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Abstract

These seminar notes represent the proceedings of a seminar devoted to the analysis of
algorithms and related topics. The subjects covered include combinatorics, symbolic com-
putation, asymptotic analysis and average-case analysis of algorithms and data structures.
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Abstract

Ces notes de séminaires représentent les actes, en anglais, d’un séminaire consacré a
I’analyse d’algorithmes et aux domaines connexes. Les thémes abordés comprennent : com-
binatoire, calcul formel, analyse asymptotique et analyse en moyenne d’algorithmes et de
structures de données.






ALGORITHMS SEMINAR
1995-1996

Bruno Salvy!
(Editor)

Abstract

These seminar notes represent the proceedings of a seminar devoted to the analysis of
algorithms and related topics. The subjects covered include combinatorics, symbolic com-
putation, asymptotic analysis and average-case analysis of algorithms and data structures.

This is the fifth of our series of seminar proceedings. The previous ones have appeared as INRIA
Research Reports numbers 1779, 2130, 2381 and 2669. The content of these proceedings consists
of English summaries of the talks, usually written by a reporter from the audience?.

The primary goal of this seminar is to cover the major methods of the average-case analysis of
algorithms and data structures. Neighbouring topics of study are combinatorics, symbolic compu-
tation and asymptotic analysis.

The study of combinatorial objects—their description, their enumeration according to various
parameters, or their random generation—arises naturally in the process of analyzing algorithms
that often involve classical combinatorial structures like strings, trees, graphs, and permutations.

Computer algebra plays an increasingly important réle in this area. It provides a collection of
tools that allows one to attack complex models of combinatorics and the analysis of algorithms via
generating functions; at the same time, it inspires the quest for developing ever more systematic
solutions and decision procedures for the analysis of well-characterized classes of problems.

Asymptotic analysis is an essential ingredient in the interpretation of quantitative results supplied
by the resolution of combinatorial models. Various asymptotic methods are found to be relevant
to the analysis of particular algorithms.

The thirty-two articles included in this book represent snapshots of current research in these
areas. A tentative organization of their contents is given below.

PART I. COMBINATORICS

The enumeration of self-avoiding walks in dimension d is a very old open problem of combina-
torics. In [1], a related simpler problem is solved. A class of partitions of integers having nice and
surprising generating functions is studied in [2]. An introduction to symmetric functions, together
with work involving ¢g-analogues of the Catalan numbers is given in [3]. Sums of powers of harmonic
numbers divided by powers of the variable are related to special values of Riemann’s { function.
A uniform approach to the computation of these sums is given in [4]. A logics viewpoint on some
combinatorial objects is taken in [5]. The last summary [6] takes a formal language approach to
problems related with the study of DNA sequences.

!This work was supported in part by the Long Term Research Project Alcom-IT (#20244) of the European
Union.

?The summaries for the past five years are available on the web at the URL
http://www-rocq.inria.fr/algo/seminars.



[1] Three-Dimensional Convex Polygons. Mireille Bousquet-Mélou

[2] Lecture Hall Partitions. Mireille Bousquet-Mélou

[3] Déterminants, nombres de Catalan et fonctions symétriques de Macdonald. Dominique
Gouyou-Beauchamps

[4] Sommes d’Euler. Philippe Flajolet

[6] A 0-1 Law for Planar Maps. Kevin Compton

[6] Grammaires et séquences biologiques. Fabrice Lefebvre

PART II. SYMBOLIC COMPUTATION

This part starts with a survey [7] of numerous algorithms related to linear recurrences and
linear differential equations, mostly in the univariate case. New algorithms for the multivariate
case are described in [8] and [9]. The numerical resolution of systems of polynomials is studied
from different viewpoints in [10] and [11]. An algorithm from computational number theory is
developed in [12]. The next two summaries study specific problems: [13] answers the question of
describing the functions satisfying all the differential equations satisfied by a given function; [14]
describes polynomials analogous to the Chebyshev polynomials, but much harder to compute. This
part ends with a short presentation of the computation of Padé approximants of various kinds [15].

[7] Linear Recurrences, Linear Differential Equations and Fast Computation. Bruno Salvy
[8] Creative Telescoping and Applications. Frédéric Chyzak
[9] O-Finite Functions. Frédéric Chyzak

[10] Computing the Distance of a Point to an Algebraic Hypersurface and Application to Ex-

clusion Methods. Xavier Gourdon

[11] Méthodes matricielles pour la résolution de systémes algébriques. loannis Z. Emiris

[12] Le calcul de grandes valeurs de la fonction 7(z). Marc Deléglise

[13] Sur un probleme de Rubel. John Shackell

[14] Les polynémes de Tchébychev entiers. Bruno Salvy

[15] Algebraic Computation of Matrix-like Padé Approximants. George Labahn

PART III. ASYMPTOTIC ANALYSIS

The asymptotic analysis of a class of staircase polygons is studied in [16]. It involves a non-
linear g-equation for the generating function, and asymptotics where the Airy function arises. The
relevance of this and similar problems to statistical mechanics is the topic of [17]. Partitions of
integers give rise to very subtle asymptotic analyses. A historical survey of the litterature in that
area is given in [18]; and [19] studies a specific problem. Asymptotic techniques from probability
theory are used in [20] to study a network that models self-service electrical car pools.

[16] The Tricritical Scaling Function of Partially Directed Vesicles. Thomas Prellberg

[17] The Statistical Mechanics of Vesicles. Thomas Prellberg

[18] Partitions d’entiers et méthode de Meinardus. Philippe Dumas

[19] Measures of distinctness for partitions and compositions. Hsien-Kuei Hwang

[20] Etude asymptotique et charge critique pour les grands réseaux fermés a forme produit via
le théoreéme de la limite centrale. Jean-Marc Lasgouttes

PART IV. ANALYSIS OF ALGORITHMS AND DATA STRUCTURES

The Quickselect algorithm uses the partitioning process of Quicksort to find the k-th element
among n without sorting them. Its average-case analysis is described in [21], as well as analyses of
variants of Quickselect. Next, [22] shows the relevance of basic hypergeometric series to the analysis
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of digital search trees and of an approximate counting algorithm. Tools from probability theory are
used in the analysis of bin-packing [23]. In [24], a problem from computational learning theory is
attacked with urn models and involves modified Bessel functions. The last four papers [25—28] are
related to pattern-matching and strings.

[21] Analysis of Quickselect. Helmut Prodinger

[22] Basic hypergeometric series, digital search trees, approximate counting. Helmut Prodinger

[23] Biased Random Walks, Lyapunov Functions, and Stochastic Analysis of Best Fit Bin Pack-
ing. Claire Kenyon

[24] Un modele d’urnes pour 'apprentissage. Daniéle Gardy

[25] Pattern Matching Image Compression: Theory, Algorithms and Experiments. Wojciech
Szpankowski

[26] Fast Approximate Pattern Matching. Ricardo Baeza-Yates

[27] Rotation of Periodic Strings and Short Superstring. Dany Breslauer

[28] Recherche de motifs : combinatoire et probabilités. Mireille Régnier

PART V. MISCELLANY

Worst-case analyses of algorithms give rise to equations with a max operator. An algebraic
framework for such equations is surveyed in [29]. Next, [30] gives an introduction to DNA com-
puters and the biology involved in them. Applications of the Mellin transform in signal processing
are listed in [31]. The last summary [32] is concerned with random boolean formulze.

[29] Le semi-anneau (max,+) : une introduction. Stéphane Gaubert

[30] Computation with DNA. Alain Hénaut and Didier Contamine

[31] Utilisation de la transformée de Mellin en traitement de signaux fractals. Jacques Lévy-
Vehel

[32] Evolution de la satisfiabilité et de la difficulté de formules booléennes aléatoires. Applica-
tions pour la résolution. Olivier Dubois
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Three-Dimensional Convex Polygons

Mireille Bousquet-Mélou
LaBRI, Université Bordeaux 1

February 26, 1996

[summary by Eithne Murray]

Abstract

A method to enumerate self-avoiding convex polygons, which in theory will work for
all dimensions, is presented. The generating series for polygons of dimensions 2 (already
known) and 3 are given. They are both the quotients of two D-finite series, and it appears
that this property might hold for higher dimensions.

1. Introduction

A very old open problem is to enumerate self-avoiding walks (self-avoiding polygons) in dimen-
sion d. This talk answers a slightly more restricted problem by presenting a method of enumerating
convex self-avoiding polygons. The 2-dimensional case has already been solved in [3] and [6], but
this method works in higher dimensions, and provides a combinatorial interpretation of the 2-
dimensional result.

Some basic definitions are required. An (oriented) polygon of perimeter 2n is a closed path
(81,82, ..., 52,) of vertices on Z* such that s; and s;;, are neighbours for 1 < ¢ < 2n and Sy,,41 = 8.
It is defined up to cyclic permutations of its vertices. The rooted polygon (s, Sy, ..., S2,) represents
all the polygons formed by the cyclic permutations. A self-avoiding polygon is such that s; # s; for
1 <i# j < 2n;in other words, it never crosses itself except at the start/end point. A non-empty
self-avoiding polygon is also called a loop. Note that the polygon (s, s2) is a loop.

Polygons are often represented as words over an alphabet. This representation means the
polygons are defined up to a translation in Z¢? which is a requirement for counting them, and
also gives a convenient method to define additional properties of the polygons. Thus a rooted
polygon of perimeter 2n will often be regarded as a word w = wjus---ug, on the alphabet
A ={1,2,...,d} U{1,2,...,d}. Then if (ey,...,e4) is the canonical basis of Z% and u; = k
(resp. k), then u; is a unitary step from the vertex s; to s;; along e (resp. —e;). Note that for
all £ < d, the number of occurrences of k in u, denoted |u|;, is equal to the number of occurrences
of k in u. Conversely, any word u on A that satisfies |u|, = |u|; for 1 < k < d is a rooted polygon.
For example, the polygon 1212 would be a unit square. More examples can be seen in figure 1.

This representation is used to define dimension, unimodal polygon and convex polygon (see be-
low). These concepts are important since the method to count the convex polygons involves de-
composing them into their unimodal parts, and counting their loops of each dimension.

The dimension of a polygon is the dimension of its convex hull, which is equal to the number of
k such that |ul, > 0. For example, the loop (s1,s,), represented by u = kk, has dimension 1.
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FIGURE 1. (a) staircase (b) unimodal (c) convex polygons

A polygon is unimodal if, for each direction k, the polygon can be written u = vw with |v|z =
|w|; = 0. In other words, all the k’s come before all the k’s in its representative word u, and so all
the steps taken in a given direction occur before all the steps taken to return from that direction.

A polygon is convez if for each k there is a cyclic permutation of the polygon such that all the &’s
come before all the k’s. More intuitively, for each k, and each a € R, the intersection of a convex
polygon with the half-space {(a,...,a4) : a;x < a}is connected. Another characteristic is that the
length of the perimeter of a convex polygon is equal to the length of the perimeter of the smallest
bounding box of the polygon. A unimodal polygon is a convex polygon that contains the vertex of
minimal coordinates of its smallest bounding box. See figure 1.

2. Enumeration Method

To count the self-avoiding convex polygons, the idea is to count all convex polygons and then
remove those that are not self-avoiding. Let P represent the number of all convex polygons of
dimension d, and P, be the number of convex polygons of dimension d with a k-dimensional loop
but no loops of dimension < k. Then

(1) P=P + P+ 4Py

Polygons will be enumerated by using a generating function based on their perimeters. If P is a
set of polygons, then the perimeter generating function for the elements of P is

S gz,
u€g?P
where |u| stands for the number of letters of u; and the multi-perimeter generating function is
Sl
ueP

A staircase polygon is a pair of directed paths having the same end-points, so all the steps taken
in positive directions (words on {1,...,d}) occur before all the steps taken in negative directions
(words on {1,...,d}). The multi-perimeter generating function for staircase polygons, where n; is
the number of steps taken in direction e; in Z¢9, is

2
Zd(CCl,...7.”Ed)I E ( ! d) [Ell...xd



(see [4]). This series is D-finite, that is, it satisfies a linear differential equation with polynomial
coefficients [7]. Moreover,

2
ni+n ne 1
(2) Zo(zr,0) = ¥ ( . 2) e

a \ s B V1 =22, — 229 — 22179 + 27 + 22
is algebraic. This series has a generalization to Z, where A is a partition [4].

THEOREM 1. The multi-perimeter generating function of the number of d-dimensional convex
polygons that have no 1-dimensional loops is

P ((ER ISR (LSS SEE,
! (1—azy—-—xy)?
where if f(z1,...,2q) =2, nyGny,ng @12yt then the even part of f is
E[f(xh"wxd)] = Z a2n1,...,2nd$%n1"'xznd-

The proof of this theorem uses the inclusion/exclusion principle and a decomposition of the
word-representations of the polygons.

The following gives the formula which will be applied to count convex loops. The idea is that
for a convex polygon having loops of dimension d, two cases can occur: either it has only one loop
(it itself is a d-dimensional loop), or it can have two loops. There are 2¢ possible loop structures,
and the loops are unimodal. If the polygon is represented by wlyvly, where the [; are loops, then
uv is essentially a staircase polygon, and so counted by Z;. Details are presented in [2].

THEOREM 2. In dimension d, let P; and Z; be defined as above, and let Uy be the mulli-perimeter
generating funclion for unimodal polygons having only loops of dimension d, and Cy be the gener-
ating function for convex polygons having only loops of dimension d. Then

Pd - Cd + 2d_1Zd675.

Since a convex polygon of dimension d which has only loops of dimension d is self-avoiding, C
counts the d-dimensional self-avoiding convex polygons. Now U; can be calculated for all d by
rewriting it in terms of Z; using induction. An important element of the proof is that a loop of
a rooted unimodal polygon is unimodal, and hence if a rooted unimodal polygon wugliuilsus has
loops I; in I; C {1,...,d}, then I; N I, = (). Thus a unimodal polygon is made up of a sequence
of unimodal loops separated by staircase polygons where the structure of the distribution of the
loops can be described by a partition of d. The generating function for unimodal polygons having
loops corresponding to this partition can be expressed in terms of Z,, A the partition of d, and Uy,
k < d. Then this result, together with equation (1) and theorem 2 gives a means of calculating the
number of self-avoiding convex polygons.

3. 2-D Polygons

In dimension d = 2, P — P, = P,, so combining theorems 1 and 2 gives
$1$2(1 — $1)2(1 — 332)2
(1 — T — .T2)2

5
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Setting A =1 — 2z, — 225 — 22125 + 2? + 22, and solving for C using U, = 2% and (2) gives

2.2
_ 22,4 8ajw;

Cy = A2 A3/2

where
A=1-3z; — 32y + 327 + 322 + 52123y — 2° — 23 — 2lxy — x12] — y2a(T) — 79)°.

This was first proved by Lin and Chang [6], and is a refinement of a result by Delest and Viennot [3].
Alternate proofs are found in [1] and [5]. This work gives a nice combinatorial interpretation of
each of the two parts of C5 in terms of convex polygons having no one-dimensional loops, thereby
solving an open problem due to Viennot.

4. 3-D Polygons

This time, the situation is more complicated. Given P— P, = P, + P3, where P — P, is calculated
using theorem 1, and P; = C3 4 4Z3UZ2 by theorem 2, it remains to find a way to count P, the
number of polygons in Z?> having 2-dimensional loops but no 1-dimension loops. This can be done
by a case-by-case analysis of the 7 possible loop structures. The result is
B(1)

Z3
where A(?) and B(t) are algebraic in ¢, and Zs is D-finite. A(?) is of degree 16, and B(t¢) has
degree 8. (The exact value of C'5 would take up a quarter of the page.)

Cs=A(t) +

5. Conclusion

This method works because the loops of unimodal polygons are non-overlapping. In theory this
method is extensible to higher dimensions, though of course in practice the calculation of the P;’s
for ¢+ < d would become difficult. Since for each d the series Z; is D-finite and the series U, can be
written in terms of Z;, is seems reasonable from the formula to believe that the result will continue
to be a quotient of two D-finite series. There may be generalizations to polygons that are convex
along d — 1 directions, and 3-choice polygons.
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Lecture Hall Partitions

Mireille Bousquet-Mélou
LaBRI, Unversité de Bordeaux 1

February 26, 1996

[summary by Dominique Gouyou-Beauchamps]

Abstract
A well-known theorem of Euler [2, Chap. 16] says that the number of partitions of an
integer N into distinct parts is equal to the number of partitions of N into odd parts.
The talk gives a finite version of this theorem that says that the number of “lecture hall
partitions of length n” of N equals the number of partitions of N into small odd parts:
1,3,5,...,2n — 1. This work is a common work with Kimmo Eriksson [1].

1. Lecture hall partitions

Let D be the set of integer partitions with distinct parts. For n > 1, let £,, be the following set
of partitions (having possibly some empty parts):

We call the members of £, lecture hall partitions of length n, since they describe all possible ways
of designing a lecture hall with space for up to n rows of seats placed on integer heights, such
that at every seat there is a clear view of the speaker without obstruction from the seats in front
(Figure 1).

Removing the empty parts puts £,, in one-to-one correspondence with the following subset of D:

H1 Mo Hm
D, = Sy e ) T < d 0 < << 0
{(M/iz Hm) im < an <n—m—}—1_n—m—|—2_ - n}

We will prove the following remarkable theorem.

THEOREM 1 (LECTURE HaLL THEOREM). The generating function for lecture hall partitions of
length n is

n—1
1
_ Al
L@ = > " = 1] {— v
AEL, i=0

where the weight |A| of a partition A = (Ay,..., ) is A+ -4+ A

Equivalently, the generating function for the partitions of D, is L, (¢). Observe that D,, C D4,
and D = lim,,_., D,, so in the limit this theorem yields the familiar Euler identity [2, Chap. 16]:
the generating function for the elements of D is equal to the generating function for the elements
of O, the set of integer partitions with odd parts:

I ; L-¢" 1 I
Zq :H(l—l'q):Hl iznl 2i+1zzq :
HED i>1 i>1 + 4 i>o+ 4 HEO
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Ficure 1. The design of a lecture hall of four rows corresponding to the lecture
hall partition (1,2,4,6).

We will prove a refinement of the Lecture Hall Theorem. We define the even and odd weights ||,
and |A|, of a partition A = (Ay,..., A,) by

|A|e = Z An—2k and |A|o = Z An—2k—1-

0<k<((n-1)/2 0<k<[n/2]~1

Of course, |A| = |Al. 4 |A|,. We will prove the bivariate identity

n—1 1
[MeylAlo —
YDECTIT ) (R
AEL, i=0

This identity is a corollary of Theorem 3 in section 4, taking k& = [ = 2.

We will in fact discuss a generalization to other sets of partitions of the form {(A1, As,..., A,) ¢
0 < AJjay < Xyfas < --- < A, /a,} where (aq,as,...,a,) is a given non-decreasing sequence of
integers. We define now £, and S¢,, 4,

.....

»Cn = {(Alv .. 7An) :0 S A1/al S A2/a2 S e S An/an} and S(m,az ..... an) = E ql)\l

AEL,

Here are surprisingly simple values of S(4, a,,...a,):

g _ 1
1,2,5,8 — (1 _ q)(l _ q3)(1 _ qs)(l _ q13)7
1
51,2,5,8,19 = (1 — q)(l — q4)(1 _ q7)(1 _ q11)(1 _ q27)’
1
51,2,5,8,19,30 = (1 — q)(l — qg)(l — qg)(l _ q13)(1 _ q31)(1 _ q49)’
1

Sia7 = .
PR T (1= - @)1 - )1 - (1 - )
2. Reduction of lecture hall partitions

Fix a non-decreasing sequence a = (a;);»>; of positive integers, and fix a positive integer n. An
n-tuple A = (A, Ag,...,A,) € N” is a lecture Hall partition if and only if A\; > [A;_1a;/a;_,] for
2<i<n Forl<i<mn,let A\ =(0,...,0a;,a41,...,a,) € N*. If X belongs to £, then the
sum A 4+ A also belongs to £,,.

LEMMA 1. Let X be a lecture hall partition belonging to L,. Then X — A% belongs to L, if and
only if \j — [Ni_1a;/a;_1] > a; for 1 <4 < n.



DEFINITION 1. A lecture hall partition of length n is said to be reduced if 0 < \;—[X;_1a;/a;_1] <
a; for 1 <17 < n. The set of reduced partitions of £,, will be denoted by R,,.

LEMMA 2. Let A be a lecture hall partition of length n. Then there exists a unique reduced lecture
hall partition p and a unique sequence of integers (k;)1<;<, such that X = p+ 37, kA0,

Consequently, the generating function for lecture hall partitions of length n is

Fu(z,y)
— [Me g lAlo — LA
= ,\ezﬁz T [Tioi (1 = aAOleyrle)

where the polynomial P,(z,y) =" ,cx. zl#leyltlo enumerates reduced lecture hall partitions.

3. An involution on R,

For p € R, let p* = (p},..., 1) be the unique n-tuple such that

W op = Hn_ak forn -2k >1
Hn—ok—1 — H:%NZ—M—J = {%Mn—zd = fin—2k-1 forn —2k—-12>1.

