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Abstract: We consider two optimal control problems for first order martensitic phase transitions
in a deformation—driven experiment on shape memory alloys including state constraints for the
total stress and the temperature. We control by the elongation of a thin rod and by the outside
temperature. The control problems are stated, and the necessary conditions of optimality are

derived.
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Problémes de contréle de matériaux & mémoire de forme

Résumé : On étudie des problémes de controle frontiére avec des contraintes sur I’état pour des
modéles non linéaires de transition de phase de matériaux a mémoire de forme. On obtient des

conditions d’optimalité pour les problémes de controle.

Mots-clé :  contraintes sur ’état, condition d’optimalité, transition de phase



Boundary Control Problems for Shape Memory Alloys under State Constraints 3

1 Introduction

In this paper, we consider optimal control problems for a deformation—driven experiment on shape
memory alloys (SMA) with state constraints for the total stress and the temperature. SMA exhi-
bit a non—monotone temperature—dependent hysteretic behaviour in their load—deformation cycles
leading to interesting industrial applications. In a series of papers (cf. [6],[7],[8], for example),
Falk introduced a one-dimensional model that is based on the Landau-Ginzburg theory of phase
transitions and uses the linearized shear strain & = u,, where u denotes the displacement, as order
parameter. The corresponding (Helmholtz—) free energy F' = F(u, ), where 6 denotes the absolute

temperature, is given by

F(e,0) = Fo(0) + 0F, (¢) + Fy(e), (1.1)
where
]
Fo(6) = —c.6 log (5) Feb+C, (1.2)
and
F(a)—1 g2 F(es)——1 052—1654—%1&56 (1.3)
1 — 27 ) 2 — 27 1 4 6 ) .

with positive constant heat capacity c., a critical temperature 61, and positive material constants
6,C,a, B, and ~, which have to be determined for each specimen. For thermodynamical reasons, i.e.
in order to comply with the second principle, the constitutive equations yield for the total stress:
oF (
Oe

g =

£,0)=—v(0—0)e— [+ ac. (1.4)

In a deformation—driven experiment, a thin rod of a SMA is fixed on one side and pushed and
pulled on the other side in the course of time by an elongation m. In such experiments, the order
parameter is taken to be € = u,, u denoting the displacement ¢n the direction of the rod. For a
detailed description of the physical background, we refer the reader to [2],[3]. Summarizing, we have

the following system (2 := (0,1), Q :=Q x (0,7)):

pus — (v(0 —0) up — Bud + aud)y + Stupppe =0, in Q, (1.5a)
Ce O — KOz — vOuzug = g(z,t), in Q, (1.5b)
u(0,2) = 1z (0,1) = uze(,8) =0, w(l,t)=m(t), Vtel[0,T],

0:(0,t) =0, —rb:(l,t)=r(0(1,t)—0r(t)), Vtel0,T],

u(z,0) = uo(z), ui(z,0)=1us(z), 6(z,0)=0p(z), YaeQ, (1.5¢)

The equations (1.5a) and (1.5b) represent the balance laws of momentum and energy, respectively.
The physical meanings of the involved quantities are: p — constant mass density, & — positive
constant heat conductivity, g — density of heat sources or sinks, [ — length of the rod (which is

normalized to unity: [ := 1), K — positive constant heat exchange coefficient, 6 — temperature of
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the surrounding medium. The couple stress leads to the Ginzburg—term § - %z, & being another
positive material constant. The boundary condition for » at z = 1 reflects the pulling and pushing
of the rod in the course of time by a prescribed elongation m. The other boundary condition for
the momentum balance has been taken in analogy to [11]. The boundary condition for the energy
balance models a heat exchange with the surrounding temperature at z = 1 using Newton’s law.
We normalize all physical constants to 1, except for #; which is set to 0. In order to deal with
homogeneous boundary conditions, we transform the system (1.5) by @(z,t) := u(z,t) — z - m(t).
An additional term p - - ™ (t) appears only on the left hand side of the momentum balance. We
now have £ = u, + m(t) instead of ¢ = u,. For simplicity, the tilde for u and u,, repectively, is
omitted. We denote by & the polynom (1.4) where £ = u, is replaced by € = u, + m(t).

