simpliied Hopping Robot The International Journal of, Robotics Research, vol.10, issue.6, 1991.

J. A. Kelso, K. G. Holt, P. Rubin, and P. N. Kugler, Patterns of Human Interlimb Coordination Emerge from the Properties of Non-Linear, Limit Cycle Oscillatory Processes, Journal of Motor Behavior, vol.238, issue.4, pp.226-261, 1981.
DOI : 10.1080/00222895.1981.10735251

]. B. Koo89 and . Koopman, The three-dimensional analysis and prediction of human walking, 1989.

M. , R. T. Mccloskey, and J. W. Burdick, An analytical study of simple hopping robots with vertical and forward motion, Proc. IEEE Robotics & A utomation, pp.1392-1397, 1991.

]. T. Mcg90 and . Mcgeer, Passive dynamic walking, Int. J. of Rob. Res, vol.9, issue.2, pp.62-82, 1990.

]. T. Mcm84 and . Mcmahon, Muscles, Reeexes, and Locomotion, 1984.

J. P. Ostrowski and J. W. Burdick, Designing feedback algorithms for controlling the periodic motions of legged robots, [1993] Proceedings IEEE International Conference on Robotics and Automation, pp.260-266, 1993.
DOI : 10.1109/ROBOT.1993.292156

]. E. Ott93 and . Ott, Chaos in Dynamical Systems. C a m bridge University Press, UK Chua Practical numerical algorithms for chaotic systems Springer, 1989.

M. H. Raibert, Legged R obots that Balance, 1986.

]. M. Spo95 and . Spong, The swing up control problem for the acrobot. IEEE Control Systems Magazine, F ebruary 1995, TS91] H. Troger and A. Steindl. Nonlinear stability and bifurcation theory, 1991.

V. , A. F. Vakakis, and J. W. Burdick, Chaotic motions in the dynamics of a hopping robot, Proc. IEEE Robotics & Automation, pp.1464-1469, 1990.

I. Unité-de-recherche, . Lorraine, V. Technopôle-de-nancy-brabois, I. Unité-de-recherche, and . Rennes, Campus scientifique, 615 rue du Jardin Botanique Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unité de recherche INRIA Rhône-Alpes, 2004.