THEOREM 2. The correspondence p — p* defines an involulion on the set R,,.

We can extend the involution g — p* into a bijection f from R, x[0, @, 41] onto R, 41, by defining

- * * (Zn * -
f(ulw'wun;l): (le"vunv[ a+1:un-‘ +Z) .

It is clear that:
|f(l’L7,L)|o = |I'L*|e = |l’l“|e7

. . Uy Ap_ok—
|f(:uvl)|e t = |H|o + Z <[ zk;:l:un—%-‘ + \‘ 2 1Hn—2kJ) .
k

Up_2 Up_2

4. The (k — l)-sequences

By a (k — l)-sequence we shall mean a sequence a defined by the initial values a; = 1 and a; =1
and the following recurrence relations:

{%n =lag,—1 — Q3 for n > 2

Uont41 = kas, — asn_1 forn>1

where k,[ > 2 are two integers. We obtain

| [, D), = |pel,

. ' E|pl. if m is even,
(ks D), = = [ulo + {1|M|e if m is odd.

This implies that the generating functions P,(z,y) = 3 ,cx. zlileyltle for reduced lecture hall
partitions can be computed inductively via the following recurrence relations:

1 _ xd2n+1 1 _ xa2n

P2n+1('r7y): P2n(xky7‘r_1) and P2n('r7y): P2n—1($1y7x_1)

1—=2 1—=2

with the initial condition P, = 1.



The sequence a* is defined by af = 0, a7 = 1 and the recurrence relations:

{(12n =lag,_1 — Gn_2 forn > 2

Gony1 = kaap — Aopn_1 for n > 1.

THEOREM 3. Given a (k,l)-sequence a, the generating functions S, = 3, zIMeylMo for lecture
hall partitions of even and odd length are given by:

2n 1 2n+1 1
Sz = P —— and Sz 1= — .
n 21;[1 1— .’Ea’yal n+ 21:[1 1— $a’+1ya’_1

5. Limit theorems
Taking the limit n — oo in Theorem 3 leads to the following results:

THEOREM 4. For k € N and k > 2, the bivariate generating function of partitions (p1, ..., )
such that % > EREod g

S alteyltle =TT = 1
I

— Aiqp@i—1
i>1 ey
with ag =0, a; =1 and a;41 = ka; —a;_1.

THEOREM 5. For k € N and k > 2, the generating function of partitions (py,. .., u,) such that
pity o BHVEP o
5 :

Hi

1
1—gq%

S =TT

i>1
withe; =1, es =k+1 and e;41 = ke; — e;_1.
ExaMmpLE. k= 2. In that case p;41 > p; and we obtain the Euler identity [2, Chap. 16]:
1

3 gl = Hm,

UED i>0

ExXAMPLE. k£ = 3. In that case u;41 > 3+2\/5M and:

lul _ 1 _ 1
2, 0" = (1-)(1 =)A= g )(1—¢*)(1—q¢™)-- 11 (1—q5)

UELR i>1
with e; = 1, e5 =4 and e;41 = 3e; — e;_1. In fact e; = F5;_3+ F5;_; where F; is the ¢th Fibonnaci
number.

6. Questions

(1) Give a characterization of the sequences (a4, ...,a,) that have a simple expression for the
corresponding generating functions.
(2) Find finite version of other theorems like the Rogers-Ramanujan theorem for instance.
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Determinants, Catalan numbers and Macdonald’s symmetric functions

Dominique Gouyou-Beauchamps
LRI, Orsay

March 25, 1996

[summary by Bruno Salvy]

Abstract

A famous conjecture in the theory of symmetric functions states that the coefficients of
Macdonald’s polynomials in the basis of Schur’s symmetric functions are positive. F. Berg-
eron, A. M. Garsia and M. Haiman have introduced a linear operator V whose eigenvalues
are related to Macdonald’s polynomials. Properties of this operator in a special case are re-
lated to combinatorial determinants which can be evaluated by the Gessel-Viennot technique
relating them to non-intersecting paths.

1. Introduction to symmetric functions

This section and the following one are based on [4].

Partitions and symmetric functions are strongly related. A partition is an infinite decreasing
sequence of positive integers A = (A1, Ag,...), with finitely many non-zero elements. The index
of the last non-zero element in the partition is called its length and is denoted ¢(X); the sum of
the A;’s is called the weight of the partition and is denoted |A|. For n > £(\), A is identified with
the n-tuple of its first elements. Then if z = (zy,...,,) is a n-tuple of indeterminates, z* denotes
the monomial }" ---z)» and S denotes a maximal set of distinct permutations of .

A fundamental basis of symmetric functions is constituted by the monomial symmetric functions,

indexed by the partitions: for n > £()),

ma(T1,. .., &,) = E 27,

oES)

Clearly, the set of my’s, when A runs through all partitions of length at most n is a basis of the
symmetric polynomials in n variables. The set A of symmetric functions is defined as the vector
space generated by the m)’s.

Three important sets of symmetric functions, e, = m,-) (elementary), h, = 37, _, my (complete)
and p, = m¢,) (power sum), have simple generating functions:

EM =Y et =141 e+ Y aa; + - = [[ (1 + wit),

>0 i i<y i>0

H(t) =Y ht" =14tY o+ 1Y wa; +--- =[] 1 —1a:»t’
>0 i i<j i>0 t

P(t):ZprtTIZ%‘Fth?""” = 1_x;.t'
r>0 i g >0 Z
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Each of these three sets of symmetric functions generates A as a ring. In all three cases, defining
for a partition A a function f, = f,, fr, -+, where f is e, h or p yields a basis of A as a vector
space, when A runs through the set of partitions.

Formule giving the coordinates of one of these functions in terms of the other families are
obtained by extracting the coefficient of " in the following straightforward relations between the
generating functions:

(1)
(1) E(t)H( t)_lv P(t)_ H(t)7 P( t)_ E(t)

The last two equations yield the classical Newton formulse between power sums and elementary
symmetric functions. Integrating these equation also yields
t'“ A JA
Ht)=ep Y p =Y e, B = ()M it s = [[imm,
r>0 A “x A 2 i>0
where m; is the number of occurrences of the part 7 in A.
Another family of symmetric functions, the Schur functions, is defined for n > ¢(\) by

Cdet(2 ) gijen

Sal Ty, T = -
)\( 1 b TL) det(x?—])lsiyjsn

The s,’s are indeed polynomials, since the numerator is a polynomial in the z;’s which vanishes
whenever z; = z; with ¢« # j, and thus is a multiple of the Vandermonde determinant in the
denominator. The s, form another basis of A. They are related to the complete and elementary
symmetric functions by the Jacobi-Trudi identities:

(2) sy = det(ha,—ipj)icij<n,  Sx = det(ex—ipj)i<ij<m,

where A is the conjugate of A, i.e. the partition whose Ferrers diagram is the reflexion of that of A
with respect to the diagonal.

Recall that a Young tableau of shape A is a Ferrers diagram of shape A with squares numbered by
consecutive positive integers 1,2, ..., r, the numbers increasing strictly in each column and weakly
along each row. The weight w(T') of a tableau 7' is the r-tuple (m, ..., m,), m; counting the number
of occurrences of . The tableau is called standard when it contains each number 1,2,...,|\| exactly
once, i.e. its weight is (11*). The Schur functions are related to tableaux by

=Y,
T

summed over all tableaux 7" of shape A. From this follows that the coordinates K,, of s, in the
basis m, are positive integers counting the number of tableaux of shape A and weight © and thus
are positive integers. Macdonald’s conjecture is a generalization of this property.

All these symmetric functions can also be related by expanding in several ways the doubly infinite
product P(z,y) = [I(1 — 2;5;)~'. Thus one gets

G| — - Yozma(@)pa(y) = D ha(@)ma(y) = Y- ma(e)ha(y) = D sa(@)sa(y).

i L=y, A A

This motivates the definition of a scalar product by (hy,m,) = 6,, for all partitions A, u, where 65,
is the Kronecker delta. The relations (3) show that the p,’s form an orthogonal basis, while the s,’s
form an orthonormal basis of A. This property characterizes the Schur functions.

12



The next step is to consider the Hall-Littlewood symmetric functions with one parameter

P)\(.”El,--.,-fn;t): Z U(:EAHM)

These functions interpolate between the monomial symmetric functions—obtained when ¢ = 1—and
the Schur symmetric functions—obtained when ¢ = 0. They form a Z[t]-basis of A[t]. Therefore,
one may consider the polynomials K,,(?) defined by

T) = Z K5, (1) Py(z;1).

The polynomials K, ,(¢) turn out to have positive coeflicients, and this has been proved by Lascoux
and Schiitzenberger who gave an expression of the form

) = S,

summed over all tableaux T of shape A and weight u, where ¢(7') is a certain combinatorial function
of the tableau (its charge). Several expansions of the product P(z,y;t) = []; ; (1 — tzyy;)/(1 — z;y;)
lead to results very similar to those obtained above and to the definition of a scalar product on A[t]
with values in Q(¢) with respect to which the Py(z;t) are orthogonal. Also (P, m,) = 0 when g £ A
(the Ferrers diagram of u is not included in that of X), and together with their orthogonality this
characterizes the Py. The basis which is dual to the Schur functions s,(z) with respect to this
scalar product is denoted S, (z;1), i.e., (Si(z;t),s,(2)) = Oxp.

2. Macdonald’s conjecture

Macdonald’s conjecture concerns the Macdonald symmetric functions, which have two parame-
ters. The doubly infinite product

H(‘rvy;qvt): H((t;ZyM7 where (a;q)oo = H(l_aqr)7
i iY73 @)oo r=0
can be expanded as
] £(2) 1— q)\,
$ » Ys Q7 Z)\: Z)\ 7 p)\(y) with ZA(Qvt) = Zx Pt 1 —¢ri’

This motivates the definition of a scalar product by

<p)\7 p,u>q,t = 6>\HZA(Q7 t)

The Macdonald symmetric functions are defined uniquely by two properties: they are orthogonal
with respect to this scalar product and they decompose in the basis of the monomial symmetric
functions as
Py(z;q,t) = my + Z Upp My
B<A

When ¢ = t, they reduce to the Schur functions sy, and when ¢ = 0 to the Hall-Littlewood
functions Py(z;1).

For a partition A and a cell ¢ = (i

be a(¢) = A\; — 7 and its leg to be I(c)

j) of its Ferrers diagram, one defines the arm of ¢ to
A; — 1. Now we can state Macdonald’s conjecture.
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CoNJECTURE 1 (MACDONALD). The coefficients K,,(q,t) of the following decomposition are
polynomials with positive coefficients:

(4) Hy(z;1) := ex(q, ) Pr(z;q,1) = ZK,\N((],t)S,\(x;t), where ¢)(q,t) = H(l — gy,
X

CEA

These coefficients possess a lot of structure. For instance, for A = (3,1), Eq. (4) becomes
Hg 1y = S+ (6 + 1+ @)@ + (L 0)gSe0 + (1 +¢° + 84S0 + 167 50,1,0)-

Only special cases of Macdonald’s conjecture have been proved.

3. Combinatorial properties of V when ¢t =1

In order to study the polynomials H,, Bergeron, Garsia and Haiman have introduced a linear
operator V which is diagonal in the basis H,, with eigenvalues Tj(q¢,1) = ¢"*1**), where n()\) =
>-(¢—1)A;. The matrix of V in the Schur basis turns out to have a fascinating structure of which
much is still only conjectured [2].

The aim of [1] is to study this operator in more detail in the special case ¢t = 1. Then the
basis Hx(z;q) := Hx(z;q,1) becomes multiplicative: H,(z;q) = fI(Al)(x;q)fI(AQ)(x;q) <o« and V
becomes multiplicative too. Thus any identity involving symmetric functions gives rise to a similar
identity for its image by V. In particular, from (2) follows V(s) = det(Vex y;_i)i<i j<m- Moreover,
still when ¢ = 1, the coordinate V(e,)|, of V(e,) on e, is a g-Catalan number C,, with generating
function C'(z) defined by C(z) = 1+ 2C(z)C(zq). Hence D(A) := V(sy)|, = det(Criqj_i)icij<ms
and the idea of [1] is to use the Gessel-Viennot technique [3] to evaluate determinants of this type
for various classes of partitions A. Typical results are summarised in the following theorem.

THEOREM 1.
D((E*))
D((k*+?) = (~1)(F)+yg

k(k—1)(4k+41 k41 k(k+41)(4k—1
B D((E*H1)) = (—1)("3) g e

(_1)(5)(] 6 ’ 6

k(k+ k—
(k1) (ar1) 4 g2

bl

k(k—1)(4k+7)
6

[k+1], D((k+ 1)) =(-1))q [k + 1],

k

D((k + 2)1) = (—1)(8) g re=gemeen [k 4 Uk + 2)(1k + 1] + glk + 2])

[2](3] ’

where [k}]:1+q_|_q2_|__|_qk—1

Another linear operator diagonal in the basis H, is also studied in [1]. Similar techniques apply
and results of a similar kind are obtained.
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Euler sums

Philippe Flajolet
INRIA Rocquencourt

January 29, 1996

[summary by Jean-Paul Allouche]

In 1742 Goldbach wrote a letter to Euler proposing the study of the sums

/11 1y 1 S HWP
sp,q::Z<1—p+2—p+---+n—p) =

nt ne ’
n=1

where H(") and H, = H(" are the harmonic numbers defined by
H = z": i
iz’
Euler was able to compute all the sums 5, , for p+ ¢ < 13, for example
/1 1 1\ 1
Ch 42— =92¢(3).
;(1+2+ +n)n2 )

Then, in 1906, Nielsen gave relations linking the sums 5, , having the same weight w = p 4 ¢.
Hence the 5, , of odd weight are polynomials in the values of zeta, for example

Sas =y —5 = 50(2)((5) + 2((3)¢(4) — 10¢(7).

Many similar identities have then been found or conjectured. Some of them involve multiple zeta
functions; see the papers of Bayley, D. and J. Borwein, De Doelder, Don Zagier, Girgensohn,
Hoffman, Markett.

The authors [1] propose a simple and unifying method that gives most of the known results
about these identities. Furthermore they are able to prove some conjectures. The key idea is to
use a contour integral with a well-chosen kernel.

1. The idea of the authors: a simple case

Let us denote by I(p, ¢) the integral
1 ds
I(p,q) = — - 2 48
(p.q) = 5~ /C(¢( s)+7)"

where C' is a circle whose radius goes to infinity, and where v is the logarithmic derivative of the
I’ function. Denoting by v the Fuler constant, we have

¢(Z)z%logf(z):—7—é+§:<l_ 1 )

S\ ntz
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Hence, when s tends to a positive integer m, then

($(=5)+7)° = —— 12

s—m (s —m)

If s tends to 0, we use the relation ¢(s) + v = —1/s + ((2)s — ((3)s* + --- . Hence, by residue
computation the Euler sum 5; , can be expressed as an explicit quantity which is “homogeneous”
of degree 2 in the zeta values.

In the general case the authors consider integrals

= [ e ds,

2t
where 7 is a rational function, and £ a suitable kernel. They then obtain numerous results: some
of them were already known, but some of them were only conjectures.

2. A zoo of beautiful identities

The authors obtain the following results.

THEOREM 1 (EULER). Let ¢ be an integer > 2. Then

“H 1 1<
= E — =(14+= 1)— = E (k4 1)C(q — k).
For example
>\ H, >~ H, 5 =\ H,
— =2 — = —=((4 — = .
ST =G, 2= ), 2 = 86 - ()

THEOREM 2 (EULER, BORWEIN ET AL.). If the weight m = p+ q is odd, then

(p 1P {m— - fm— —(=1)
30 gy L R (1) R ()| g

p q
5] m— 9k —
NEID ( 2 1) () (m — 28) + (-1

k=1

where any occurrence of ((1) has to be replaced by 0.

If we then use the symmetry S, , +.5,, = ((p)C(g) + ((p + ¢), we obtain

5 Z i Z Iff) = - ZC(8) +10C3)C(6) + 5C(4Y,
(2) n=1
Z = —33((10) + 14¢(3)¢(7) + 15¢(4)¢(6) + 8¢(5)%,
72 H(z) Z ]f{f) = - Z20010) + 14T + 21G()C(6) + 10¢(5)7
93 Iﬁ? po > I 1B ) 4 asc(a)cco) + 21600008 + 2405167 + (6"
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H® = HM 575 295

821 T Zl n’; = —=C(12) + 16((3)(9) + 24C(4)(8) + 28C(5)(T) + S (6)",
Z HE? = —73¢(12) 4 28¢(5)C(7) + 21¢(4)C(8) + 14¢(3)C(9) + 35(6)2.
Then S . e I
)y }f;; - £<<4>7 e = 20® 450, X T = (3~ 5(6)

n=1 n= n=1

1
THEOREM 3 (BORWEIN ET AL.). The following relations hold.

i (H )2 -5, q = =q5; g+l — %g(q + 2) + C(Q)C(Q)

n4

For example

5> el 2o - o
5 U — ) - c2)o) - a1
3 BE = T - o - S - G + e
and _

I I UL SCLORROR

> = 3 I 00 - 10631 - 565)* 4 G+ 22)BK(5)
>~ e,
3 Bk = T - s - 20y

THEOREM 4. Ift+j+ k isodd, withi>1, 7> 1, k> 1, then
o H()}](])
[(—1)’“+(—1)Z+J]ET+A+B+C+D+E+F_0

n>1

where

A= (=1)™MHCE)C)CR) + (=1) ) S + (1) () S,

_ a1y (ﬂ*q‘l (’““ ) 985 aaae + (~1C( + @)k + D]C(2r),
q+27‘+t i

¢ = _a(_1) ( - 1) (’“ ti- 1) P Stapse + (~17C( -+ p)CCE + 0)C(20),



D=-2-1" Y (kagl)azka+w,

rt=i+j
E= (=1 [=5 46 — Sjier — C(5) 5k — C(4) S
F Qi+ g+ k) +CGE+F)CG) + ¢+ R)CE) + (1)) (R)],
F= 3" ¢2n)ADA0),
pHatr=it+j+k
and

i i i i i ; t+i—1
A =1, AP=A9=-~=&A=0,Aﬁfw—nqw(i_l)'

The summations are over the indices > 0. One has to replace ((0) by —3, and ((1) by 0.
COROLLARY 1 (BORWEIN AND GIRGENSOHN). Let ¢ > 1. If the weight a + b+ ¢ is even, the

triple zeta function ((a,b,¢) =3 g0 cn.cn, momsee can be reduced to linear Euler sums.
17273

. . . 00 3 (2) .
THEOREM 5. (i) The cubic expressiony .., (h;’;) - 3> 51 % can be expressed in terms of
the zeta values, for any weight.

(it) For even weights, Y .., (fi’;)a can be computed in terms of S5 ,41 and polynomials in the zeta
values.

As a consequence, this gives a proof of conjectures of Bailey, Borwein and Girgensohn:
COROLLARY 2. We have
> (H,)? 15

T 1)y = 75(5) +¢(2)¢(3)
1
(H,)? 33

TR = —EC(G) +2¢(3)°
1

(H,’ 119 . 33
(n+1)* 16

(H,)? 197 33 37 5
Tt 1) 52 6(9) = 7 C(4)C(5) = =C(3)C(6) + ¢(3)7 + 3¢(2)¢(7).

(]

NgER NgER

n=1

M8

n

3. Other relations?

If the reader wants to discover other relations, including relations on alternating Euler sums,
read the details of the proofs, check that he was able to discover tricky integration contours, or
know where some of these relations naturally occur in theoretical computer science, he should read
this very nice paper. He will certainly enjoy it.
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A Zero-One Law for Maps

Kevin Compton
University of Michigan, Ann Arbor, U.S.A.

June 10, 1996

[summary by Frédéric Chyzak]

Abstract

A class of structures has a 0—1 law when any property expressible in a certain logic has
limiting probability 0 or 1 as the size of the structures tends to infinity. We prove 0-1 laws
for classes of maps of a given genus. This is a joint work with E. Bender and B. Richmond [1].

1. Definition of the problem

Let 5 be a set of primitive elements called sorts. A wvocabulary ¥ consists of a collection of
constant and relation symbols, together with a mapping from each constant symbol to a sort, and
a mapping from each relation symbol to a sequence of sorts, the arity of the relation (see [4] for an
introduction to model theory). A multi-sorted structure A over ¥ then consists of

— a collection of disjoints sets (or universes) A,, one for each sort s;
— elements ¢* € A,, one for each constant symbol ¢ of sort s;
— relations R4 C A,, x -+-x A,,, one for each relation symbol R of arity (sq,...,s,).

A class of structures is a set of structures defined on the same vocabulary. In the study of random
structures, one says that a class of finite structures has a 0-1 law when any property expressible
in a certain logic has limiting probability 0 or 1 as the size of the structures tends to infinity. The
relational signature of a class of structures over Y is the common set of relation symbols in the
vocabulary 3, together with their arities. A famous theorem by Glebskii, Kogan, Liogon’kii and
Talanov [9], and proved independently by Fagin [7], states that if C is the class of all structures
for a given relational signature, then C has a first-order 0-1 law. However, deciding the limiting
probability of a given property is a difficult problem, as formalized by a theorem by Grandjean:
when a class C has a 0-1 law, the set of first-order sentences of limiting probability 1 is PSPACE-
complete.