In this paper, we consider the optimal control of the phase transitions governed by the following

weak formuation of (1.5):

/OT < ug(s), ¢(s) > H1 xH] ds —I—/()T/Qxffl(s)qbdxds —|—/()T/Q(}¢deds

T
[ [ e badxds =0, Yo L0, T3HY(9), (1.6a)
0 JQ
O — 0 (ug +m(t)) (ugt +m(t)) — b =g, ae. in Q, (1.6b)
u(0,t) = u(l,t) = Vi e[0,7], ugz(0,t) =uze(1,6)=0, ae. in (0,7),

07
0:(0,t) =0, —0.(1,t)=6(1,¢t)—0r(t), ae. in (0,7),
w(z,0) = up(z), w(z,0)=uy(z), 6(z,0)=0(z), VzeqQ, (1.6¢)

where we want to admit state constraints for the total stress o defined by (1.4) and the temperature

f. Under the following assumptions

(H1)  me H?0,T); gelL*0,T;L%Q); g(z,t)>0 on Q;

Or € H'(0,T); 6r(t) >0 on [0,17; (1.7)
(H2) o € HH(Q) = {ue H*S) | u(0) = u"(0) = u(1) = «"(1) = 0};
up € Hy(Q); 6o € H'(Q); 6p(z) >0 on Q, (1.8)

the existence and uniqueness of a weak solution has been proved in [4].

Theorem 1.1 Suppose that (H1) and (H2) are satisfied. Then the system (1.6) has a solution
(u,0) on Q salisfying

u € Xypi=W220,T; HHQ) nWhe(0,T; HY(Q)) N L>(0,T; HE(Q)) and
0 € Xor:=H*» Q)N L>0,T; H(Q)), (1.9)
for any T > 0.

Lemma 3.5 in [4] states uniqueness. We recall that, with stronger assumptions for the data, the

existence and uniqueness of a classical solution can be proved (see [11],[2],[4]).
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Related optimal control problems have been studied so far in [1] concerning load—driven experi-
ments, state constraints for those problems have been imposed in [9] and [10]. Therein, boundary
control problems with state constraints for the transversal displacement and on the shear strain,
respectively, were introduced. It has been left out as an open problem whether state constraints for
total stress and for the temperature are possible.

Now, in [4] we have shown the differentiability of the observation operator as mapping into the

solution space X; 7 x Xy 7, while in [1] only the differentiability into the Banach space

B = Wh*(0,T; L*(Q)) N L>(0,T; Hy(Q) N H*(Q))
x  L*0,T; HY(Q)) N L>=(0,T; L*(Q)) (1.10)

has been proved. Since Xj 7 is continuously imbedded in C'(€27), this means that also pointwise
constraints on the temperature # and therefore on the stress o, too, can now be included in the
control problem. This was not possible in [9] and [10] where only pointwise constraints on the
displacement u and the strain e, respectively, could be admitted. Note that pointwise constraints
for 6 are very realistic for the particular experimental setup discussed here, where 8 is kept close to a
prescribed (constant) temperature @ (see also remark 4.1 in [4]). Since we do not want to differentiate
with respect to the distributed heat sources and sinks, g, we even have Fréchet differentiability with

the result given in [4].

We define
M =M, x My, (1.11)
where
My, = { meH*0,7) | m(0)=0, m(0)=0, (0)=0 },
My = { 0p € H'(0,7) | 6r(t) >0 on [0,7] }, (1.12)
and the control space
Z:=H*0,T)x H*(0,T), (1.13)

therefore M C Z. The solution operator is denoted by

G(:) : M3 (m,0r) — (u,0) € Xy x Xor CC(Q) x C(Q). (1.14)

Note that w € Xy 7 implies u, € C(Q) and therefore, o € C'(Q), too. From [4] we have the following

properties of the solution operator.

Theorem 1.2 G(-,-) is Fréchet differentiable as mapping between the open set M and X117 X Xo T,
and the Fréchet derivative G'(m, 0r) - (h,1) =: (¢, %) of G at (m,6r) applied to (h,l) € Z is given as

the unique solution to the system

/OT < ¢u(s),&(s) > H-1x ) ds —/OT/quxxxfxdxds = —/OT/QXH(S)deds

—/OT/Q (6¢+ (0 + F7(e)) (sz-l-h(s)))fmdxds, V& e L2(0, T; HY(Q)), (1.15a)
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Vi — oy =0t (¢p + h(1) + 610+ 06 (dps+ h(t)), ace. in Q, (1.15b)

¢($70):¢t($70):0:w($70)7 V$E§,
6(0,8) = ¢(1,1) =0, VEE[0,T], ue(0,d)=ua(l,t) =0, ae. in (0,T),
Ba(0,0) = 0, —dbu(1,1) = H(1,1) — I(), ae in (0,T),  (L15c)

where G(m, 0r) = (u,0) and € = uy + m.

Clearly, we have (¢, ) € Xy 7 x Xor C C(Q) x C(Q), and again, ¢, € C(Q), too.

Since the strain € plays the role of the order parameter, it is quite natural to consider cost
functionals involving €. On the other hand, the natural control variables are m and r; in fact,
these variables are used to control the processes in actual industrial applications of SMA.

We are going to consider two problems. First, we take the elongation m as the control variable,
and, to simplify, we consider 8 as given data. We impose state constraints for both the stress and
the temperature. Second, we take fr as control variable, m as given data and prescribe constraints

for the total stress.

2 Control by Elongation
We study the following problem.
(CP1) Minimize J(m), subject to (1.6), (f,0) € C and m € Uyq.

Here, U, 4 denotes the set of admissible controls, and is some nonempty, convex, bounded, and closed

subset of M,,. C is given by
¢c={ (0,0)eC@Q xC@Q) \ o <O 1) e g <o(mt)Ser, V(o) EQ J (21)
The cost functional is assumed in the form
J(m) :/OT/Qq)l(uI(ac,t),H(m,t)) dx dt +/OT B, (i (1)) dt, (2.2)

where ®; € C?(IR?), ®; € C'(IR), and where ®; is convex in its argument. A particular form could
be
J(m) = ar (1|0 =7 gy + 116 = 1120 ) + aall i 220, (2.3

where a; and «j are non-negative constants, and where § and & denote the desired temperature
and stress distributions during the evolution of the process, respectively. Of course, also other cost
functionals are conceivable in actual applications.

The following existence result can be shown with standard compactness arguments.

Theorem 2.1 Assume that there is at least one admissible control m such that the solution to (1.6)

yields (0,0) € C. Then there exists an oplimal solution to the above control problem.
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The necessary optimality conditions for the control problem are given by the following theorem.

Since here @r is given, we write G(m) instead of G(m, 6r).

Theorem 2.2 Let m € U,q denote any solution to the optimal control problem (CP1), and let
(u,0) = G(m). Then there exist a real number Ay > 0 and Borel measures (uy,p2) =: p € (C(Q) x
C(Q)) with Ay + el c@)xc@yy > 0 such that [(0 —0)duy + [(6 — o) dus < 0, V(6,6) € C,
as well as functions (p, q) € L*(0,T; HY(Q)) x L*(0,T; L*(Q)) satisfying the following oplimality

conditions.

State equations:

/0T<Utt()¢()>Hlel ds—l—//xm qbdxds—|—// (ux + m(s))

T+ Fy(us +m(s))) 6, dxds —/0 /Qu budxds =0, VéeL2(0,TsHYQ),  (2.4a)
O; — 6 (up + m(t)) (uge +m(t)) —0pp =g, ae. in Q, (2.4b)

uw(0,t) =wu(l,t) =0, Vte[0,T], uz(0,t)=1uz(l,t)=0, ae wn (0,7),

0.(0,¢t) =0, —0,(1,¢)=0(1,t)—6r(t), ae wm (0,71), (2.4¢)

u(z,0) = uo(z), wui(z,0)=ui(z), 6(z,0)=6(z), Vze. (2.4d)

Adjoint state equations:

/T<ftt() p(s) >p-1 xH} ds —/ /fxxxpxdxds
+/ /( (0+ F(e) z—egtq)gz_ggqu)dxds

95

= )\1/ /qu)l(um,ﬁ) &, dxds +/,—fodu2, VEe Xy, (2.5a)
0o JQ Oe

T

/ /(Q(@t—@m—€€t99)+5pz99)dxds

0 Q
T

= A1/ /§2D2¢1(uz79)@dxds +/wdu2 +/sodu1, Ve Xor. (2.5b)
0

pi(e,T) =0, (2.5¢)

Optimalily conditions:

/ / { p$+h( )qfe— h(s) (pz(0+F2//(5))+(195t) } dx ds

—|—>\1/ {cpg(m }ds—l—/ —hdug > 0,
0

h=m—m, VYim &€ Uyy. (2.6)
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In addition, Ay = 1 if the Slater condition s salisfied, i.e. there exists some ™ € Uyq such that the
unique solution (¢, 1) of the linearized state equations (1.15) corresponding to h = 1 — m satisfies

the condition

¢ < Oz, t)+Y(z,t) < ¢g, and (2.7)
cz < &(m,t)+¢(x,t)a(x,t)+(gbz(x,t)+h(t))(0(a:,t)+F2”(5(a:,t))) < ¢, VY(z,t)€qQ.

ProoF. Now, a solution to (CP1) is denoted by m*, and therefore h = m — m*. Let us denote by
J'(m) € (H3(0,T))" the Fréchet derivative of the cost functional J(m), by F(G(m)) = &, and by
{Dm (0, ]—'(g(m)))} " the adjoint mapping of the differential. Moreover, let < .,. > denote the dual
pairing between the spaces (H>(0,7))" and H>(0,T). Applying theorem 5.2 of [5], we conclude that
there exist Borel measures (u1, o) = p € (C(Q) x C(Q))" and some Ay > 0 satisfying

<,u,z—(0* ( (m )))> <0, Vzed, (2.9)
<M (1) + (D (67, F(G(m)) | pom = m* > > 0, VmeK. (2.10)

Furthermore, we have Ay = 1 if the Slater condition
Im € Uyg such that G(m)+ G'(m) - (m — m) € int(C) (2.11)

is satisfied. Recalling the definition of C, we find that this condition is eqivalent to (2.7). Now, to
continue in a simplified manner, we set Ay = 1.

We introduce the linear and bijective operators £y : X117 x Xop — L2(0,7; H~1(Q)) and
Ly X117 % Xoqg — L*(0,T; L*(Q)) with

T T
| < L1096 >y ds = [ < 0ul0),66) >ty s

_/()T/Q(bmzﬁzdxds _|_/OT/Q(5¢+(0+F’2’(5))¢X)§deds,

Ve LH0,T; HY(Q)), and (2.12)
T T
|| e 0y edxds = [ [ (- = 82000 - ce0t - B2 64) pdds,
0 Q 0 Q
Vo€ L*(0,T; L*(Q)). (2.13)
Furthermore, denoting
X=Xy x Xop, Y:=L*0,T;H Q) x L*0,T;L*Q)), (2.14)

z:=(z1,22) € Y, with
/T<21()§()>H 1y ds o= / /xh )€ dx ds

//0—|—F2” (s) &, dxds, Ve L0, T; HY(Q)), and (2.15)

/ /zggodxds :—/ / fech(s) +0eh(s ))godxds, Vo € L2(0, T; L3(2)),
L:X =Y, with L[(¢,v)] (El(qb ), La(d, 1)), (2.16)
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the linearized state equations (1.15) take the form

Find (¢,%) such that L[(¢,¢¥)]=2¢€), (2.17a)
é(x,0) = ¢¢(z,0) = 0= 9(z,0), VzeQ,

6(0,t) =o(1,t) =0, Yte[0,T], ¢zz(0,8) = ¢ze(1,¢) =0, a.e. in (0,7),

b (0,8) =0, —tp(1,8) =(1,1), ae. in (0,T). (2.17b)

For any continuous linear form ¥(.,.) on C(Q) x C(Q) we have an unique element & € )’ =

L2(0,T; HY()) x L2(0,T; L*(2)) such that
(i, s)],v)y = U(ry,s), Y(rs) €A, (2.18)

because for an element (r,s) € X we have (r,s) = £7'[(z)] for the unique element z € Y and
Hrg;HC @ T IIsll @ < C(r,s)||x, ¥ (r,s) € X, C > 0. We select the following continuous linear
form on C'(Q) x C(@)

U(6s, ) = Al[/OT/Q (D191, 0) 62+ Dy (0, 0) )| s + [ 97 6y
+/5¢du2 +/¢du1, (6,9) € X. (2.19)

Then there exists a unique adjoint state v* = (p*,¢*) € Y’ such that the following adjoint state

equation is satisfied
(£l 9], v*)y = U(ry,s), V(rs)€X. (2.20)