A map M is an embedding of a connected graph G into a closed surface § such that all connected
components of S\ G, the faces of M, are homeomorphic to a disc. Let t =1 — (v — e+ f)/2 be
the genus of M, with v, e and f its number of vertices, edges and faces respectively. When ¢ is an
integer, the map is called orientable. The size | M| of a map is e. The purpose of this exposition
is to provide similar results to the theorems mentioned above for maps, even in the non-orientable
case. Our main result is the following theorem [1].

THEOREM 1. The class of all maps on surfaces of fixed genus has a 0-1 law. The set of first-order
sentences of limiting probability 1 for this class has lower bound complexity of DTIME(exp_, (cn)),
for some ¢ > 0.
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(Recall that exp_,(n) =2% , with n nested exponentiations.)

The 0-1 law theorem for structures cannot be applied to maps, since the latter do not form a
full class of structures of a given relational since. Besides, we have to explain how maps can be
represented as structures.

2. Representation of maps as structures

Any naive attempt of representing a map M on a surface § by its graph, i.e., by its set of
edges, is bound to fail. Indeed, this representation would not encapsulate any information about
the embedding of M into §: easy examples show that isomorphic graphs need not correspond to
homeomorphic maps, and that the order of edges around a vertex has to be taken into account.
However, on a non-orientable surface there is no consistent way to choose an edge order around
each vertex.

A solution stems from an idea of Edmonds [5], later elaborated by Tutte [10] as a basis for a
combinatorial theory of maps: to each edge, one associates a pair of darts, pointing in opposite
directions. On orientable surfaces, a possible representation of mapsis then given by an involution «
on the set of darts, mapping a dart to its opposite dart, together with a permutation § whose cycles
consist of all darts out of a vertex, listed clockwise. Then, af is a permutation whose cycles consist
of all darts around a face, listed counter-clockwise. One is thus able to determine the embedding
using o and §. In the context of possibly non-orientable surfaces, a map is analogously described
as a structure by the sets U,, U; and Uy of its vertices, darts and faces, together with incidence
relations I(z,,z4) and J(z;,z,4) of darts with vertices and faces, a co-dart relation C(z4,z4) and
a dart adjacency relation A(z4, 24 ,2;). The co-dart relation is an analogue for o, while the dart
adjacency relation encapsulates the information formerly supplied by 3, specifying a face to supply
the orientable information.

3. Ehrenfeucht-Fraissé games

The 0-1 law theorem for structures still does not apply to maps: not all structures of signa-
ture (I,J,C, A) are maps. We overcome this difficulty in the case of the class of all maps on
surfaces of a fixed genus by determining subclasses of limiting probability 1.

The sentences of first-order logic under consideration for our 0-1 laws can all be written in
the form S = 6,2, ...0,2,¢(z,...,z,), where the 8,’s are quantifiers, either V or 3, the z;’s are
variables and ¢ is a boolean expression free from quantifiers built on the z;’s using conjunctions
and disjunctions. The rank of the sentence S5 is the integer r. Let A and B be two structures
with same relational signature. We write A =,, B when both structures satisfy exactly the same
sentences of rank m. This defines an equivalence relation between structures. The next paragraph
describes this equivalence relation by a game-theoretic approach.

The Ehrenfeucht-Fraissé game is an m-round game between two players called Spoiler and Dupli-
cator and played on a pair of structures A and B of same relational signature. In each round, Spoiler
picks any element from either structure and Duplicator responds by picking any element from the
other structure. This yields two substructures A" = {ay,...,a,,} C A and B’ = {by,...,b,,} C B,
with relations induced in a natural way. Duplicator wins if he is able to choose his responses so as
to make A’ and B’ isomorphic; if not, Spoiler wins. Duplicator has a winning strategy if and only if
he is capable of winning for any choices made by Spoiler. A fundamental result used in the sequel
is the Ehrenfeucht-Fraissé theorem [6, 8] which states that Duplicator has a winning strategy in
the m-round first-order game played on two structures A and B if and only if A =, B.
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Now, the relation =, defines a finite number of (possibly infinite) equivalence classes on the
ambient class. It can be proved that one of these classes has limiting probability 1, and this suffices
to prove our theorem. For the sake of clarity, we present the idea of the proof on a simplified
example only.

4. A 0-1 law by a 3"~ * strategy for a simplified problem

For this example, the class of structures under consideration is the set of square toroidal grids
with a unary relation (we simply tag some vertices). We play r-round Ehrenfeucht-Fraissé games
on pairs of grids. The crucial fact we use is that any fixed square plane grid with vertices tagged
at random appears in a toroidal grid with limiting probability 1.

It follows that Duplicator has a strategy to win almost surely, i.e., with limiting probability 1.
Define a distance between two vertices of a grid by the minimum number of edges in a connecting
path. The ball N(ci,...,c,;d) is the set of vertices at distance at most d from any ¢;. Let A
and B be two structures. Assume we are in round k + 1 and that a,...,a; have already been
picked out of A, by,...,b; out of B in a way such that N(ai,...,a;;3"7%) and N(by,...,b;377F)
are isomorphic, when viewed as substructures with naturally induced relations. Now, Spoiler
picks an element out of either structure, say azy; out of A—the case by, out of B is symmet-
ric. If N(ay,...,a541;3"7%"1) C N(ay,...,a;;3"~%), then Duplicator can trivially choose by,
in N(by,...,b,;3"7%) so that N(ay,...,ary1;377%71) and N(by,...,bpy1;377%71) are isomorphic.
Otherwise, there is almost surely a ball in the complement of N(by,...,b;;3"F=1) in B which is
isomorphic to N(apy1;3"7%~1). Duplicator then chooses by, to be its center. After r rounds,
the balls N(ay,...,a,;1) and N(by,...,b,;1) are almost surely isomorphic. Thus, Duplicator wins
almost surely by following the strategy that we have just described. By the Ehrenfeucht-Fraissé
theorem, A =, B almost surely. Therefore, one of the (finitely many) equivalence classes of =, has
limiting probability 1. Call it &,.

Consider now a first-order sentence S of rank r on toroidal grids. By the Ehrenfeucht-Fraissé
theorem, the set of all grids satisfying 5’ is either contained in &,, or disjoint from &,. In the former
case S has limiting probability 1, in the latter 0. We have thus proved a 0-1 law for the class of
toroidal grids with a unary relation.

5. A 0-1 law for maps of a given genus

We first recall two difficult results on maps.

The first result [2, Sec. 5] plays the role of the crucial fact we used in the previous section, namely
the limiting probability 1 of the appearance of a fixed plane grid in a toroidal grid. It states that
for a class C of maps of fixed genus, there is a ¢ > 0 such that for any given planar map P, the
property for maps in C to contain more than c¢n disjoint copies of P has limiting probability 1.

The second result [3] is about representativity of maps. The representativity of a map M on a
surface § is the smallest number of intersections a non-contractible curve in § has with M. The
result is that for a class of maps of fixed genus, there is a ¢ > 0 such that the property for maps to
have representativity more than ¢Inn has limiting probability 1. This result is used in the proof
of Theorem 1 to ensure the planarity of certain submaps built on balls playing a réle similar to
the N(ay,...,a;;3"*) of the previous section.

Next, the proof of Theorem 1 runs as for the example of the previous section: we prove a first-
order 0-1 law for the class of all maps of a given genus by showing that for each r, Duplicator has
an almost surely winning strategy in r-round Ehrenfeucht-Fraissé games. More specifically, this
strategy is a 3" % strategy using balls around elements picked by Spoiler and Duplicator. However,
the notion of distance used is not that of the previous section. The proper distance to prove the
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result is by means of quadrangulations of maps. For a given map M on a surface, add a new point
on each edge and a point in each face. Next add new edges from the new points on the edges to the
new points in the faces. The quadrangulation of M is then the new map on the same surface built
in this way. This construction induces a natural mapping from a map M to its quadrangulation Q.
We extend this map to the dart representation of M by mapping both co-darts defined by an edge
to the image of this edge in Q. A distance is then defined on the set U, U U; U U; of all vertices,
darts and faces of the dart representation, as the distance between the images in Q. This distance
is not a metric, since two co-darts are at distance 0 for each other. However, the concept of balls
it induces is sufficient for the proof of Theorem 1.

6. Conclusions

Theorem 1 has been refined for several classes of maps on a surface of fixed genus [1] (see this
reference for missing definitions): the class of all maps; the class of smooth maps; the class of k-
connected maps where k is 2 or 3; the class of k-connected triangulations where k is 1, 2 or 3.
However, the question of a 0—1 law for planar graphs remains open, though we believe it should be
true.

As for complexity results, we proved an exp_ (cn) lower bound for the complexity of the set of
first-order sentences of limiting probability 1 in the case of the dart representation. Another result
holds for an eztended dart representation (see [1] for the definition): in this extended representation,
we proved undecidability. What we have not been able to prove is an upper bound in the case of
the dart representation, though we feel exp_ (dn) is a good candidate for such an upper bound.

Finally, all results presented here concern sentences of first-order logic. An extension to other
logics seems reasonable, in particular to MSO (monadic second-order) logic, with application to
the theory of databases.
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Abstract
We show that many popular models of folding and/or alignment may be described by a
new formalism: multi-tape S-attribute grammars (MTSAGs). This formalism relieves the
designer of biological models of implementation details. We present also a tool which, given
a MTSAG, will output an efficient parser for this grammar and show that MTSAGs offer a
new, efficient and useful way to handle stochastic context-free grammars. This summary is
an extended abstract of [7].

1. Introduction

We shall see here that most popular models of alignment and/or folding of DNAs, RNAs or
proteins, HMMs (Hidden Markov Models) [5], SCFGs (Stochastic Context-Free Grammars) [8] and
CMs (Covariance Models) [3] share a common representation in terms of a new formalism: Multi-
Tape S-Attribute Grammars (MTSAGs). This formalism is not only a help for the description of
old or new methods. We designed and implemented a tool which, from the high-level description
given by a MTSAG, will automatically generate the C source of an efficient C parser which is able to
compute alignments and foldings. The speed and memory requirements of such generated parsers
stand the comparison with programs manually written from dynamic programming relations. As a
consequence, we show how to automatically build SCFGs from sets of unaligned, unfolded RN As.

2. Definitions

We define a special “m-tape” alphabet which will handle sequence alignments, and then a “m-
tape” extension of context-free grammars which will handle structures of alignments.

DEFINITION 1. A m-lape alphabel ¥ is a product of m alphabets ¥() augmented with the empty
string: ¥ = ®;_; (3@ U {e}). An element a; ---q; of the free monoid X%, generated by formal
concatenation of m-tape elements of Y, is called a m-tape alignment of length [. The empty
alignment of ¥* is denoted by e.

ExaMPLE. (abba,dcd) is a 2-tape input string on ¥(*) = {a, b} and X® = {¢,d}. We shall also
write this 2-tape input string as 4%%¢  which is a somewhat more natural notation in the context
of alignments. This 2-tape input string has a 2-tape input substring %°.

DEFINITION 2. Given any m-tape alignment a; ---a;, we get a m-tape input string by concate-
nation, or e-deletion, of symbols of the projection of a; - - -a; on every tape.

¥ — (X", a - rap — (ag @),
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start —  frame0Q (0) ds
framed —  frameO § | [:] (0) gg
| frame0|¥ (2) gg
| framel|%| | frame?[)_(] (1)
framel —  framel § (1)
| framel|¥ (3)
|  frameo|X |f7“ame2[)_(] (3) i
frame2 —  frame2 § (1)
| frame2| ¥ (3)
| frameO| x| | framel [ )_(] (3)
Ficure 1. In this weighted left-
regular grammar, weights are
written in parentheses after each [

. . tape 1 CCTTCTGTAGCTCAATTGGT C G

group of productions having the O Ut 1))
. . tﬂ)e 2 GGAGAGATGGCTGAGT - GGACTAAAGCGTACGA - GTTAA - TCGTACTCTTTCC

same weight. Later on, weights CCccce oG I (e 1IN

will be turned into attribute eval-
uation functions.

FIGURE 2. Derivation tree of an
alignment of two RNAs.

ExAMPLE. Our 2-tape input string 49%%* may be defined as an e-deletion of the alignments
(Lal[eILelLe]tan) or (Le] Tl Ll [E] La])-

Searls did show that the alignment of two strings according to some edit-distance may be carried
out by some simple 2-tape nondeterministic finite automaton (NFA) with weighted transitions [9].
The sought alignment has a minimal total weight. The set of alignments recognized by a Searls’
NFA is a regular language over our 2-tape terminal alphabet, and may be described by a regular
grammar with weighted productions (see figure 1).

As regular grammars are a proper subset of context-free grammars, we found natural to generalize
this idea of alignment to m-tape (i.e. the terminal alphabet is a subset of a m-tape alphabet)
context-free grammars (MTCFGs) and their recognizing devices, namely m-tape nondeterministic
pushdown automata (NPDA). Weighted transitions of NFA are easily translated into weighted pop-
transitions of NPDA. The sought alignment is obtained from a sequence of pop-transitions of the
NPDA which has an optimal (minimal for some problems, maximal for others, etc...) total weight.

Figure 2 shows how alignments and structures may be deduced from a single m-tape derivation.
The underlying grammar may be easily recovered. Base pairings are inferred from derivations of
DS (Double-Strand) and they are given below each tape. Notice that a double-strand has been
defined as a substructure whose ends must be paired on at least one tape, whereas a single-strand
(SS) may only have unpaired bases on both tapes.

DEFINITION 3. A m-tape context-free grammar G = (Vp,Vy, P,S) consists of a finite set of
terminals Vp such that Vp is a subsel of a m-lape alphabet, a finite set of nonterminals Vi such
that Vy N Vy = 0, a finite set of productions (rewriting rules) P and a start symbol S € Vy. Let
V = Vp U Vy denote the vocabulary of the grammar. Each production in P has the form A — a,
where A € Vy and a € V*. A is the left-hand side of the production and « its right-hand side.

A derivation tree is a planar representation of a sequence of derivations (replacements of a
nonterminals A in a string of V* by strings a such that A — «a) and it is a result of parsing. The
language L(G) is the set of m-tape input strings generated by G: L(G) = {(u) € (V;) | 5 —=* u}.
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ExampLE. The following toy MTCFG will align two properly parenthesized strings interspersed
with a:

s—[JsP] Il 211z 12]] 88

In this MTSAG, the structure defined by parentheses must be the same on both tapes, but sub-
strings of @ may be aligned with gaps (denoted by — in terminals instead of €, because a dash is
appropriate, and even expected, in the context of alignments).

DEerINITION 4. Let G = (Vp, Vi, P, S) be a proper m-tape context-free grammar. For every tape
i (1 < < m), define the projected grammar G) as the conversion of the grammar (VT(i), Vy, P9 9)
into a proper grammar, where VT(i) and P are the sets of values on tape ¢ of all the elements of
Vp and P respectively.

ExaMmPLE. The MTCFG of the preceding example has the same projected grammar on both
tapes :

§S—=(510alS5

Projected grammars are useful for the study of the complexity of our parsing algorithm as a
function of the ambiguity of MTCFGs.

We said earlier that we could assign a cost to each alignment or folding produced by a NPDA,
thanks to weights on pop-transitions. This cost-evaluation step is essential for the determination
of an optimal cost alignment or folding.

We use the general mechanism of synthesized attributes, or S-attributes which, together with
MTCFGs, give us m-tape S-attribute context-free grammars, or MTSAGs. S-attributes are at-
tributes which are assigned to every vertex of a derivation tree and which are computed from the
bottom of a derivation tree (i.e. every terminal has a known S-attribute) to its root by means of
attribute evaluation functions associated to grammar productions. Thanks to these functions, the
computation of the final attribute of the derivation tree does not have to rely on a fixed, prede-
termined, operation (summation, multiplication, ...), as it would have been the case with weighted
productions. In our implementation, attribute evaluation functions are C functions. We have al-
ready shown the effectiveness of S-attributes with our adaptation of the thermodynamic model of
folding to context-free grammars [6]. This algorithm uses a parse table to store the shared forest
of derivation trees of a m-tape input string.

DEFINITION 5. A m-tape S-attribute grammar is denoted by G = (Vp,Vy, P, S, A, S4, Fp). It
is an extension of a m-tape context-free grammar G = (Vyp, Vi, P, 5), where an attribute z € A is
attached to each symbol X € V and a string of attributes A € A* to each string a € V*. S, is a
function from Vp to A assigning attributes to terminals. Fp is a set of functions from A* to A. A
function f4_., isin Fp iff A — aisin P.

The attribute A of a string « is the concatenation of the attributes of the symbols in o. When
a function f4_, is applied to the attribute A of a string o derived from A, it returns the attribute
z of A (hence the bottom-up computation of attributes).

3. Syntax analysis for MTSAGs

A generalization of Cocke-Younger-Kasami’s algorithm (CYK) would be an easy algorithm to
parse m-tape input strings. This algorithm has a time complexity of O(n®) and a space complexity
of O(n?) when only one tape of size n is considered [1]. A generalization to m tapes, each of size
n, would lead to an algorithm having a complexity of O(n®™) in time and O(n*™) in space.
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To overcome the limitations of CYK’s algorithm, we generalized our parsing algorithm for 1-tape
MTSAGs [6].

When constructing the parse table, a minimum condition of usefulness is applied. This condition
means that an item is never add to an entry if it has no chance of being used in a derivation tree,
up to the already parsed part of the m-tape input string. This condition is akin to a condition
verified by Earley’s parsing algorithm and it is the key to the lower parsing complexities of our
algorithm when some projections of the underlying MTSAG are unambiguous.

In fact, out algorithm may be considered as an improvement of Earley’s algorithm, where Earley’s
items [A — a - 3,1],(a, 3 € V*) which share the same o and i are factorized into a single item
[A — a,i]. Also, non-kernel items of Earley’s algorithm are replaced by much smaller sets of
expected non-terminals.

PROPOSITION 1 (1-TAPE COMPLEXITY). Let G be a proper 1-tape MTSAG and let r > 1 be the
mazimum number of nonterminals appearing al the right-hand side of a production of G. For a
tape of length n, the time and space complexities of the previous parsing algorithm are, in order of
decreasing constraints on G':

— Fqual and at most O(n) if G is LR(k) and not right-recursive (this encompasses left-regular
grammars);

— equal and at most O(n?) if G is unambiguous;
— O(n"t) and O(n") for a generic proper MTSAG.

PROPOSITION 2 ("m-TAPE COMPLEXITY). Let G be a proper m-tape MTSAG. The time com-
plexily of our parsing algorithm on G is equal to the product of the parsing complezities of the same
algorithm applied on each tape i with each projected grammar G). The same kind of result holds
for space complerities. Hence the time complexily is al most O(n™"+Y)) and the space complezity
is at most O(n™"), for m-tapes of size n

In practice, MTSAGs that we used verified r < 2 and thus the time and space complexities of
our parsers for those grammars were respectively O(n*") and O(n?™) at most, but were sometimes
much better.

4. Stochastic Context-Free Grammars

An essential aspect of MTSAGs is the ability to easily generate efflicient parsers from grammars.
On the basis of the tool we had already written to generate parsers from 1-tape S-attribute gram-
mars, we designed a new tool, MTSAG2C, which automatically generates the C source of a parser
from a given MTSAG. The generated parser is able to read tapes (thanks to a lexical analyzer pro-
vided by the user), parse tapes, and then output a single derivation tree which satisfies constraints
given in the MTSAG.

When using 2-tape MTSAGs for SCFGs, we transfer on the first tape the high-level description
of a family of RNAs usually used with SCFGs, and on the second tape the RNA to be folded and
aligned. All rules used by the traditional SCFG generating tool to generate a SCFG from its high
level description are then written down as a single, fixed, MTSAG. This has the additional benefit
of shortening the development cycle (see figure 3b).

We compared the parser generated from a 1-tape version of a 97 nonterminals SCFG (this parser
already proved to be quite fast [6]) to the parser generated from the 2-tape version of this SCFG
(figure 4(a)).

Tests done on an Alpha 2100-500MP give the results:
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FiGure 3. (left) 1-tape MTSAG; (right) 2-tape MTSAG. Development cycle of a
MTSAG implementation of SCFGs. It has been suggested [4] that a comparative
analysis of alignments resulting from parsing may be used to build a new SCFG or
a new high-level description of it. With 2-tape MTSAGs, this kind of feedback is as
easy to implement as the feedback designed for CMs by Eddy and Durbin [3].

1-tape | 2-tape

83 bases tRNA
time in seconds: 0.45 0.33
space in Mbytes: | 1.8 0.9

With MTSAGs you do not have to generate and compile another parser every time you modify the
high-level description of your family (figure 3 (left)). Instead, we may use the following adaptation
of the procedure of Eddy and Durbin to learn their CMs from initially unaligned and unfolded
RNAs:

(1) Use a MTSAG adaptation of any folding algorithm (Sankoff, Zuker) to get a rough (and
even wrong) initial folding. Convert this folding to a suitable first tape (by replacing all
single strands by ’*’ for instance);

(2) Use Dirichlet priors to estimate probabilities;

(3) Align and fold all RNAs with a 2-tape MTSAG;

(4) Optimize probabilities from results of the previous step and repeat the previous step until
probabilities converge;

(5) Use a comparative analysis algorithm on alignments of step 3 to get a new approximation of
the common structural features of all RNAs. Then convert this approximation to a suitable
first tape;

(6) Repeat steps 2 to 6 until the first tape converges.

5. Conclusion

We introduce a new way to describe SCGFs in the form of 2-tape MTSAGs and special first
tapes. This new way alleviates the need for specialized SCFG building tools and for recompilations
of parsers every time the model is changed (only the first tape has to be changed).

MTSAGs may also be applied to most useful sequence analysis methods which were usually
expressed with dynamic programming relations (Smith-Waterman alignment model, global align-
ment, HMMs, simultaneous alignment and folding of RNAs). We believe that MTSAGs should be
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CCCCCCC L CCCCHmrrknx) ) ) ) (CCCCL e D)) ) Hwrkkkax ((((C..nnnn ))))))))))).
CCUUCUGUAGCUCAAUUGGUAGAGCAUGUGACUGUAGAGUAUGCGGGUAUCACAGGGUCGCUGGUUCGAUUCCGGCCGGAAGG

(a) unaligned 2-tape input string.
CCCCCCC L COC e ) ) ) ) L (CCCCL e 1)) ) wrkkkokkm————mmm e *((CCC. ..ot )00
CCUUCUGUAGCUCAAUUGGUAGAGCAUGUGACUGUAGAGUAUGC--GG-GUAUCACAGGGUCGCUGGUUCGAUUCCGGCCGGAAGG
(b) 2-tape alignment of the previous 2-tape input string.

FiGURE 4. Unaligned and aligned version of a 2-tape input string. The first tape of
this 2-tape input-string has a cloverleaf-like structure. This structure has two single
strands which may have a variable length around 8 bases. The second tape is the
RNA DY6050 extracted from a well known freely available compilation of tR-
NAs [10].

used instead of dynamic programming relations because these relations hinder the inventiveness of
designers of new sequence analysis models.

We also gave a sketch of a method to build stochastic models from unaligned, unfolded RNAs.
However, divide and conquer methods may be a prerequisite for long RNAs [2, 4]. We will try to
apply MTSAGs to these methods.
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Linear recurrences and linear differential equations with polynomial coefficients provide a finite
representation of special functions or special sequences. Many algorithms are at our disposal; some
give a way to automate the computation of recurrences or differential equations; some provide
solutions to recurrences or differential equations; and some give the asymptotic behaviour of these
solutions, directly from the recurrence or differential equation. All of this provides a method to
efficiently compute special functions and special sequences.

1. Classical algorithms concerning formal power series

In the sequel, we use the ring A[[z]] of formal power series

+o0
Flz) =) fua"

with coefficients f, in a commutative ring A ; this ring is assumed to contain the field Q of rational
numbers, even though it is possible to consider a more general situation. Practically, one deals
with truncated series

N
F(z) = Efnx” + O(2aN*),
n=0
that is to say essentially polynomials. It must be noted that there exist lazy algorithms to deal
with truncated series of arbitrary order, but their cost is generally excessive. We indicate how to
deal with basic operations [7, Chap. 4].

Product of polynomials. The naive method to obtain the product of two polynomials of degree N
has complexity O(N?) arithmetic operations. A better way is Karatsuba’s algorithm, which has
complexity O(N'*823) = O(N'5°). The idea behind the algorithm resides in writing

P(z) = Po(z) +2"Pi(z),  Q(z) = Qo(z) + 2*Qi(2),
P(2)Q(z) = Po(2)Qo(2) + R(z)a" + Pi(2)Q1(2)a",
R(z) = (Po(z) + Pi(2))(Qo(z) + Q1(2)) = (Po(2)Qo(2) + Pi(2)Q1(2)),

with k& ~ N/2; this formula needs only three multiplications of polynomials of degree less than k
instead of four multiplications, and this leads to an efficient recursive computation.
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From a practical standpoint, Karatsuba’s method becomes efficient in Maple for an N greater
than about a hundred. The fast Fourier transform algorithm needs a much larger value of N to be
useful.

Composition. Here the goal is the computation of the first N coefficients of the series FI(G(z)),
where g, = 0. The naive method leads to a computation with O(N) series multiplications. Brent
and Kung’s algorithm [2] has a better behaviour. It consists of three steps; first write F(z) as

F(z) = Fy(z) + Fi(z)z" + Fy(z)z® -+ Fy_y(z)abt=D),

where Fy(z), Fi(z), ..., Fr_1(z) are the series obtained by factoring out the powers of z*, where
k = [(N 4 1)Y?]; next compute the powers Gi(z) for i from 2 to k — 1, and the series F;(G(z));
finally, compute T'(z) = G¥(z) and F(G(z)) using a Horner scheme.

The algorithm uses 3k series multiplications and O(N) coefficient multiplications, hence it has
cost O(N/?)if the unit cost is series multiplication. Via Karatsuba’s algorithm, this gives a cost of
O(N?*°?) expressed in terms of coefficient multiplications, while the naive method has cost O(N?).

Powering and simple functions. Powering and simple functions are a particular case of composi-
tion, but in this case it is possible to be more efficient. We show the idea for the case of powering.
If H(z) = F°(z), then H(z) satisfies the equation

H'(z)F(z)= oF'(z)H(z),

therefore the coefficients of H(z) are provided by the following recurrence
Z khy for = « Z(n - k)hkfn—k-
k=0 k=0

This makes it possible to compute the first N coefficients at a cost of O(N?) coefficient multiplica-
tions, instead of O(N?9).

Newton iteration. An ever better way to compute elementary functions is Newton’s method. If
we search for a series y(z) such that ®(z,y(z)) = 0, we use the recurrence

B Sz, yp(z))
Ye1(2) = yr(2) — 0®/0y(x,yp(x))

We start from yo(z) = 0 and the formula is iterated until 2k + 2 > N. The number of correct
coefficients is doubled at each step. For example, the reciprocal y(z) = 1/ F(z) satisfies the equation
®(z,y) = 1/y—F(z) = 0 and the recursion is yz 11 = 2y, — F(2)yi. In the same way one can compute
the logarithm In(F(z)), the exponential exp(F(z)), and solutions of simple differential equations.
In all these cases the complexity of the computation is the complexity of the multiplication, that
is O(N159).

For the reversion of series the same method can be used. Given F(z) with fo = 0, fi # 0, one
looks for a series y(z) such that F(y(z)) = «. This is carried out by Newton’s method applied to
the equation F(y) — z = 0; hence the recurrence is

Yes1(2) = w(z) — % mod z2k+2.

mod 22542,

The cost is of the same order as the composition cost, because of the terms F/(y;(z)) and F'(y(z)).
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Linear differential equations. Assume that the power series F(z) satisfies a linear differential
equation
ao(2)y™ + ar(2)y* "V + -+ ap(a)y = 0,

whose coeflicients are polynomials. If 0 is an ordinary point, this differential equation translates
into a linear recurrence for the coefficients of F(z). This leads to an algorithm whose cost is O(N),
while the preceding ones use at best O(N'°?) basic operations.

Obviously, the complexity O(N ) is optimal, therefore for large N there is great interest in finding
a linear differential equation with F(z) as a solution, if possible. In the sequel, we will focus our
attention on such power series.

2. Univariate holonomic series

A power series is said to be holonomic if it is a solution of a linear differential equation with
polynomial coefficients. In the same manner, a sequence is said to be holonomic if it is a solution
of a linear recurrence with polynomial coefficients.

It is easy to see that rational series, exp(z), sin z, cos z, log(1+4z), and the Bessel functions J,(z)
are all holonomic. Rational, factorial, Fibonacci, and hypergeometric sequences are all holonomic
sequences. Recall that a sequence is hypergeometric if the sequence of quotients of consecutive
terms is a rational sequence.

Both definitions are related by the following property: a sequence is holonomic if and only if its
generating series is holonomic. The proof is easy and uses the simple but basic correspondences
which may be summarized as follows,

Flz)  —  fa,
'rkF('r) — fn—]m

Closure properties. The set of holonomic series is closed with respect to sum, Cauchy product,
Hadamard product, Borel transform, and Laplace transform [10]. We give a sketch of the proof
for the Cauchy product. If F(z) satisfies a differential equation of order s and G(z) satisfies a
differential equation of order ¢, we formally compute the derivatives of H(z) = F(z)G(z) and, using
the equations satisfied by F(z) and G(z), we express them as linear combinations of the products
FO(2)GU)(z) where the indices ¢ and j vary from 0 to s — 1 and from 0 to ¢ — 1 respectively.
The space of such combinations has a finite dimension, hence the derivatives of H(xz) satisfy a
dependance relation, that is a linear differential equation.

There is a similar result for holonomic sequences: the sum, product, and convolution of two
holonomic sequences are holonomic; the indefinite summation of a holonomic sequence is holonomic.
Both types of closure properties are interrelated, and the proofs use whichever is easier.

Identity proving. An application of holonomy, widely exemplified by D. Zeilberger, is identity
proving [12]. The idea is the following: to prove F(z) = G(z), build the equation satisfied by
F(z) — G(z), and compute sufficiently many initial conditions to ensure F(z) — G(z) = 0.

Here is a simple example. Suppose we want to prove the identity

2
o= [T

where Jy5() is a Bessel function of index 1/2. This function satisfies a second order differential
equation, while the square root satisfies a first order equation; hence the product is a solution of
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an equation of order not greater than 2. On the other hand, sine satisfies a second order equation;
therefore the difference of the two sides of the formula satisfies an equation of order not greater
than 4. Tt suffices to verify that the power series of the difference is O(z*), using the differential
equations and the initial conditions defining the components. The alert reader may think we were
lucky, because \/zJ;/2(x) has a power series expansion at 0, while J; /() has not. But, if this had
not been the case, we would have used use another point than 0.

Algebraic functions. Algebraic functions are holonomic. Comtet [4] gave an algorithm to compute
the differential equation satisfied by a function F(z) solution of P(z,y) = 0, where P is an irre-
ducible polynomial. The idea is to find a Bezout relation U P+ V P, = 1 by the extended Euclidean
algorithm and use P, + P, F" = 0 to express the successive derivatives of F(z) as polynomials in
F(z) of degree less than d = deg, P. The family of powers 1, F(z), ..., F*"'(z) is a basis of
the space generated by the derivatives of F(z), and there is a dependance relation between F'(z),

F(z), ..., F{9(2).

Algebraic substitution. If F(z) is holonomic and G(z) is algebraic, then F(G(z)) is holonomic by
the same kind of technique as above. An immediate application of this result is the following: if f,
is a holonomic sequence, then its Euler transform

hy = i(_l)k (Z) Jr

is holonomic too. This is obvious because the two generating functions are connected by H(z) =

F(-z/(1-2))/(1 - 2).

3. Search for solutions

Recurrence relations and differential equations almost never have explicit solutions, but if an
explicit solution exists it might be important to recognize it, and find the solution. Above all an
explicit solution gives a global information about the equation.

Rational solutions to recurrences. Abramov [1] gives a method to obtain the rational solutions
u, = P(n)/Q(n) of a recurrence

ag(n)unpr + -+ ax(n)u, = b(n),

where aq, ..., a;, and b are polynomials. The principle which guides the algorithm is: the zeros
of the coefficients must match the poles of u, and its shifts u,,,. As a consequence, () must be a
multiple of ged(ag(n—k),. .. ,ar(n)) if the roots of @ do not differ by an integer. The last condition
is not necessarily fulfilled; to avoid this problem one considers a recurrence satisfied by the sequence
Up = Unp, where h is the maximal difference between two roots of (). It must be noted that the
number h is not greater than the maximal difference between the roots of a,(n) and ag(n — k).

Indefinite hypergeometric summation. The indefinite sum [6] of f;, is equivalent to finding a closed
formula for F,, = 3_" f; where f; is a given sequence. This relation means

Fn_Fn—l :fn

for all n. If f, is assumed to be hypergeometric, and we look for a hypergeometric F),, the relation
1—F,_1/F, = f./F, shows that the sequence u, = F,/f, must be rational. Hence we are led to
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search for a rational solution of the equation

fn—l
f

Hypergeometric solutions to recurrences. Petkovsek’s algorithm [8] provides the hypergeometric
solutions of a linear recurrence

Uy — Up_1 = 1.

ao(n)tngr + -+ ax(n)u, =0,

where aq, ..., a;, and b are polynomials. Writing w,11/u, = P(n)/Q(n) and substituting leads to
a non-linear equation, which is not tractable. There exists a decomposition
Un41 _ P(n) A(n +1)
un Q(n) A(n)
in which all pairs (A(n), P(n), (A(n), P(n)), (P(n), Q(n), (P(n), Q(n+1), ..., (P(n),Q(n+F))

are relatively prime. With this decomposition a substitution gives

ag(n)A(n+ k)P(n+k)---P(n)+ ai(n)A(n+ k- 1)P(n+k—-1)---P(n)Q(n + k)
oot () AQn+ k) Q) = 0.

This equation is still non-linear, but it shows that P(n) divides a;(n), and Q(n + k) divides aq(n).
Finally it suffices to test all pairs of factors of ag(n — k) and ax(n).

Note that this algorithm is a powerful tool; it is equivalent to finding factors of order 1 on the
right of the recurrence.

Symbolic solutions to differential equations. Searching for generalized hypergeometric solutions is
a first approach to a linear differential equation: the recurrence satisfied by the coefficients of the
series is computed; the hypergeometric solutions to this recurrence are found; finally the result is
translated from sequences to generating functions.

The more general class of Liouvillian functions may be used. Liouvillian functions are obtained
from rational functions with rational coefficients by repeated use of the four elementary operations,
taking exponentials and logarithms, integration, and algebraic extensions. Singer gives a purely
theoretic algorithm to obtain Liouvillian solutions of linear differential equations of arbitrary order.
Kovacic’s algorithm for equations of order 2 is partially implemented in most computer algebra
systems. The theory behind all these algorithms is differential Galois theory. It is difficult to use,
because for each order it is necessary to classify the Galois groups which come into play [11].

4. Asymptotic analysis

Even when no explicit solution of a differential equation is known, it is possible to perform an
asymptotic analysis. The theory of linear differential equations prescribes the asymptotic behaviour
of a solution near a singularity and this asymptotic behaviour is strongly related to the asymptotic
behaviour of the Taylor coefficients of the solution.

Singular points. The solutions of a linear differential equation
ao(2)y™(z) + - -+ ar(z)y(z) = 0
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may only have singularities at the roots of the dominant coefficient aq(z), and possibly at infinity.
In addition all formal solutions to the equation are known. A logarithmic sum is a formal series

J

A(z) = 2° Z Z ;2 log’ z,

j=11di>0

and a formal solution in the neighbourhood of the root a of a¢(z) is a finite combination of loga-
rithmic sums

ve) = LG (P2, 2= g

which formally satisfies the differential equation. All quantities involved in these formulae can
be explicitly computed. In the case where the point @ is a regular singular point, that is to say
al(z)=(z—a)~*tA(z)for £ =0, ..., k, and A,(z) is analytic in the neighbourhood of a, the formal
solutions are logarithmic sums and locally define actual solutions, with a possible ramification
point at a. Conversely, in the case of an irregular singular point the formal solutions are generally
divergent series, but provide asymptotic expansions for actual solutions in a sector with origin a.

The preceding classification demonstrates that the composition of two holonomic functions is
not necessarily holonomic. For instance 1/sin z, which is the composition of the two holonomic
functions sin  and 1/z, is not holonomic because it has an infinite number of singularities. The
sequence of Bell numbers is not holonomic because its exponential generating function exp(e® — 1)
does not have the right form, given by the formula above (after changing = into 1/z).

Singularity analysis. The smallest singularity p of a function analytic in a neighbourhood of zero
prescribes the behaviour of the Taylor coefficients of the function. This rough correspondence may
be strongly refined [5]; indeed an asymptotic expansion in some sufficiently large neighborhood of
the singularity @ of smallest modulus

f(ac) = Co(l—x/a)%logﬁ” ‘|‘C1(1—33/a)“110gﬁl
a

s=a 1-2/a T—ejat™

translates into an asymptotic expansion for the coefficient of the Taylor expansion of f(z) at 0
,n—ozg—l

d
= oy ] Bo 1 )
I T ag) 08 "(CO+1ogn+

This result leads to the following idea: to study the asymptotic behaviour of a sequence which
satisfies a linear recurrence it suffices to translate the recurrence into a differential equation for the
generating function; next a singularity analysis of this function gives the asymptotic behaviour of
the sequence. This simple method presents a difficulty. The function is determined as a solution of
a differential equation and some initial conditions, which are specified at the point 0. The study of
the differential equation provides a basis of formal solutions near the smallest singularity, but there
is no direct way to express the generating function with respect to this basis. Obviously if a closed
form of the function is available it is possible to realize the connection between the data at 0 and
the behaviour at the smallest singularity; but in that case more direct procedures may be used.
Generally, it is necessary to use analytic continuation and a resummation method [9]. Note that
such a method needs to know about the singularities of the Borel transform of the function; and we
have seen that it is possible to compute the differential equation satisfied by the Borel transform
of a holonomic function.
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5. Multivariate holonomy

The machinery of holonomic sequences or functions is so powerful that it is tempting to generalize
holonomy for sequences or functions with more than one variable.

Weyl algebra. The Weyl algebra Ayx(K) is an algebra of linear operators which is defined over
the space of polynomials K[x] = K[z1,...,zy]. These operators are the partial derivatives 9;, the
multiplications by the variable z;’s, and all their combinations. The generators 0y, ..., O, @1, .. .,
xn satisfy the following commutation rules:

020] = 3]»82-, T;T; = T;%;

Then, an element f of a module over the Weyl algebra is D-finite if the submodule spanned
by f and all its derivatives 8“ f has a finite dimension over the field of rational functions K(x).
An equivalent definition is obtained as follows: for f from an Ay(K)-module, consider the set of
all equations P(x,@)f = 0 satisfied by f; the polynomials P(x,d) are elements of the left ideal
Ann(f) in the Weyl algebra; then f is D-finite if the quotient Ay (K)/ Ann(f) of the Weyl algebra
by the annihilator ideal Ann(f) has a finite dimension over K(x) as a vector space.

A more effective definition uses the idea of a rectangular system. A set of N polynomials Py(x, 9)
from the Weyl algebra is a rectangular system if each polynomial involves only one partial derivative
0;, and each partial derivative appears in exactly one of these polynomials P(x,@). One proves

that f is D-finite if and only if there exists a rectangular system contained in the annihilator ideal
Ann(f). As a consequence a D-finite element f satisfies a special set of equations of the form

Pl(X7 al)f = O7 EJQ()(7 aQ)f = 0, cee PN(X,ON)f = 0.

In addition, Bernstein worked out the concept of multivariate holonomy. The Weyl algebra is
naturally graded by the degree: the degree of the monomial x*8” is |a| + ||, and the component
F; of the natural filtration is composed of the polynomials of degree not greater than d. For f from
a module over the Weyl algebra, this induces a filtration of the submodule Ay (K)f; the component
I'g is merely F;f. It turns out that the dimension of I'; over K is expressed as a polynomial in d
for all sufficiently large d. The degree of this polynomial is the Bernstein dimension of the module
An(K)f. Moreover it is shown that the Bernstein dimension of Ay(K)f is greater or equal to N.
Now, f is holonomic if the Bernstein dimension of Ax(K)f is exactly N.

Kashiwara’s theorem proves that D-finiteness and holonomy are the same concept. But each
one has its own merits. The D-finiteness property makes it easy to show that sums and products
of holonomic functions are holonomic too. On the other hand, definite integration with respect to
one of the z;’s preserves holonomy, and this is more easily shown using the definition of holonomy.

The link between sequences and generating functions is not as nice in the multivariate case as in
the univariate case. A sequence u,, where the index v is an N-tuple (n,...,ny) is P-finite if the
sequence u, and all its shifts u, ., span a finite dimensional space over K(7;,...,7y). An equivalent
formulation of the P-finiteness can be written as follows: there exists a rectangular system

Pi(v,S51)u=0, Py(v,S2)u =0, cee Py(v,Sy)u =0,

where 5; is the shift operator defined by S;u, = u,,  n.41.. .n- One proves that a sequence is
P-finite if its multivariate generating function is D-finite. The reciprocal assertion is false.

The study of P-finite sequences shows it is interesting to consider a more general concept than
Weyl algebras. This leads to Ore algebras, which are defined as polynomial algebras with some
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commutation rules for the variables [3]. For instance, the finite difference calculus in one variable

is formalized by the algebra K(n,A) with An = (n+ 1)A 4 1.