This leads to the adjoint system (2.5), and for any solution (¢, ?) of the linearized state equations

we have Vm € K, h = m — m*,

< (m*) + [ Do (67, F(GOm))) | b > = / "y () i (5) ds

+/T/ (D11 (s, 8) 65 + D21 (s, 6) ) dxcds

/ Godus + [ evdps + [ vdu +/  dpsy

_/ &) (i ()ds—|—111q6¢—1—/8—hd,u2
_/ &) (i ds—i—/a—hd,ug

+/ < L1(6, ) (), E(8) > -1y ds +/()T/Q£2(¢,¢)¢dxds
_/ ! (i ds—i—/a—hdug

+/ < 21(5),€() > oy ds +/ /zwdxds (2.21)

whence (2.6) follows from (2.10). o
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3 Control by Temperature
Now, we study the following problem.
(CP2) Minimize J(fr), subject to (1.6), 0 € S and r € Uyq.
Here, U,q C Mpy,.. S is given by
§={0ecC@ |e<ot)<e, V(@neq }. (3.1)

The cost functional is assumed in the form
J(6r) = / /<1>1 wp(2,1)) dx dt +/ 5 (6r(1)) dt (3.2)

where ®; € C?(IR?),®, € C'(IR), and where ®; is convex in its argument. A particular form could
be

J(9,0r) = an || us — @ |72 (g + a2llfrll72(01); (3.3)
where aq, ag, and a3 are non—negative constants, and where %, denotes the desired strain distri-

bution during the evolution of the process. Again, also other cost functionals are conceivable.

The following existence result can be shown with standard compactness arguments as before.

Theorem 3.1 Assume that there is at least one admussible control Op such that the solution to (1.6)

yields 0 € §. Then there exists an oplimal solution to the above control problem.

We give the necessary conditions of optimality in the following theorem. Since now m is given,
we write G(fr) instead of G(m, 6r).

Theorem 3.2 Let Op € U,q denote any solution to the optimal control problem (CP2), and let
(u,0) = g(ﬁp) Then there exist a real number Ay > 0 and a Borel measure pz € (C(Q)) with Ay +
sl (c@yy > 0 such that [(6—0)dus <0,V6 €S, as well as functions (p,q) € L2(0,T; HY(Q)) x
LQ(O T H (2)) satisfying the following optimality conditions.

State equations:

[ w0t

+F (uy + m(s))) ¢rdxds —/0 /quxx pydxds =0, V¢ e L0, T;H(Q)), (3.4a)
O — 0 (uz + m(t)) (ugt +m(t)) —0pp =g, ae. in Q, (3.4b)

w(0,¢) =u(1,t) =0, Vte[0,T], ug(0,t)=1ug(1,t)=0, ae in (0,7T),

0.(0,¢t) =0, —0,(1,¢)=0(1,t)—6r(t), ae wm (0,7), (3.4¢)

u(z,0) = up(z), wui(z,0)=ui(z), 6(z,0)=6(z), VzeQ. (3.4d)
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Adjoint state equations:

T T

| < €90 >pmremy ds = [ [ gonprdds

"’/ /( 9+F2” (€) I—Hestq)fm—ﬁsqu) dx ds

= )\1/ /D1<I>1(u$) & dxds +/g—§§xdu3, VEe Xy (3.5a)
/ / Sﬁt—éfft@)-l-qz%—}-apmcp)dxds

—I—/ e(1,s)q(1,s)ds = /{-:cpdug, VoeXyr. (3.5b)
0
pe(z,T) =0, (3.5¢)

Optimalily conditions:

T o n
/0 [ @460() — q(ls) }I(s) ds > 0, 1= — b0, Vi € Usa. (3.6)

Again, Ay = 1 if the Slater condition is salisfied, i.e. there exislts some Or € Uyq such that the
unique solution (¢, ) of the linearized state equations (1.15) corresponding to | = r — O salisfies

the condition

s < 5(x,t)—|—¢(x,t)5(w,t)+¢z(w,t)<0(w,t)+F2”(5(w,t))) < cg V(z,t) €Q. (3.7)

ProoF. The proof to this theorem is analogue to the last one with the difference that the adjoint
variable ¢ € L?(0,7T; H(2)). ]
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