C'reative telescoping. We search for a recurrence relation for the definite sum U, = )", u, s, where
the double sequence u,; is P-finite. The idea is to find an equation P(n,S,,Ay)u = 0, where
the variable £ does not occur, 5, is the shift operator with respect to n, and Ay is the difference
operator with respect to k; then, U satisfies P(n,S,, A;)U = 0. Contrary to the case of holonomic
functions such an equation does not exist a priori; but if it exists, it is possible to find it by a
Grébner basis technique. As an example we want to rederive the Franel relation on the sum
U, = :
=)

First we give a rectangular system for the double sequence u, , = (2)3,

[(n—Fk+1)35, — (n+1)%u=0, [(k+ 1)2S; — (n— k)’|lu = 0.

Here the analogue to the Bernstein dimension is 2, hence elimination provides a relation P(n, S, S, )u =
0. Next the summation with respect to k, and the substitution S, = 1, or equivalently Ay = 0,
give the desired formula:

[(n+3)3(3n 4+ 4)53 — (18n® 4 114n? + 232n + 148)5?
—(3n 4+ 5)(15n” + 550 + 48)5, — 8(n + 1)*(3n + 7)] U = 0.
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Creative Telescoping and Applications
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[summary by Bruno Salvy]

Abstract
Creative telescoping is a method to compute definite sums and integrals. Numerous ex-

amples are given, together with an introduction to algorithmic techniques based on Grobner
bases of linear operators.

Creative telescoping applies to solutions of systems of linear recurrences and linear differential
equations. It yields a linear recurrence or differential equation satisfied by the definite sum or inte-
gral of the solutions. It can be used to “compute” generating functions, to extract their coeflicients,
and to prove identities.

1. Examples

A typical example is the sum 5, = 57 _, (Z) One starts with a system of equations defining the
summand:

Au=(n+1—k)upp1 5 — (n+ Du, =0, Bu:=(k+ 1)ty 441 — (0 — k)u, ;= 0.

The aim is to derive a recurrence satisfied by 5, from these equations. This is done by first finding
an equation satisfied by u, , where k does not appear in the coefficients. Such an equation is given
by Pascal’s triangle rule u,41 541 = Un k41 + Uy, Which can be deduced from the above equations
as (Sy+1)A+5,B, where S (resp. 5,) denotes the shift with respect to k (resp. n). This equation
is then rewritten in a form suitable for summation with respect to k:

(un+1,k+1 - un-}—l,k) - (un,k-{—l - un,k) + un-{—l,k - 2un,k = 0.

Since the binomial coeflicient (2) is 0 when k£ < 0 or £ > n, summing over k simply yields the desired

result 5,4, — 25, = 0 (this is where telescoping takes place). Using the initial condition 5S¢ = 1,
any solver of recurrence equations would then produce 5, = 2".

A similar example is provided by U, = > 1_, (2)2 The system of equations is a simple modifica-
tion of the former one. Finding an equation which does not involve k in the coefficients is slightly

harder. One finds
(n 4+ Dtpyo pro — (204 3)tnp1 ppa + (0 4+ D)ty g2 — (204 3)8pg1 k41 — 2(n + D)y g1 + unp = 0.

Again, this is rewritten in a form where telescoping will take place by repeatedly expressing vy 41 =
(Vk41 — vr) + vp. Summing then yields

(n+ 1)Upy1 —2(2n+ 1)U, = 0.
Again, with the initial condition Uy = 1, it is easy to conclude that U, = (2”)

n
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Exactly the same computation applies to definite integrals. For instance, to compute F(z) =
fj;o exp(—zy?) dy, one starts from a system satisfied by the integrand

D,+y* =0, D, +2zy =0,

where D, denotes differentiation with respect to z (and similarly for D,). Then we look for an
equation satisfied by f without y in the coefficients. It is not difficult to find that such an equation
is (D; 4+ 42*D, 4 2z)f = 0. Since for any value of z, exp(—zy*) and its derivatives with respect
to y tend to 0 at oo, integrating this equation over y yields 4z*F'(z) 4+ 2z F(z) = 0. The initial

condition F(1) = /7 leads to F(z) = /7 /x.

2. Ore algebras

A very natural framework to describe creative telescoping is provided by a special case of skew
polynomial rings called Ore algebras. These are algebras of linear operators which generalize the
difference and differential operators.

DEerINITION 1. Let K be a (possibly skew) field. Let 0;,...,0, be defined by the following
commutation rules with all the elements P in A = K(z1,...,2,)[y1,..., ¥,

0P = 0i(P)0; + 6;(P),

where o; is a ring endomorphism of A and §; is an additive endomorphism which satisfies the
following Leibniz rule:

0;(ab) = 0;(a)é;(b) + 6;(a)b, Va,b € A.
Then K(zy,...,2p)[Y1,...,9,)(01,...,0,) is called an Ore algebra.

Examples of Ore operators are given in Table 1. These can be combined in an algebra where
each operator acts on a different variable. For instance, the Jacobi polynomials P(*#)(z) can be
described in Q(a, 8, z,n)(S,, D;) by a linear differential equation and a linear recurrence.

More complicated examples arise when one of the d; has a special commutation rule with several
of the commutative variables. For instance, in Q(n,q,q")(S\?), the g-shift operator satisfies the
following commutation rule:

S (g = ¢ (n+ 1)1 (¢ 5.

In this framework, creative telescoping becomes an elimination process. Given a set of operators

generating an ideal of operators which vanish on the function we want to sum or integrate, the main

Operator 0 o(a) 6(a) Commutation Action of 0
Differentiation a(x) a'(z) Jr =z0+1 f(z) = f'(2)

Shift a(z +1) 0 dr = (z+1)0 fl@)— flz4+1)
Difference alz+1) alz+1)—a(z) dz=(z+1)0+1 @)= f(z+1) - fz)
g-Dilation a(qx) 0 0z = qzd f(z) — flqz)

g-Difference a(qz) a(qr) —a(z) Oz =qed+(¢— 1z f(z)— f(qz)— f(z)
g-Differentiation a(qz) % dr = qud + 1 f(z)— f(gﬁ_l{agx)
Eulerian operator a(x) za(x) Jr =zx0+x f(x) =z f'(2)
e'-Differentiation a(x) ra(z) Jr =zd+z J) — f'(1) (z =€)

Mabhlerian operator  a(z?) 0 dx = 2?0 [(z) = [(a?) (p>2)

TaBLE 1. Ore operators
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step of creative telescoping asks for an operator in the ideal that does not involve the variable with
respect to which we want to integrate or sum. It turns out that under mild conditions on the o;’s
and 6;’s, Ore algebras are Noetherian and an extension of Buchberger’s algorithm can be used to
compute Grobner bases. The elimination necessary for creative telescoping can thus be performed
automatically provided we have a good description of the ideal.

Given an ideal 7 and an operator 9 of the Ore algebra O = K[z, ...,2,](01,...,0;), let x be
those elements of {z,...,z,} which commute with 9. The first step of creative telescoping is
therefore to find a basis of the ideal J = Z N K[x](d,...,0) by elimination. The elements of J
can be written

(1) A+ B,

where B does not involve 0. Since this is an element of 7, it cancels whatever function f the ideal
T was cancelling. Now assuming Af to be 0 on the “borders” of the domain, multiplying by 9~'
shows that B is the result we are after (see [2] for a more rigourous description and the application
to indefinite operations).

3. More examples

The computation of Grébner bases of Ore algebras has been implemented by F. Chyzak in his
Mgfun Maple package available at the URL http://www-rocq.inria.fr/algo/. We now illustrate
some uses of this package.

3.1. Generating Function of the Jacobi Polynomials. The idea is first to define operators
annihilating P(*?)(2)y" and then to compute the sum over n by creative telescoping.
We start with two operators in D, and S, annihilating P{*#)(z) (omitted here for space reasons):

G:=[...,...]:

We then load the package and define the Ore algebra in which this computation will take place.
with(Mgfun):

A:=orealg(diff=[Dx,x],diff=[Dy,y],shift=[Sn,n],comm=[alpha,betal):

This expresses that there are two variables with a differentiation-like commutation rule, one variable
with a shift-like commutation rule and two commutative variables. From the operators annihilat-
ing P{*P)(z), it is easy to derive operators annihilating P{*?)(z)y":

G:=map (primpart ,map(numer, [op(subs(Sn=Sn/y,G)),y*Dy-nl), [Sn,Dx,Dy]):

Then we are ready for elimination: we create an appropriate term order and then compute a
Grébner basis with respect to it:

T:=termorder (A,lexdeg=[[n], [Sn,Dx,Dy]]):

GB:=gbasis(G,T,ratpoly(rational, [x,y,alpha,betal)):

We finally select those operators in this basis which do not involve n, and sum over n, which is
equivalent to taking the remainder of the division by A,:

subs(Sn=1,remove(has,GB,n)):

The computation has taken 17 seconds (on a Dec Alpha). After a further fast Grébner basis
computation, the result is reduced to a system of two equations, a large one of order 2 in D, and
another one linear in D, and D,. It is then possible to interact with a differential equation solver
and, using the initial conditions, obtain the closed-form formula

1
Fz,y) = R=+1-2zy+ 9>

R(1-y+ R)*(1+y+ R)Y’
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3.2. ¢-Dixon identity. The aim is to show that

k(3ht1 +b b+c a+c a+b+c
P e - .
@ Zk:( Ve atk) \o+k) \etk) ~\ abe )

The algebra is Q(q, ¢, ¢°, ¢°, ¢*)(Sa, S, 5., S%) which has only ¢-shift operators:

A:=orealg(comm=[q],qshift=[Sa,qa,q] ,qshift=[Sb,qb,q],
gshift=[Sc,qc,q],qshift=[Sk,qk,q]l):

The operators defining the summand are all of order 1 and can be obtained in Mgfun by

G:=subs([q~a=qa,q b=qb,q c=qc,q k=qk], hypergeomtoholon((-1) “kxq~ (k*(3*k+1)/2)
*gbinomial (a+b,a+k)*gbinomial (a+c,c+k)*gbinomial (b+c,b+k),A)):

Then we eliminate ¢* and proceed with the telescoping:

T:=termorder (A,lexdeg=[[qk], [Sa,Sb,Sc,Sk]1]):
GB:=gbasis(G,T,ratpoly(rational, [q,a,b,c,qa,qb,qcl)):
CT:=subs(Sk=1,remove(has,GB, [k,qk])):

This yields a system of operators symmetrical in a, b, ¢. Using one more Grébner basis computation,
one obtains an operator involving only §,. By symmetry similar operatorsin Sy and .5, can be found.
Then checking that the right-hand side of (2) satisfies these equations and that sufficiently many
initial condition coincide proves the identity. It is also possible to use Abramov and Petkovsek’s
g-version of Petkovsek’s algorithm to find the right-hand side.

4. Takayama’s algorithm

The computation of A and B in (1) is slightly more than what is strictly necessary. Actually we
only need to compute B. N. Takayama gave an algorithm for doing so in the Weyl algebra, and
this algorithm generalizes to Ore algebras.

The idea is that it is possible to throw away all the right multiples of 0 during the computation
as long as we know they will only be multiplied by polynomials which commute with ¢ during later
computations (so that they will remain right multiples of @). This is done by working in increasingly
large modules where multiplication by the z;’s which do not commute with d is forbidden. The
operator d can then easily be eliminated in a preprocessing phase.

This results in an algorithm which is generally faster than the general one, but which is only
guaranteed to terminate when there is an element free of the undesirable variables in the ideal.
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O-finite functions

Frédéric Chyzak
INRIA Rocquencourt

January 15, 1996

[summary by Bruno Salvy]

Abstract

The algebra of J-finite functions and sequences enjoys several closure properties useful
when computing a description suitable for creative telescoping. A simple description of
O-finiteness can be given in the context of Ore algebras. In the special case of the Weyl
algebra, a special property called holonomy plays a crucial role.

We consider an Ore algebra A = K(z1,...,2,){(01,...,0;) (see previous summary). A function
is 0-finite with respect to A when its pseudo-derivatives 8% f = 97" ---9;* f with «; € N for i =
1,...,k span a finite-dimensional vector space over K(z,,...,2,). Examples of d-finite functions in

the univariate case are: hypergeometric power series and sequences, solutions of linear recurrences
and solutions of linear differential equations. In several variables, it becomes necessary to specify
with respect to which operators one considers d-finiteness; for instance, all sequences of orthogonal
polynomials are J-finite with respect to shift of the index and differentiation in the argument.

An equivalent definition is that f is J-finite when the module M = A - f is finitely generated:
M = PaeaK(x)0%f, for a finite set of indices A. If Ann f denotes the ideal of the elements
of A vanishing on f, then A/ Ann f is isomorphic to A - f, and this yields a purely ideal-theoretic
definition of J-finiteness which avoids the introduction of functions. An ideal 7 of A is thus called 0-
finite when A/7 is finitely generated as a K(x)-module.

1. Closure properties

What makes J-finite functions so useful is that it is possible to compute with these functions
without reference to any sort of “closed-form”. Many computations can be performed directly on
sets of generators of their annihilating ideal. In particular, sum and product of J-finite functions
can be obtained this way.

1.1. Rectangular systems. Before giving the algorithms for sum and product we note that
a O-finite function f is always annihilated by a rectangular system of polynomials, which is such
that each 0; of the algebra is involved in exactly one of the polynomials. Consequently, each of the
polynomials involves only one 9;. That this is so follows from the finite dimension of 3, K(x)d} f,
which implies the existence of a linear relation between a finite number of 97 f. Rectangular systems
are useful to prove J-finiteness of various constructions, or in the case where Grobner bases are not
available. In other cases, they generally describe an ideal which is smaller than the one we would
like to work with, and this leads to slower computations.

ExampLE. In A = Q(z,y)(0:, 0,), the sum of the Bessel functions J,(z) and J,(y) is annihilated
by the rectangular system S = {0.(2%0; + 20, + z* — p*),0,(y*0; + y0, + y* — v*)}. If ¢(z,y)
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is a solution of §, and 7 is the ideal generated by & in A, then it is easily checked that A/Z is
generated by {¢,0,¢,0.¢,0,¢,0.0,¢,0:0,¢,0;¢,0.0,¢,0;0;¢} and thus is of dimension 9. How-
ever, the annihilating ideal of f = J,(z) + J,(y) also contains 9,0,. The ideal generated by the
adjunction of this polynomial to the rectangular system above is Ann f and A/ Ann f is generated

by {f,0.f,0.f,0,f,0;f} and is only of dimension 5.

1.2. Sum. If f and g are two J-finite functions, then by linearity 8%*(f + ¢g) € Af + Ag which
is finite-dimensional. Hence a sum of d-finite functions is 0-finite.

Given a rectangular system for f and a rectangular system for g a rectangular system for f + ¢
is obtained by reducing h,, = 9 f + 0]'g for increasing values of n. These reductions use the initial
rectangular systems and right Euclidean division, which works in any Ore algebra. All the h,’s are
thus rewritten in a finite basis {f,df,...,97 f,9,0g,...,0%¢g}. The value of n is increased until a
linear relation between the h,’s is found by Gaussian elimination.

1.3. Product. We assume that for each 0J; in the algebra, the morphisms o; and §; defined by
the commutation rule

dip = ai(p)0i + 6i(p)
are polynomials in 0; over K(z1,...,2,). This is not a severe restriction. Then by the same kind
of argument as above, the product of two d-finite functions is 0-finite. The algorithm to produce a

rectangular system for the product out of two rectangular systems for the functions being multiplied
is exactly the same as above.

1.4. Generalizations. Actually, the same algorithm extends to the direct computation of a
rectangular system for any polynomial A in some 8“7 f;’s given the rectangular systems defining
the f;’s.

The FGLM algorithm [3] provides another generalization: given rectangular systems defining
the f;’s and a term order T on the @%’s, this algorithm returns a Groébner basis for T. Roughly
speaking, this algorithm considers all the monomials @%h in the order T and stops when it has
found sufficiently many relations. More precisely we start with F' = {h}, the resulting basis is
set to I = {} and the basis of A.h is set to R = {}. At each step the smallest element ¢ of F’
with respect to 7" is selected and reduced by the rectangular systems defining the f/s. Gaussian
elimination is then performed to detect a linear dependency between ¢ and the elements of R. If
no linear dependency is found, ¢ is added to R, removed from F, and all the 0;t are added to F.
Otherwise, the dependency is added to L. The algorithm stops when F’ is empty, and returns L.

Note that the Grobner basis returned by this method is not necessarily a basis of Ann f since, as
we have already seen, the rectangular systems do not necessarily generate a sufficiently large ideal.

Yet another extension consists in using any Grobner basis for the f;’s instead of a rectangular
system. In the reduction step, the Fuclidean division is replaced by a reduction using the Grébner
bases.

Once again, when it is available, the advantage of this approach over manipulating only rect-
angular systems is that it results in modules of a smaller dimension, and therefore lessens the
complexity of further computations.

1.5. Example. The following identity between Apéry numbers and Franel numbers was proved

by V. Strehl:

g 200 -2 0H)50)
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A system is easily found for (f)3 which is hypergeometric:
(h41-77S— b+ 12 (k=378 — (G + 1"
Then using creative telescoping (see previous summary), one gets an equation for the sum over j:

(k4 2)257 — (Tk* + 21k 4+ 16)S), — 8(k + 1),

n+k
k

(n+1-k)S, —(n+1+k), (k+1)Se — (n(n +1) — k(k+ 1)).

The product of this with the previous equation yields a system for the summand of the right-hand
side of (1) whose first equation is the first one above (obviously!) and whose second equation is:

(k+2)*5+(n—k—=1)S, +8(n+k+2)(n+k+1)(n—k)— (7> + 21k + 6)(n + k + 2).
Now, creative telescoping yields an equation for the right-hand side of (1):

(2) (n + 2)352 — (2n + 3)(17n% + 51n + 39)S, + (n + 1),

Again, a system is easily found for (Z)( ) which is hypergeometric:

The same process is then applied to the left-hand side. First, (2)2(":’“)2 is hypergeometric and
satisfies

(n+1-k)>S, —(n+1+k)> (k+1)%5 — (n(n+1) = k(k+1))°.
Creative telescoping then yields (2) again. The identity is then proved by checking that two
initial conditions coincide, which they do. The whole computation takes less that 10 seconds on a

Dec Alpha.

2. Holonomy

The algorithms for creative telescoping which we have described in the previous summary depend
on the existence of a polynomial free of one of several variables in the ideal we are working in. It
is thus very important to be working in the proper ideal and to be able to check whether such a
polynomial exists or not. In the Weyl algebra case, holonomy theory provides such a guarantee.
We describe elements of this theory, and give some hints on what remains valid in the more general
Ore algebra case.

2.1. Hilbert dimension. Let A be an Ore algebra: A = K[x](9). Let deg denote the total
degree with respect to x and @. We consider the graduation F,, of A where F), contains the elements
of A of degree at most n. Finally, let h, = dimg(F), - f).

ExaMpLE. For f =1 in the algebra K[z,,...,2,](:,...,0,), one has h,, = (":p) ~ n? /pl.

For f = exp(z?) in K[z](d, ), it is easy to compute the first few values and be convinced that h, =
n+ 1.

For f = (s® — s? + sz)"'/? in K[s,2](0,,d,), the first values indicate that h, = 3n*+ 2.

For f = exp(sin(z)) in K[z](0, ), one gets h, = n?/2 + 3n/2 + 1.

Finally, for f = (7) in K[n,k](S,, S%), hn = 2n + 1.

k

A general theorem of Hilbert implies that asymptotically, h, ~ cn® with d an integer which is
called the Hilbert dimension of the ideal. The relevance of this notion to creative telescoping is of
a combinatorial nature: if B is obtained by forming all the monomials in ¢ of the variables (x, 8),
then F,, N B contains (**?) monomials. As soon as this number grows faster than n? where d is the
Hilbert dimension of the annihilating ideal of some f, then a linear combination of elements of B
has to vanish on f, which means that the ideal contains elements of 5.
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2.2. Weyl algebra. The Weyl algebra is a special case of a polynomial Ore algebra A, =
Klzy,...,2,](01,...,0,) where 0; is the differentiation operator with respect to the correspond-
ing x;, for : = 1,...,p. A fundamental theorem of Bernstein states that in this case, the Hilbert
dimension of an ideal is always larger than p. Those ideals for which the Hilbert dimension is
exactly p are called holonomic. By extension, a function whose annihilating ideal in a Weyl algebra
is holonomic will be called holonomic too. In the examples above, exp(z?) and (s® — s + sz)~1/?
are holonomic functions, while exp(sin z) is not.

Holonomy of functions is preserved under sum and product, algebraic functions are holonomic,
algebraic substitution preserves holonomy, the diagonal of a holonomic function is holonomic [4, 5].
In addition, a result due to Kashiwara states that when an ideal Z in the rational Ore alge-
bra K(zq,...,2,){(0,...,0,) is O-finite, then ZN.4 is a holonomic ideal. This means that all 9-finite
functions with respect to differentiation are also holonomic. Finally, creative telescoping always
works in holonomic ideals.

3. Conclusions

The algorithms we have given work in a very general context of Ore algebras. However, creative
telescoping is never guaranteed a priori to give an answer in the general case, unless the existence
of the result is ensured, for instance by holonomy. An advantage of our approach is that it may
well return results in non-holonomic cases.

An important difficulty will be the subject of future work. Even in the Weyl algebra case, the
ideals 7 we are dealing with have a natural description in rational Ore algebras K(x)(8). However,
for creative telescoping what we need is a basis of 7 N K[x](@). At the moment, we do not have
any algorithm to produce this basis. However, algorithms exist to deal with the same problem in
the commutative case, and they might extend to this framework.

This problem is illustrated by the computation of the diagonal of 1/(1 — z — y). This can be
obtained via a residue computation as the definite integral of f = (s> —s+z)~"' which is holonomic.
Thus creative telescoping applies and there exists an operator free of s in the ideal. The annihilating
ideal Ann f of f in K(s,2)(0;,0,) is generated by & = {(s* — s+ )0, + 25— 1,(s* = s+ 2)d, + 1}.
However, the ideal generated by S in the Weyl algebra A = K[s, #](0;, d;) is smaller than Ann fN.A
and does not contain any polynomial free of s. To get such a polynomial, it is necessary to
augment S, for instance with (s* — s + 2)0,0, + 20;.
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Computing the Distance of a Point to an Algebraic Hypersurface
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[summary by Pierre Nicodeme]

Abstract

We compute lower bounds for the distance in C* from a point u to an algebraic sur-
face Z. Such lower bounds or proximity tests give an approximation of Z. We present tests
based on both Taylor’s formula and a generalization of the Dandelin-Graeffe process to the
multivariate case, and their application to the exclusion method [2].

1. Introduction
Given a point @ in C”, and an algebraic hypersurface

Z(P)={(21,...,22) € C'|P(1,...,2) = 0},

with P € C[zy,..., 2,], we want to evaluate the distance d(a, Z) corresponding to the norm
2l = max |-

By shifting the variable z, we can restrict to the case ¢ = 0.

2. Univariate Polynomials

Let P(z) = S0, a;2' € C[2],aq # 0, and Z(P) = {Uy,...,U;}. We want to evaluate d(0, Z) =
min; |U;]. In Henrici [4, vol. 1], Theorems 6.4.d and 6.4.i give the following classical bound for

Z(P):
ProposiTION 1. If p(P) is the nonnegative root of the equation |aqg| = ijl la;|p?, then

1 d
< < ——— ~ .
p(P) <d(0, 2) < i p(P) ~ 1 50(P)

Graeffe Iteration. With P(2) = a4 [[i_,(z — U;), we consider

We note P{') the classical Graeffe iterate; the roots of P!} are the squares of those of P, and
d(0, Z(P1))) = d(0, Z(P))% we have

p( P
p(PM) < d(0, 2(PM)) < 7o
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so with p; = /p(P1), we get

P1
p1 < d(0,Z(P)) < @i 1y

Generally, we define P*) = Graeffe(P¥*~1)) ; then, we get d(0,Z(P*)) = d(0,Z(P))*; with
pr = p(P#N)1/2" we have

Pk

The upper bound tends rapidly to the lower bound as k increases, thus we have obtained an effective
process to compute d(0, Z).
Computing the P!, With A(2) = 3 ,_omods @22 and B(2) = 3,2, noas @207 1/2, we have
P(2)P(-2) = A(Z*)* — 2°B(2*)?,
and therefore,
Graeffe(P) = A(2)* — 2B(2)*.

A practical problem is that the coeflicient size doubles at each Graeffe iteration.

3. Multivariate Polynomials

In the multivariate case, the polynomial P(z)P(—z) can not be written as Q(z*) where Q(z)
is a polynomial, thus we need to modify the definition. We generalize the Graeffe process to the
multivariate case as follows:

DEFINITION 1. We call the N-th Graeffe iterate of P(2) € C[z,..., z,] the polynomial PIN(z)
defined by

N_ .
PWN(2) = 2H1P(wj2), w = exp (222—;) , it =1,
j=0
where w’z denotes the point (w/zy,...,w'2,).
ProprosITION 2. For all non negative integer N, the N-th Graeffe iterate of P(z) writes as
PI(z) = 3 B,
i>0

where the B][»N] ’s are homogeneous polynomials of degree 2V j. The (N + 1)-st Graeffe iterate can
be computed from the N -th thanks to the formula

PRI = BN - PG P = Y B,
j=kmod2

With the multivariate Graeffe process, we easily generalize the univariate algorithm to compute
d(0, 2) in the multivariate case.

TuroREM 1. Let P(z) be a polynomial in Clz1, . . ., 2,] of total degree d. Let PN (z) = 3., B][»N](z)
be its N-th Graeffe iterate and Ry the non-negative solulion of the equation in R -
(1) PRY0) = 318 o

izl
48



d To/d Tl/d TQ/d T3/d T4/d

d d d d d
2 0.7673 0.9725 0.9996 1.0000 1.0000 ro/fd _mifd  mo/d s/
5
7

0.6525 0.9479 0.9973 1.0000 1.0000 2 0.5832 0.6338 0.8108 0.8224
0.6325 0.9400 0.9960 0.9999 1.0000 3 0.4802 0.5108 0.6478 0.7561
15 0.6067 0.9271 0.9938 0.9999 1.0000

TABLE 2. Some values of
TABLE 1. Some values of ry /d(0, 2, 4) rn/d(0, 2, 4) for n =17.
for n = 2.

where HB][»N]HOo = supy,=1 || B;(2)[|. Then we have

-N

1\ -~
(2) TNSd(OaZ)§<m) TN, rn =Ry

Computing HB][»N]HOo raises a difficult practical problem; therefore, we make use of the norm
120 @az®|| = 3 |aal, easy to compute. Our main result is stated using this norm; one demonstrates
the equivalence of the norms || - ||, and || - || by combination of the Parseval identity and of the
Cauchy-Schwarz inequality.

THEOREM 2. Lel py be the unique nonnegative solution of

d
Nl
(3) |PN0)] = > 1B
i=1
The distance from 0 to Z salisfies
(4) ry <d(0,2) < kyry,
where

1/2M

yon 1 2V 4 —1
TN = PN and RNy = m n—1

Moreover Nlim knx = 1, which implies Nlim ry =d(0,2).

4. Examples

We take a polynomial of degree d in n variables: P, ; = E?zl(l —2;)*—1. With Z, , = Z(P, ),
we have d(0, 2, 4) = 1 — 7.

Tables 1 and 2 give the value of the ratio 7y /d(0, 2, 4) of Theorem 3 for several values of n, d
and N. The computations were performed in Maple. These examples show that the bound is quite
good for a small value N of Graeffe iterates.

5. Exclusion methods

We give the principle of the method for a polynomial of one variable P(z) € C|[z].

— Let the exclusion function be: zy — p(z), with p given by theorem 2 after a proper shift
of the variable, and
(1) p(z0) = 0 <= P(z) = 0,
(2) P has no zero in |z — 2| < p(zp), which is equivalent to p(zq) < d(z0, 2);
— then, the exzclusion test is: let C' be a square of centre z; and half-side @ > 0. If p(zg) > V2a,
(' contains no zero of P.
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]
-1'5 -1 -0.5

Ficure 1. Representing by exclu- FiGure 2. Intersection of the
sion the curve y*—2¢y°+y*—32%y+ curves z°+y° —2zy = 0 (Descartes
22* = 0 (petal). folium) and y* —2¢y° +y? — 322y +

)
22* = 0 (petal).
Fxclusion algorithm.

— Consider the reciprocal polynomial R(z) of P(z); compute by Graeffe a lower bound of the
smallest root of R(z), which gives an upper bound b, of the largest root of P(z);

Start from a big square centred at the origin, with side 2b,, which contains all the roots of
P(2);

Recursively split the square in four squares of equal size, discarding by the exclusion test
squares containing no zeros;

Stop the recursion when the desired precision is reached (the surface of the area covering
the zeros decreases exponentially fast to zero).

Figure 1 shows an application of the exclusion method to localize an algebraic curve in R

For an algebraic variety 2; = Z(F;) and 2 = (), Z2(F;), with Pi,..., P, € Clz,...,2,], let
pi(zo) be an exclusion function defined by theorem 2 for P;, (1 < ¢ < m); we can define an exclusion
function for the variety as p(zg) = sup; i<, Pi(20)-

An application of exclusion method to localize the intersection of two curves in R? is given in
Figure 2.
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Matrix-based methods for solving polynomial systems

loannis Emiris
Projet SAFIR, Inria Sophia-Antipolis

11 mars, 1996

[summary by Frédéric Chyzak]

Abstract

We present a uniform approach to the elimination of variables between polynomials and
the construction of matrices that express resultants. Building a matrix whose determinant
is a multiple of the resultant reduces the solving of a polynomial system to a generalized
eigenvalues/eigenvectors problem for a square matrix. Several such matrices are of interest,
in particular the Newton and Bézout/Dixon matrices, which lead to efficient calculations.

1. Classical resultants versus sparse resultants

Classically, the resultant is a single polynomial which characterizes the solvability of a system of
dense polynomials [7]. We introduce another concept of resultant which takes the structure of the
coeflicients into account.

Let fi(c,z),..., faz1(c,z) be n + 1 polynomials in the n indeterminates z,,...,z, and with
coefficients that are polynomial in ¢,...,cx over a field K. A sparse resultant R(c) with respect
to a subfield L of the algebraic closure K is an irreducible polynomial of K[ey,...,cy] that vanishes
at a specialization 7y of the ¢;’s if and only if the corresponding specializations of the f;’s have a

common zero. In other words, the resultant satisfies
Vy e LY (R(y)=0<«= 3¢ecl” Vi=1,...,n fi(y,6)=0).

For some applications, one requires that the coeflicients of the f;’s be generic, i.e., that one ¢;
be introduced for each coeflicient. Special cases are of particular interest. In the case of dense
homogenized polynomials

— a L33
fi(warlv"'vxn) - § Cag,...,an*rou""rn 9
ap+-+an=d;

we recover the classical homogeneous resultant [7]. In the case of two (dense) univariate polyno-
mials, we recover Sylvester’s classical notion of the univariate resultant [6], whose expression as
a determinant is recalled in the next section. In the case of (possibly sparse) polynomials with
generic coeflicients, i.e., when

T
filzy, ... z,) = E T R A
ji=1

for non-zero undetermined coefficients ¢; ; that are transcendental over the field K, the resul-
tant R(c) is called the sparse resultant of the f’s.
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A major difference between the classical and the sparse resultants is that the former express
simultaneous solvability in a projective space P" (K) whereas the latter express simultaneous solv-

ability in the torus (K*)n which is a proper subset of P” (K)

2. Expression of the resultant as a determinant

Two important examples of classical resultants are given as the determinant of a matrix. First, in
the case of dense linear polynomials f; = ¢; o +¢; 121 + - -+ ¢; ,@,, the corresponding homogeneous
resultant [7] is

R(c) = det : :
Cn+1,0 ce Cn+4+1,n

Second, in the case of dense univariate polynomials f(a,z) = a,z" +---+ ao and g(b,z) = b,z™ +
-+ -+ by, the univariate resultant [6] is the following determinant

An  Ap—1 Ap—2 as a ao 0 0
0 an Ap—1 Ap—2 as a ap 0 0
R(a b) _ det 0 0 an Ap—1 Ap—2 ag al ag
) - bm  bm—1  bm—2 ce bo by bo 0 ... 0 ?
0 bm bm—1  bm—2 bo by bo 0 0
L O .. 0 bm bm—1 bm—2 ... bo by bo i

where the matrix has constant values on diagonals and each row corresponds to the product of
either polynomial times a power of x, written in the basis (z™=*(»™) .z 1). Sparse resultants
can be expressed as the determinant of a matrix. More precisely, we proceed to give an expression of
a multiple of the resultant in the case of sparse polynomials with generic undetermined coefficients.

To give this expression, define the support of a polynomial f =3, ¢4, 4,27 ...2;" as the
set Supp(f) C N of those (ay,...,a,) such that ¢,, ., # 0. Note that

Supp(fg) C Supp(f) + Supp(g)  and Supp(f 4 ¢) C Supp(f) U Supp(g).

With this definition, we now construct matrices that represent the specialization application
of polynomials f;(c,z) on a point £ € K*. For ¢ = 1,...,n, let S; be a subset of N*. Next
define Sy to be [J;_, (S; + Supp(fi)). For i = 0,...,n, call P; the set of polynomials f € K|e, z]
such that Supp(f) C 5;. Then, the application M from P, x---X P, to Py given by M(ly,...,1,) =
Soilifi is a well-defined linear application. For ¢ = 0,...,n, write S; = {s;1,...,8n,} C N
Then M has a matrix representation, M = [my; ) ;(c)], where, for convenience, we number the
rows of M by (¢,7') and the columns by j. This matrix is given by

No
o fi(e,x) = Em(w)yj(c)x“’j, fori=1,...,nand i =1,..., N,.
ji=1

Under this representation, the evaluation of M at the tuple (Ejvzll Lj(c)zsra, .. .,Zjvz"l lnyj(c):csn,j)
of P, X ---x P, is given by the product:
manae) ... m),N, (€) zf11

[1(1,1)((3) l(n,Nn)(C)]

m(n,Nn), (C) m(n,Nn),ND(C) rSn,Np



On the other hand, the product of M by a column vector yields the simultaneous specialization of
multiples of the f;’s at a point £ € K”:

m(1,1),1(c) M(1,1),Ng (c) £0.1 &5t fr(c,€)
M, Ne )1 (€)oo M(n Ny, N (€) £°0:No £5nNn f(c,€)

From this second fact, it follows that if £ € (K*) is a common zero of the specializations of

the fi(c,z) at ¢ = v, there exists v, = [£**1,.. .,fsn’Nn]T # 0 such that M(v)v, = 0. Moreover,
when M is a square matrix, we have that det M(7) is zero. More is true: in the case when such
a v, exists, R(c) divides det M (c), and the matrix M is called a matriz of the resultant. One thus
computes a multiple of the resultant as the determinant of the matrix M above. It only remains
to determine suitable sets \5;, for which possible constructions are alluded to in Section 4.

3. Numerically solving polynomial systems

In this section, we assume that fi,..., f, € K[z,,...,z,] is a well-determined system of poly-
nomials with determined coefficients, whose variety is zero-dimensional, i.e., the roots are isolated.
We assume further that the ideal (fi,..., f,) is radical, i.e., that the roots are simple. Then, when
the matrix M above is a matrix of the resultant, it can be used to numerically solve the system.

To do so, we look at an over-determined system in place of the well-determined system, so as to
introduce genericness in the coeflicients. Two such over-determined systems are available:

(1) either we add f,41 = r@y + -+ mz, + w for r; in K, and view the f;’s as elements
of Klu][z1,...,z,], and we look for their sparse resultant in Klul;
(2) or we conceal one variable, say z,, and view the f;’s as elements of K[z, |[z1,...,2,_1], and

we look for their sparse resultant in Kz, ].

If the second system is chosen, we change n into n — 1, then z,,,; into u, so that in both cases, we
look for the sparse resultant R(u) € K[u] of polynomials f;(u,z) € Klu][z1,...,z,]. In either case,
let us assume that the matrix M (w) is a matrix of the resultant.

Again, let L be an algebraic field extension of K in K and (£,7) € L™ x L be a solution in (z, u)
of the over-determined system. Then det M(n) = 0 and M (n)v; = 0. If case (1) above was chosen,
we only need to determine £. If case (2) above was chosen, we need to determine both & and 7.
In both cases, we look for (£,7), or equivalently for (v, 7). This reduces the initial problem of
solving a polynomial system to a generalized eigenvalues/eigenvectors problem, for which optimized
numerical algorithms are available. More specifically, this problem takes several possible forms,
amongst which both following extreme cases:

— if the matrix M(u) is linear in u, M(u) = Myu + M,, with M, invertible, the problem is a
(simple) eigenvalues/eigenvectors problem:

M(n)ve = 0 <= (=M "M, — nld) ve = 0;

— if the matrix M(u) is non-linear in w, M(u) = Mau? + --- + My, with M, non-invertible,
the problem is a generalized eigenvalues/eigenvectors problem:

0 1 0 1 0 0 v
. . . . nve
0 0 1 0 1 0 :

— My — M, Md_1 o ... 0 Md nd_l’u‘f
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To reduce the size of the matrices and achieve more efficiency, we perform operations on rows
and permutations on columns of M beforehand, rewriting M and v, in the form

Y M M 5 (u ~ w .
M(u) = M2717(1u) M;zgu; ] and T = [ wz ] ) respectively.
It follows that
. ~ . My, M 2 (u) w _Jo
M(’I])’UE =0 <= IM(U)U& =0« [ 81 N o () — Mg}lfu)MfllM172(u) :| [ wz ] - [ 0 ] ’

whence M'(z) = My o(x) — M (u)M{ 1 M, 5(u) satisfies M'(z)w; = 0. Solving this smaller problem
yields possible roots of the initial problem.

4. Mixed volume and various matrices of resultants

The mized volume of convex polyhedra @,...,Q, C R” is classically defined by the sin-
gle mapping VM to R which is multilinear with respect to the addition of polyhedra and such
that VM(Q,...,Q) = n!Vol(Q), where Vol is the Euclidean volume. We next define the Newton
polytope of a polynomial f as the convex hull of its support. A famous theorem by Bernstein [1]
states the number of isolated roots of a polynomial system counted with multiplicity is bounded
by the mixed volume of the Newton polytopes of the polynomials, a bound which is much better
in case of sparse polynomials than the older Bézout’s bound for dense polynomials. An efficient
algorithm is given in [2, 5], where the construction of the Newton matrix of a resultant is derived.

Another matrix of a resultant is of interest, the Bézout-Dixon matrix [3], which is defined by
introducing new indeterminates a; as

fi(ar, @i, Tiqg, e, Tn)—=f1(a1, ., ai—1,%i,,Tn) fi(a)=fi(ar,.--, An_1,%n)
fi(=z) a—; Ap—Tn
frng1(a1,-,ai,%iq1,-Zn )= Fng1(e1,,@i—1,%i,-.-,Zn) fag1(@)=Ffng1(a1,--an—1,%n)
fn+1(l‘) a;—z; an—Tn
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Computation of large values of 7(z)

Marc Deléglise

Université Lyon-1
February 12, 1996

[summary by Philippe Dumas and Frangois Morain]

Every textbook about number theory explains the sieve of Eratosthenes [3], which is one of the
oldest known algorithms. This algorithm enables us to compute the prime numbers less than a
fixed number z. It consists in successively striking out the multiples of the already known prime
numbers, the first one being 2. The cost of the algorithm is O(z'*¢) for all ¢ > 0. Pritchard has
given a lot of theoretical algorithms that perform in sublinear time (see [8] for new results and a
bibliography on this topic). From a practical point of view, many tricks can be used to find all
primes less than 10'? in a fast way, as explained for example in [1].

Clearly the enumeration of all the primes less than z cannot have a lower cost than 7(z). Besides
the computation of 7(z), the number of primes less or equal to z, does not need to find all the primes
less than z. This fact is set up by the formula of Legendre, which uses the prime numbers less or
equal to y/z. Next, the works of Meissel and Lehmer provides more subtle formulae, which reduce
the amount of computation. As an example Meissel computed the value of 7(10%). Nevertheless,
these methods all have a cost of O(z'*¢). Lagarias, Miller, and Odlyzko gave a method which for the
first time had a complexity O(z®) with a < 1. More precisely the time complexity is O(22/3+) and
the space complexity is O(z/3*¢). This permits them to compute the value of 7(10'°). Deléglise
and Rivat [2] lessen the time complexity by a logarithmic factor using a slight modification of the
previous method, hence they obtained the value of 7(10'%).

All these methods use the idea of sieve, but Lagarias and Odlyzko [5] proposed an entirely
different way to compute 7(z). The method is based on an analytic formula, and its expected cost
is O(z'/?*%). It has never been implemented.

1. Sieve function

Let us assume that we use the sieve of Eratosthenes. We write all the integers between 1 and z,
and we strike out successively the multiples of p; = 2, p, = 3, and so on. We stop when we have
used the a-th prime number p,. The number of integers which remain is ¢(z,a). The function
¢(z,a) is the partial sieve function. As a convention, we set ¢(z,0) = |z|. A mere combinatorial
argument gives the following recursion rule,

qb(l‘,a) = Gb(m?a_ 1) - (b(‘r/pma_ 1)'

A raw application of this rule gives the formula

Sz a)= Y p(m)lz/m],

P(m)<pa

where p(m) is the M6ébius function and P(m) is the largest prime factor of m.
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ple,a—2) —p(=*=,a—2) —¢(E,a—-2) ¢(—"—,a—2)

Pa—1’

F1GURE 1. A computation tree for ¢(z,a). The sum of the leaves is ¢(z,a).

In the sequel, an important point will be a clever refinement in the use of the recursion rule.
Indeed the last formula contains too many terms. The recursion rule may be viewed as an expansion
rule, which provides a computation tree for ¢(z,a) (see Fig. 1). The problem is to give a stopping
criterion in order to avoid an excessive growth of the number of leaves.

The partial sieve function ¢(z,a) is used in the following manner. Let us denote by Pj(z,a) the
number of integers less or equal to & with exactly k& equal or distinct prime factors, those prime
factors being all greater than p,. With the equality Py(z,a) = 1, we have immediately

p(z,a) = Po(z,a)+ Pi(z,a)+ Po(z,a) + Ps(z,a)+ - --.

But it is manifest that
P(z,a)=7(z)— a,

hence the following basic formula
(1) ﬂ-(x):é(‘rva)_1+Q+P2(£E,a)—|—P3(;L‘7a)_|_..._

With a = n(y/x), the quantities Py(z,a) are zero for k > 2 because any composite number with
three prime factors larger than \/x is larger than z. Hence, we obtain Legendre’s formula [9]

m(z) = ¢(z,a) +a—1, a=m(\/z).

An expanded form of this formula is

(z) = n(va) = 14 Y (-1)*[2/px],

where H runs through the subsets of {1,2,...,7(y/z)} and py = [],cqy pr- The computation of
7(2) based on this formula has cost O(z).
2. Meissel and Lehmer
Meissel chose the value a = w(2'/3) in the basic formula (1), hence the formula reduces to
(2) m(z) = ¢(z,a) + a — 1+ Py(z,a), a = 7(z?).

The most time consuming part of the formula is the term ¢(z,a) and Lehmer proposed the following
truncation rule for the computation tree of Figure 1:

Do not split a node labelled +¢(z/n,b) if either of the following holds:
(i) z/n < ps,
(ii) b= 5.
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Lehmer used a = w(2'/%) and the tree has leaves labelled by +¢(z/n,b) for n a product of four
prime numbers between ps = 13 and p,; this leads to a number of leaves essentially of order z. For

a detailed description of the implementation, see the original article of Lehmer [6] or the problem
[7, Probleme 5].

3. Lagarias, Miller, and Odlyzko

In [4], Lagarias, Miller, and Odlyzko use a sharper truncation rule, namely

Do not split a node labelled £¢(z/n,b) if either of the following holds:
(i) b =0 and n < 2'/3,
(i) n > 2/
They use a = 7(z'/?) and for this value the number of leaves of the computation tree is no more than
O(z%?). The leaves associated with the case (i) are the ordinary leaves, and the leaves associated
with the case (ii) are the special leaves.

According to (2) there are two terms to compute: ¢(z,a) and Py(z,a). The computation has
four steps; first a preparatory step; next the computation of Py(z,a); then the computation of the
contribution of the ordinary leaves; finally the computation of the special leaves. The sum which
correspond to ¢(z,a) is the sum of these last two quantities.

Preparatory step. Using an ordinary Eratosthenes sieve, one finds all the primes pi, pa,...,Pq
below z'/3. During the sieving, several quantities are also computed and stored for a later use.
When sieving with p;, the values of the Mébius function u(n) for n < 2/3 can be updated. The
values of the function f which gives the least prime factor of an integer n in the interval is computed
too. Having sieved with the i-th prime, the value of ¢(z'/3,7) is known and stored.

Finally, the value 7(2'/%) is computed. All this has a cost O(z!/3+¢) arithmetic operations and
space cost O(z'/?).

Computation of P»(xz,a). The quantity P(z,a) is computed according to the formula

Py(z,a) = (;) — ((;) + Z m(z/p), a=n(z'?), o =x(z?).

£1/3<p§:c1/2
The computation of the Meissel sum

> w(z/p)

c1/3<p<pl/?

needs to count the prime numbers in the interval [z'/3, 2?/3]. This interval is sieved slice by slice,
where the slices are intervals of width z'/3. The computation uses for each slice an auxiliary sieve,
in order to determine the prime numbers p such that z/p falls in the current slice. The value of 7
is updated during the handling of the slice. The value of (z!/?) is stored when the suitable slice
is processed.

Estimating the contribulion of ordinary leaves. During the preceding step the sum associated to

the ordinary leaves
Y. u(n)|z/n]

1<n<zl/3

is also computed.
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Estimating the contribution of special leaves. This is the most intricate part of the method. We

have to evaluate
§= 3 u(m)d(a/n.b)
(n,b)
for all special leaves (n,b),i.e., n = p,, **-p,, With a > a; >ay >--->a, =b+1and n > 2'/3 >
n/Po1-

We will evaluate this sum by sieving the interval [#'/3, 2%/3] by subintervals of length z'/3. Let
N = |#'/3]. Suppose the number x/n is in the k-th subinterval [(k — 1)N + 1,kN]. Then (n,b) is
a special leaf if and only if n = n*pyyy, f(n*) > ppyy1 and

T . < T

N+ Dpoer " = (k= DN + Dpoes’
In other words, n* belongs to an interval [L, M] and the contribution of (z/n,b) to the sum S is
non-zero if and only if p(n*) # 0. This shows the process: we loop through those numbers m in
[L, M] such that f(m) > py41 and for which p(m) # 0. This is easy using the tables precomputed
in phase 1. In order to complete the evaluation, one must set up the computations in a clever way,
described in the original paper (see also [2]). This crude description yields an algorithm with time
O(z*?) which can be lowered to O(2?/3/logz) using a trick due to Miller and described in the
paper.

At the end, the values of a, Py(z,a) and ¢(z,a) are combined and 7(z) is obtained. The total
time for computing 7 () is thus O(2%*?/logz) operations and O(z/3log” z loglog z) space.

4. Deléglise and Rivat

In [2], the authors describe a variant of the above approach that uses O(z/3/log” z) operations
and O(z'/?log® z loglog z) space. They have computed all values of 7(z) for z > 10'® up to 10'®
for which 7(10'®) = 24739954287740860.
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On a problem of Rubel

John Shackell
University of Kent at Canterbury, U.K.

April 22, 1996

[summary by Frédéric Chyzak]

Abstract

For a given function f, we study all the functions that satisfy every algebraic differential
equation with constant coefficients which is satisfied by f. This question was suggested by
Lee Rubel in [3, Problem 22]. Here the author characterizes this set of functions, first when f
is a linear combination of exponential functions, next when f is a Liouvillian function.
Finally, he applies these results to the computation of a series expansion of solutions of
algebraic differential equations.

1. Exponential functions

For two functions f and g, define g < f to mean that g satisfies every algebraic differential equa-
tion with constant coeflicients which is satisfied by f. Let f be the following C-linear combination
of exponential functions

n
E ape e,
k=1

Trivially, ¢ < f implies that g = > 7_, Aze**® with A, € C, since the differential polynomial L(y)
defined by the linear operator [],_, (% — A) vanishes at f. (We refer the reader to [2] for an
introduction to differential algebra.) This necessary condition for ¢ < f is not always sufficient.
Two cases occur, according to the dimension d of the Q-vector space generated by the A,. Note

that this dimension is also the transcendence degree of C(e*'”, ..., e*) over C.

Transcendence degree d = n. In this case, no equation of order less than d is satisfied by f. If P(y)
is another differential polynomial of order d that vanishes at f, L must divide P. Otherwise, using L
to rewrite f(9) as a polynomial in the derivatives of f of lower orders yields a differential polynomial
of order less than d. This polynomial must then be zero, which gives a contradiction. Therefore, g
satisfies any equation of order d satisfied by f. Next, let Q(y) be a differential polynomial satisfied
by f. Differentiating L sufficiently many times makes it possible to rewrite all the derivatives of f
of order greater or equal to d that occur in ¢) as polynomials in derivatives of order less than d.

Once again, L divides @ so that Q(g) = Q(f) = 0. Hence, g < f.

Transcendence degree d < n. In this case, assume that Ay, ..., A\; are linearly independent over Q,
whereas
d
(1) /\Z-:Ecm»/\j forc;; € Q,wheni=d+1,...,n.
ji=1
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Taking n—1 derivatives of the equation f = Y ;_, a,e**” yields a linear system relating the aje***’s

and the derivatives of f. This system has a Vandermonde determinant, hence we obtain linear
expressions

(2) are™® = Ry(f,..., f""V) = Ry, fork=1,...,n

Combining equations (1-2) so as to eliminate the A;’s yields the equations

3) RbHR”’: Si(foeeSOI) =t L

||::]m

where b; is a least common multiple for the denominators of the ¢; ;’s and each 7;; = b;¢; ; is an
integer. Now, if ¢ < f, the function g also satisfies the second equality in (3). In addition, it is of
the form g = ", _, Aze** and therefore,

d d
(4) af’Ha;%” :Af’HAj_%”, i=d+1,...,n
j=1 ji=1

We have obtained necessary and sufficient conditions for ¢ < f when f is of the form Y _, a,e**”

Another approach based on differential ring homomorphisms. We now give another derivation of
these conditions. This second approach follows methods similar to methods of differential Galois
theory and will prove very fruitful when generalizing to Liouvillian functions.

We have a tower of function rings

&, =CC---CP =CleM,...,eM]C---C®, =CleM,...,eM"].

Write i)k for the quotient field of ®;. It follows from (1) that the field extensions <I>k <i>k_1 are
transcendental for £k = 1,...,d and algebraic for k = d+ 1,...,n, with minimal polynomials

(5) m (M) = ()" = L ()™

i=

—

For complex constants C}, consider the ring homomorphism 7 : &, — ®, given by T (e***) =
Cre*® for k = 1,...,n. We want to constrain the C}’s so that T is also a differential ring
homomorphism that maps f = > 7_, aze**® to g = Sp_; Are* . Necessarily, Ay = Cjra; and the
minimal polynomials (5) are mapped to themselves, modulo non-zero multiplicative constants i, €
C, so that

T (my (7)) = (Cee™) ™ = T[(Cie*)™ = i (my (7)) = ((e*w)bk “1I (emyw) ,

i=1 i=1

It follows that 7, = CP* = [, C7**, so that condition (4) is also a necessary and sufficient
condition for T’ to be a differential ring isomorphism.

In the next section, we construct a set of differential ring homomorphisms and investigate its
connection to the set {g | g < f} when f is a Liouvillian function.
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2. Liouvillian functions

We now turn to differential extension towers of the form
(6) O =CC---CP =P 4[] C---CP,=d,_1[z.],
where the extension ®; = ®;_;[z;] is either

(7) an algebraic extension given by the minimal polynomial my(z;) = 0 with coefficients in ®;_;

(i7) an exponential extension given by z; = exp(wy_1), for wr_, € ®p_y;

(7i7) an integral extension given by z; = [wy_, for wi_, € ®y_;.
In cases (i) and (7i%), write wy_1 = Ce—1/Me—1 for coprime (x_1,7mx_1 € Pr_1. An element of a
field @, corresponding to a tower (6) is called a Liouvillian function.

We now proceed to define sets Gy, of differential ring homomorphisms from @, to rings of Liou-
villian functions. This construction generalizes that of 7" in the previous section. We take Gg to
be the singleton of the identity on C and define the G;’s by induction on k, considering the three

cases above separately. For any differential polynomial P € ®,{y} and any p € Gy, let p(P) denote
the differential polynomial in p(®;){y} obtained by applying p to each coefficient of P.

Algebraic extensions. For any p € Gy_; and any choice of root s of p(my), p extends to @ as
a differential ring homomorphism by mapping z; to s. We define G, to be the set of all these
extensions.

FEzponential extensions. For any p € Gy_; such that p(n;_1) # 0, p(wy_,) is well-defined and p
extends to ®; as a differential ring homomorphism by mapping z; to K exp(p(wi_1)). We define G
to be the set of all these extensions.

Integral extensions. For any p € Gy_; such that p(n,_1) # 0, p(wy,_1) is well-defined and p extends
to @ as a differential ring homomorphism by mapping z;, to K [ p(w_,). We define Gy, to be the
set of all these extensions.

The main theorem. The previous construction yields the following theorem. A proof is given in [5].
Similar results are also presented in [4, Proposition 2].

THEOREM 1. Let the Liouvillian extension tower (6) and G, be as above. Let f = fi/fs € $,,,
with coprime fi, fo € ®,. Then g < f if and only if there exists an open dense subset W of C such
that g belongs to the closure of the set

{p(D|p € Gurp( ) £ 0}

in the topology of uniform C* convergence on compact subsels of W.

3. An example

As an example, we compute the set of functions g such that ¢ < f with f = (exp(e”) — 1)/e”.
An algebraic differential equation satisfied by f is

(7) =12 =fr=r+fr-r=o.

We have the tower of Liouvillian extensions C C C[z] C Clz,e”] C Clz,e",e] 3 f. The first
extension is given by z = [ 1; the latter two are exponential extensions. The differential ring
homomorphisms T are defined such that:
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(7) they are the identity on C
Tie=Ty:1—1;

(it) they extend to the integral extension C[z] by introducing a constant K,
Tlge) =Ttz /To(l) =z + Kg;
(i17) they extend to the first exponential extension C[z,e”] by introducing a constant K
T\cpee) = To 1 €7 — K™ = K e7;
(iv) they extend to the second exponential extension C[z,e®,e®"] by introducing a constant K,
T="Ty:e" — K'e) = [,ef1e",
Finally, the set of functions ¢ such that ¢ < f is the closure of the set
{KﬁKlex -1

](1 e’

Ki,K, e CK, # 0} .

Making K, = 1, next K, tend to 0 yields the function 1, which is indeed a solution of (7). We have
thus proved that 1 < (exp(e®) — 1)/e".

4. Series expansion

Theorem 1 can be used to help compute a series expansion for a solution of an algebraic dif-
ferential equation belonging to a Hardy field [1]. It can be proved that the number of possible
nested (asymptotic) forms f; for a solution is finite. This number grows exponentially with the
order of the equation. Writing f in the form f;(1+ €), and substituting it into the equation yields
an equation for the rest €, of possibly doubled order. It follows that the exponential complexity of
this first, naive method makes it impracticable.

Assume f can be written in the form F + ¢, where F' is the sum of a finite number of first
terms in an asymptotic expansion and g is the rest, of smaller asymptotic growth. If f does not
belong to the closure under consideration in Theorem 1 applied to the Liouvillian function £,
then there is a differential polynomial P(y) that vanishes on F' but not on f. From the equation
defining f, the finitely many possible orders of growth of P(f) can be computed. Next, each term
in P(f) = P(F + g) contains g or one of its derivatives. This yields a number of possible orders of
growth for g, hopefully smaller than the one obtained by the general method.
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On integer Chebyshev Polynomials

Bruno Salvy
INRIA Rocquencourt

January 29, 1996

[summary by Xavier Gourdon]

Abstract

We deal with the problem of minimizing the supremum norm on [0, 1] of non zero poly-
nomials of degree at most n with integer coefficients.

1. Introduction

We consider the supremum norm on polynomials || P||. = maxp17|P(t)]. We denote by Zg[z]
the set of polynomials with integer coeflicients of degree < k. We consider the polynomials P, in
Zy|x] and the quantities C such that

1
0 1Pl =, nin Ples and C= —log 1Pl
According to [1], the polynomials P, are called integer Chebyshev polynomials in [0,1]. These
polynomials appeared in the literature because as we discuss below, it was thought that they
could be used to obtain an elementary proof of prime number theorem. Aparicio showed that in
fact, one cannot prove the prime number theorem in this way. However, the problem of finding
the polynomials Py is interesting in itself. According to Borwein and Erdélyi, “Even computing
low-degree examples is difficult”.

2. The prime number theorem

Let d,, denote the lowest common multiple of 1,2,...,n. Proving the prime number theorem can
be elementary reduced to proving the inequality

log d,

lim inf
n—00 n

> 1.

An idea to obtain this result is to use the fact that P € Z,,[z] implies fol P(z)dr € Z/dyq.
Applying this to the polynomial P2 leads to

1
| 2| > / P (z)dz > ! ) thus lim inf log d > _log[|Pelleo
0 2kn+1 n—oee n k
Therefore, if we had limsup,_ . Cy = 1, one could prove the prime number theorem in this way.
Indeed, it appears that this is not the case. The sequence (C}) converges to a limit C', and Borwein
and Erdélyi [1] showed that C' € (0.8586616,0.8657719). Thanks to our new results, we improve
the lower bound on C'.
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3. Related problems

3.1. Integer transfinite diameter. Our problem can be stated in terms of integer transfinite
diameter. The transfinite diameter of a set 5 of complex numbers is defined by

((S):=lim sup J]la - z]»|1/(75).

..... Zn€S i<y
A theorem of Fekete states that

1(S) = inf max | P(z)[/ ds(P),
PeC[z],P monic €S

The integer transfinite diameter of a subset S of R is defined by

t - inf P(z)|}/ des(P)
Z(S) PEZ[x]l,geg(P)>0I£lEag(| (m)l

Thus, our problem can be rephrased as: finding the integer transfinite diameter of the interval
[0,1]. If I is the interval [a,b] with a < b, it is known that ¢(1) = |I|/4, with |I| = b—a. If |I]| > 4,
we have the equality ¢5(1) = t(I). For |I| < 4, the best known result is due to Fekete and states

that 1(5) < 12(S) < VI(3).

3.2. Trace of totally positive algebraic integers. Let «; be an algebraic integer of d,
Qa, ..., 04 its conjugates. We say that a; is lotally positive if all the a; are real and positive. Siegel
has proved in 1945 that except for finitely many exceptions, we have the following lower bound on
totally positive algebraic integers

Gt gs3
y > 1.733.

A general result states that this problem is related to the integer transfinite diameter:

THEOREM 1 (BORWEIN, ERDELYI). Let m be a positive integer.

1 1 ay+ -+ ag
_ _— >
If ty ([O’m]) < o then 7 >0

for totally positive algebraic integers, with finitely many exceptions.

4. Structure of the polynomials

The set By = {P € Zi[z] : P(1 —z) = (—1)*P(2)} is related to our problem by the following
lemma [2].

LEMMA 1. For any nonnegative integer k, we have
Eoyp = Zi[z(1 — 2)] and Eoprr = (1 = 22)Z[x(1 — z)],

and there exists an element F of degree k in Fj, for which

1
Cr = —ElogHFHoo-
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5. Computation of minimal polynomials

The previously known integer Chebyshev polynomials had small degrees. We now briefly describe
the techniques used to compute a polynomial P of degree k satisfying (1) for & up to 75. The
outline of the algorithm goes as follows:

(1) Find a good upper bound for || P;||c;
(2) Repeat
— use this bound to determine factors of P,
— use these factors to improve the bound,
until no more factors are found;
(3) Perform an exhaustive search for the missing factors.

5.1. First upper bound. A good bound is given by ¢; = mingcs< || PePr—e|co-

5.2. Bounds and factors. We use the following facts to find factors of G' € Z z].

— If ¢|G(p/q)| < 1 then (gz — p) is a factor of G.
— This technique extends to multiple factors via Markov’s inequality:

or ’TL2(TL2 _ 12) .. .(n2 — (7‘ — 1)2)
(r) <
Bl S g T oy 2l

— At z = 0, we have a better bound due to Borwein and Erdélyi:

Gz)=2"7"Q(z) = [QO)<v2p+ 1<g ;ﬁ; 1) 1G] oo

— More generally, we can find higher degree factors. Let F' = agz™ + --- + a,, € Z[z] be
irreducible, aq,...,a, its roots. The expression R = ¢jG(a;)---G(a,) is an integer (it is
a resultant). If |R| < 1, then F'is a factor of G.
Once factors have been obtained in this way, we have Py(z) = F(z)G(2(1— z)), where F is known
and GG unknown. Bounds on G(z) at a given z can be obtained using the fact that | F(u(z))G(z)| <
| Pelloo < ¢ with u(z) = $(1—+/1 — 4z). This enables to find other factors. This technique provides
all the integer Chebyshev polynomials of degree < 12.
To get tighter bounds on the value of G at a given z, we then turn to Lagrange interpolation. If
Tg,..., 2, are g + 1 distinct points in [0, 1/4] then

G(z) = ZG(JCZ)H T xj' thus z)| < ¢ Z ( H

i=0 j#i T T | i

T — Zj

Zj

This gives a bound on |G(z)|, which can be further improved by finding a set {z,...,2z,} which
minimizes the right-hand side of the inequality. By this technique, all Chebyshev of degree < 30
are found.

5.3. Exhaustive search. By plugging values of z in the inequality |F(u(z))| - |G(z)| < ¢,
we get linear inequalities satisfied by the coeflicients of the factor G'. These inequalities define a
polyhedron whose interior integer points we have to determine. We solve this problem by using a
simplex method to compute bounds on each coordinate. Then if the size of the bounding polyrect-
angle is not too large, we check each of its points to see whether it belongs to the polyhedron. For
larger polyrectangles, we select the variable with least variation and apply recursively the same
technique. In this way, we test a finite set of polynomials. This technique is reasonable for n < 13
(i.e., degree 24).
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5.4. A detailed example: Ps;;. We show how to find Ps; using our algorithm.
A first upper bound is obtained from the previous polynomials

[[Pazlloo < €57 = min ||P, Par_g|o = 0.283 107",

We then look for factors of Ps;. At each stage, we have Py7(z) = F(2)G(z(1 — z)) with F known
and G unknown, g = deg(G).

— Since 37 is odd, a factor is ' =1 — 2z by lemma 1 (g = 18).

— We have 5'%c3; < |F(u(1/5))| thus 5'®|G(1/5)| < 1, and a factor is F':= F - (52% — bz + 1)
(g =17).

Using the Borwein-Erdélyi bound, we find the factor F := F - 2°(1 — z)? (g = 8).

Using Lagrange interpolation, we find |G(0)| < 1, thus a factoris F':= F-a(1—=z) (¢ = 7).
The same technique applied with the new factor F gives |G(0)| < 1, thus a factor is F :=
F-z(l—2)(g=6).

The same technique gives 4°|G(1/4)| < 1, thus F:= F - (42* — 42 + 1) (g = 5).

— The same technique gives
11 11 -
G —I'i\/g G 7\/5 <1
58 58

thus F:= F - (292* — 582% + 402% — 11z + 1) (g = 3).
— The same technique gives |G(0)| < 1 thus F = F'-z(1—z) (g = 2).
— The same technique gives 4*|G(1/4)| < 1, thus F := F - (42* —4z + 1) (¢ = 1).
The step of exhaustive search finally yields 6 solutions, and only one has the right ||-||... Eventually,
we find

295

Par(z) = 2'*(1 — 2)"*(1 — 22)°(5a2® — 5z + 1)*(292* — 582° + 402” — 11z + 1).
6. A new factor

The only factors of all the 75 first polynomials are the following, expressed in the variable
uw=z(l-2),
A =u, Ay=4u—-1, As=>5u—1, A,=6u—1, A;=29u"—11u+1,
Ag = 169u® — 94u® + 17u — 1,  A; = 961u* — 7124° + 194u* — 23u + 1,
Ag = 4921u® — 4594w + 1697w’ — 310u” + 28u — 1.
The factor Ag is a new one, and it has four non real root, which gives a negative answer to an open
problem from [1]: Do all the integer Chebyshev polynomials on [0, 1] have all their zeros in [0,1] ?
Thanks to this new factor we can improve the bound on C'. Following the lines of [1], we use

a simplex method to compute a polynomial Q = A?* A% ... of degree d = 10'° — 9 such that
—21og [|Q|lcc = 0.8591978, thus C' > 0.8591978.
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Algebraic Computation of Matrix-like Padé Approximants

George Labahn

University of Waterloo, Canada
June 10, 1996

[summary by Bruno Salvy]

Abstract
Padé approximants are rational approximants to functions represented as power series.
There are many classes and generalizations of Padé approximants, with various kinds of
applications. After reviewing some of these approximants and their use, this work presents
a unified way of computing them.

1. A gallery of Padé approximants

Given a formal power series A(z), a Padé approzimant of type (m,n) is a pair of polynomi-
als (u(2),v(2)) of degrees at most m and n respectively, such that A(z) — u(z)/v(z) = O(z"*+"*1).

Hermite-Padé approximants constitute a natural generalization of Padé approximants. Instead of
one power series, the input consists in £ power series A;(z),..., A,(2) and £ integers ny,...,n,. The
approximant is then an {-tuple of polynomials (p.(2),...,p.(2)), with p;(z) of degree at most n; — 1,
such that

Pi(2)Ai(2) + -+ pe(2) Ae(2) = O(z"71),
where N = > n;.

The extended Fuclidean algorithm can be seen as the calculation of a Hermite-Padé approxi-
mant. Given two polynomials P(z) and Q(z), the extended Euclidean algorithm computes three
polynomials U(z), V(z) and G(z), such that G(z) is the ged of P(z) and (z), and the Bézout
identity holds

U(z)P(z) + V(2)Q(z) = G(z).
This is the same as computing a Hermite-Padé approximant for the reciprocal polynomials of P(z)
and Q(z).

Hermite-Padé approximants are used in gfun [3] to guess linear differential equations or algebraic
equations satisfied by a formal power series A(z). In this context, one starts with 4;(z) = AG=1)(z)
or A;(z) = A71(2).

A generalization of these approximants is obtained by considering veclors or maltrices of power
series, leading to vector and matrix Hermite-Padé approximants. Vector Hermite-Padé approxi-
mants are used in algorithms factoring linear differential operators [4].

Another kind of generalization called simultaneous Padé approrimants was introduced by Her-
mite in 1873 in order to prove the transcendence of e. Asin the case of Hermite-Padé approximants
one starts with £ power series A;(z),..., A,(z). Given £ 4 1 integers (ng, n,...,ny), the aim is to
find £ + 1 polynomials ¢(z),p:(2),...,pe(2) such that 4;(z) = p;(2)/q(z) + O(z%).

Again, vector and matrix versions are of interest.
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2. Computation

All these approximants can be computed by linear algebra algorithms, since they correspond to
solving an equation of the type AX = B, where X is a vector of the unknown coeflicients of the
approximants, A encodes the product modz" by the initial data in the basis 1,z2,2%, ... and B
represents the desired right-hand side modz”. Thus efficient algorithms for Gaussian elimination
and fraction free versions of these can be used. The solution set has the structure of a module.
In many cases, this module has dimension one, so that any approximant generates all of them. In
other cases, it might be useful to compute a basis of this module.

ExampLE. This example helped discover a nice generating function [3]. The coefficients of the
series

y(z) = 3+ 192 + 1932° + 27212% 4 491712* 4 10844832°
+ 282457292° + 84845635327 + 288757617312° + O(2°)

are the numerators of convergents to e = exp(1) of index 3k +1. We are looking for a Hermite-Padé
approximant of (1,y,y’) with degree constraints (1,2, 2). The matrix version of this problem is

10 3 0 0 19 0 0
01 19 3 0 38 19 0
0 0 193 19 3 8163 38 19| X =0.

A basis of the kernel is readily found to be *(-3,-1,1,-6,—-1,0,0,—4), so that y(z) satisfies the
following differential equation up to O(z®%):

42°y'(2) = (1 = 62— 2")y+ 3+ 2=0.

Another way of viewing the same computation, which preserves sparseness, is as a standard
basis computation. For instance, in the case of Hermite-Padé approximants, one introduces new
variables t,aq,...,a, and computes a standard basis for the set of series

ay —tA(2),. . a0 — LA (2), 2V 7L,

with respect to any ordering such that ¢ > z and z > 22 > ... are smaller than the a;’s. The
polynomials of the basis are linear in the a;’s, those which do not contain ¢ generate the module of
approximants.
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The tricritical scaling function of partially directed vesicles

Thomas Prellberg
University of Oslo

October 9, 1995

[summary by Helmut Prodinger]
This talk is largely based on [4]; some other “Prellbergs” are cited therein!. The author considers

staircase polygons. They are defined as the set of all polygons on the square lattice whose perimeter
consists of two fully directed walks with common start and end points.

Ficure 1. A staircase polygon with width 10, height 8, and area 45

If c;="v denotes the number of all staircase polygons with 2n, horizontal and 2n, vertical steps
which enclose an area of size m, then the generating function

(1) G(z,y,q) = Zcﬁf’”yxnzy”y

fulfills the functional equation

(2) G(z,9.9) = (Glaz,9.9)+ 4z) (G(z,9,9) + v).
From this, an explicit expression is available;

(3) G(z,y,q) = y(% — 1) with H(z,y,q)= Z

where (y;¢)n == (1—9)(1 - yq)(1 - yg*)---(1 — yg" ™).

!One might wonder why, then, the titles of talk and paper are so drastically different: “Vesicle” is a
“closed fluctuating membrane” | but combinatorialists think about polygons. And “tricritical” means that
the generating function of interest has three ranges with a somehow different behaviour. The whole study
is devoted to asymptotics of the generating function of interest, if the argument approaches the “tricritical”
point.
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1=+ '|_|+ ]

G(z) =G(qr)gG(qe)G(a) qTHqeG(z)

Prellberg derives this functional equation by setting up a symbolic equation which he translates
into a functional equation for the generating function — very much in the tradition of the Algorithm
seminar.

If we forget about the area, then we obtain the perimeter generating function

(4) G(;L‘,y,l):1_§_y—\/<1_§_y)2—$y.

The author concentrates in getting the following theorem.

THEOREM 1. Sel e = —loggq. Then, as ¢ — 1,

l—z—y 11—z -9\’ Al (e ?3)
(5) G(z,y,q)~ 9 + \/(?) I (a1/2€—1/3 Ai(ae?/3) )

Here, a is some complicated function of x and y which simplifies to

o (i) (572 o)

for (1 —z — y)? ~ 4zy. Ai(z) is the Airy function (see [5]).

Everything boils down to a study of the function H(z,y,q), and the author comes up with a
lemma.

LeEmMA 1. Forz € C, |arg(z)| < 7, y € C, y # ¢ " for non-negative integers n and 0 < ¢ < 1,
we have

—~

(7) H(z,y,q) =

. ptHico .
4 9o L/ W/Z Qe —toge/to50g, < pet.

(U5 @)oo 270 Jpmico (25q) 0

Such a representation is no surprise at all; check out the wonderful survey papers [2] and [3].
The basic idea is to use the formula

(8) S(-a)en = 5 [ (o)

n>0

ds

sin s

where C encloses the points 0,1, ... in the counter-clock direction. The function ¢(s) is an analytic
continuation of the sequence ¢,,. Ramanujan was very fond of this formula, and it is also related
with the names of Abel, Plana, and Lindelof.

To do asymptotics, the author needs a better understanding of the ‘ingredients’ in his function
H(z,y,q) (a ¢-Bessel function), as ¢ — 1.

Interchanging sums,

(9) 10g(4; ¢)oo Z —

m>1 1_q
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From here, Fuler’s summation formula gives for |arg(l —t)| < 7

) 1
(10) log(4;¢)s = oz g Lis () + 2 log(1—1t)+ O(logq),
with Fuler’s dilogarithm
m * log(1 —
(11) Lis()= 3 — = —/ log(1 =) 4,
1 0 U

For (g; q)e the author uses a modular transformation, viz. (see [1])

| 27 1
. _ . 1/24
(12) 10g(q, q)oo - (Tv Q) _ lOg q (7‘; ,r)oo

to get

2

1
(13) log(¢; ¢)co + 510&/4(27?) + O(log q).

- 6loggq

(The Mellin transform would also give this result.)
Continuing with approximations, the author notes the following.

LEMMA 2.
H(e,g,0) = 5 [ exp (1 [1og(2)lon(e) + Lio(e) — Lis(y/2)]) e
(14) p—ico
1 . 7r2 27T
X exp (Z(L12(3/) - ?)) m (1 + O(E))

The asymptotic evaluation of this integral will be done with the saddle-point method. There are
two saddle points, and the whole thing becomes complicated when they coalesce (see [6] for an
introduction to this problem).

A change of variable brings the function

1 s
15 V,\:—/ w32 g
(15) =g /]¢ u
into the picture (C’ a certain contour). It is expressible by the Airy function Ai(X).
Prellberg then presents his main lemma.

LEMMA 3. Let 0 < z,y <1 and g =e~°. Then

H(z,y,q)= <p061/3 Ai(ae™?3) 4 goe?/? Ai/(ae_z/?’))

<exp (H(Lialy) = ¥+ log(x) lox(n)/2)) | 75 (14 0(0).
where
(17) %a?’/z = log(z)log % + 2 Lisy (2, — \/3) —2Liy (2, + \/3)
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(18) zlzzzm:l:\/g Zm:l—}—yf—x and d=2z2 -y
and
o\ 174 d\ /4
(19) Po = <E) (1-2-y), 9o = <E> .
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The statistical mechanics of vesicles

Thomas Prellberg
Department of Mathematics, University of Oslo

October 16, 1995

[summary by Dominique Gouyou-Beauchamps]

1. Polygons as vesicle models

Biological membranes consist of lipid bilayers and, when closed, form vesicles as blood cells or
bi-lipid layer membranes. These 3-dimensional vesicles form a variety of shapes depending on the
surface tension, osmotic pressure, etc (see Fig. 1).

A convenient model for the boundary of the two-dimensional vesicle is a polygon either in the
continuum or on a lattice. The polygon is taken to be self-avoiding and one asks, in the lattice
version, for the number of polygons with 2n edges enclosing area m. Here, we consider polygons
on the square lattice (see Fig. 2).

We denote ¢, ,, the number of all polygons with 2n steps which enclose an area of size m, and
define the polygon-generating function G(z,q) to be

G(z,q) = Z Chmx g™,

Fach class of polygons (staircase polygons, bar-graph polygons, column-convex polygons) defines
a model of vesicles. We want to give an explicit formula for G(z, ¢) and information on its singularity
structure for all the models.

2. Statistical mechanics, some rigorous results

Mathematically, the model requires the calculation of the same object, the generalized partition
function G(z,q), where

G(z,q) = E q" Zp(z) with Zm(z) = Z [
m=1 n=2

FIGURE 1. A vesicle.
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FiGure 2. A polygon with area m = 26 and perimeter 2n = 42.

Physically it is of interest to understand the behavior of the partition function Z,,(z) of vesicles of
fixed area m as the perimeter fugacity z is varied [6, 7, 4]. The behavior of the partition function
for large vesicles is determined by the mathematical behavior of the generating function near its

radius of convergence.
For a fixed area m, the free energy H(y) of a vesicle ¢ is related to the energy E and the
perimeter 2n(p) of ¢ through the relation H(yp) = —F.n(y). The partition function Z,,(z) is

Zm(x) — Z e~ PH(P) — chymeﬁE”

lel=m n>2

with z = P,
The total free energy is

B fm(z) = —log Zy(z)

m

and assuming the thermodynamic limit exists, we have for the thermodynamic free energy per step

ful2) = lim —log(Zon(2)).

We can also consider the internal energy

or the specific heat

%cm(x) = <x%)2 <%log Zm(x)> .

Let ¢.(z) be the radius of convergence of the generating function G(z, ¢) for fixed z:

3=

¢.(z) = lim (Z,,(z))”

m—00

For vesicles this is related to the free energy per unit length of vesicles of fixed area in the limit of
large areas through the relation

q.(z) = ePl=l=), where — Bfo(z) = lim %log(Zm(x)).



3. Proof of the existence of the thermodynamic limit

We give here a sketch of the proof. For more details, see [9]. We use the following lemma:

LEMMA 1. Let {a,},>0 be a sequence in R. If the sequence is sub-addilive (a,4,m < @, + @)
then lim,,_ ., %an =inf,,_ . %an exits (may be —o0).

By a standard concatenation construction in which two vesicles are joined by a ‘neck’ consisting
of a single square, we obtain a larger vesicle and thereby find:

Znam(9) Z 42n(9) Zm()
where Z,,(¢) = 3_,, ¢n.mq™. Moreover, if we define

a, = —log(¢Z,(q))

then {a,} verifies a, 4, < a, + @y, and lim, ., (Z,(q))

exists.

3= 3=

Now, we examine bounds on z.(¢) = lim,_ ., (Z.(¢q))
Case ¢ < 1. The minimum area for perimeter 2n is mpyy, = n — 1 and hence Z,(¢) < Z,(1)¢" !
and z.(q) > psawq "', where we write SAW for self-avoiding walk model.

The number of polygons with perimeter 2n and area muy;,(n) is the number of site trees on dual
lattice with n — 1 vertices, say d,,, and hence Z,(q) > d,¢" " and z.(q) < fig™* (see Fig. 3).

Since Z,(q) is monotone increasing in z, z.(¢) is monotone non-decreasing. Therefore to prove
that z.(¢) is log-convex it suffices to show that:

ZUESHO RN

This follows immediately from

Z chmlq Ecnmgq 2

q

FiGURE 3. Schematic plot of the radius of convergence of the generating function
showing the tricritical point.
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n-k

FIGURE 4. Interpretation of Z(**)(q).

2

Case ¢ > 1. In that case, we have ¢m==(") < 7 (¢) < ¢™==("7Z, (1) with mpax(n) ~ %= and
Zn(1) ~ p2 . Thus Z,(q) ~ ¢ and
z.(q) = 0.

In fact, the ‘blown-up’ configurations completely dominate the asymptotics.

THEOREM 1 (PRELLBERG, OWCZAREK, 1995).
11\ % ¥ :
Za)~ 20 = (5i0) X g
q 9 0 k=—o00

in the sense that for all ¢ > 1 there are C' > 0 and 0 < p < 1 such that for all n
|Z0(0)/ 25 a) = 1| < Cp"

We can interpret Z(%*)(g) as the generating functions of k x (n — k) rectangles (3 7-1 ¢**=%))

where 4 corners (4 Ferrers diagrams: (%, %

Fig. 4).

)_ ) are removed, which are in fact convex polygons (see

4. Tricritical phase diagram

We show that, for ¢ < 1, G(z,q) converges for z < z.(¢q). For ¢ > 1, G(z,q) converges only
for = 0. These results can be expressed in terms of a phase diagram in the space of the two
fugacities  and ¢. The form of this phase diagram is shown in figure 3. For z < z.(¢) and ¢ < 1
the polygons are ramified objects, closely resembling branched polymers. As ¢ approaches unity
less ramified configurations predominate; at ¢ = 1 one has standard self-avoiding polygons. This
region, {z < z.(¢q),y < 1} might be referred to as the ‘droplet’” or ‘compact’ phase. For ¢ > 1 the
polygons become ‘expanded’ or ‘inflated” and approximate squares, their average areas scaling as
the square of their perimeters. For ¢ < 1 and = > z.(¢), we expect that this phase can be described
as a single convoluted polygon that ‘fills’ the whole lattice rather like a closed Hamiltonian path:
one might describe it a a ‘seaweed phase’ [9].

Here we give main results about the singularity diagram (see Fig. 5):

— ¢.(x) is singular in @ = z, thus we have a phase transition.
— G(z,q) diverges at ¢.(z) for z > z,.

— G(z,q) is singular at ¢.(z) = 1 for z < ;.

— G(z,1) is finite with singularity exponent v, as z — ;.

— G(z4,¢q) has a singularity with exponent v, as ¢ — 1.

— (@4, 1) is a tricritical point with crossover exponent ¢ = 3—’

u
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o /jTY tricritical scaling relation
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FiGUuRrE 5. The singularity diagram.

— The scaling function f is:

G592, q) ~ (1- )" f ({1 - ¢} ~*{z - 2})

with f(z) ~ 27" as z — oo and f(z) ~ 1 as z — 0.
— The shape exponent is ¢ = i and ¢.(z) ~ 1 — a(z — z,)7¥.

5. Partially convex polygons: a solvable model

The analysis of partially convex subsets of self-avoiding polygons confirms results of the previous
section. These partially convex polygons form a universality class with the same crossover exponent
as expected in the unrestricted problem. The particular models we consider are subsets of column-
convex polygons: staircase polygons, directed column-convex polygons and column-convex polygons
(see Fig. 6).

These models have been studied by a variety of methods:

— mapping to a g-extension of an algebraic language [8],
— recurrence relations [12, 5],

— linear functional equations [3, 2],

— transfer matrix techniques [1].

All these models possess the characteristic feature that their single-variable generating functions
are algebraic, while the two-variable generating functions are expressed in term of quotients of
g-series.

staircase polygons directed column-convex polygons column-convex polygons
Ficure 6. Partially convex polygons.
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Staircase Polygons

+ + +-+J:

D(z; p) D(qz; )y Dy(qe; )qeD(z;p)  D(qx; 1)D(x; p) D, (qz;1)qzyp  qryp  qeD(z;p)

Ficure 7. The diagrammatic form of the functional equations for staircase polygons
and directed column-convex polygons.

We define the polygon generating function G(z,y,¢q) to be

G2, 9,9)= D, Copnym@™y"rq".

Nz, Ny, M

We derive the generating function for each models by using an inflation process [10, 11, 3]: the
height of the polygon is increased by one lattice spacing and concatenated with rows of height one
(see Fig. 7).

Denoting the generating function for the staircase polygons by S(z,y,q), we therefore get im-
mediately

S(x,y,9) = (S(qz,y,9) + q2) (y + 5(z,9,9)).
In order to write down a functional equation for the column-convex polygons, we need to keep

track of the height r of the rightmost column of these polygons. We define the generating function
D(z,y,q; 1) to be

D(@,y, ;1) = D> Copnymrt ™y rq

If we denote %D(qw,y,q;u)‘ . by D,(qz,y,q;1), we get the following functional-differential

H:
equation:

D(z,y,q;pu) = (14 Dy(qz,y,q;1)) gz (yp + D(z,y,q; 1))
+ D(qz,y,q; u)yu+ D(qz,y,q;1)D(z,y, ¢; 1)

We can transform this equation to one functional equation in D(z) = D(z,y,¢;1) by partially
differentiating with respect to g and setting g = 1. This leads to

0= D(¢*z)D(qz)D(z) + yD(¢*z)D(qx) + yD(¢*z)D(x) — (1 + q)D(qz)D(z) + y*D(¢*x)
—y(1+ q)D(gz) + q(1 + qe(y — 1)) D(z) + yg*z(y — 1).

Setting ¢ = 1 gives the perimeter generating function which satisfies a cubic equation and has a
square-root singularity at
V100 — 4

= ————— for T =
Y 3 Y
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implying that 7, = —1.

First we note that the functional equation for staircase polygons is of the form
G(2)G(gz) + a(z)G(2) + b(2)G(gz) + c(z) = 0
which can be linearized by the use of the transformation

 Haz)

where a has to be chosen to match the initial condition. This leads to a linear functional equation

in H(z),
o’H(q’z) + ala(x) - b(gx)H (qz) + [e(x) — a(z)b(z)]H (x) = 0.

LemMA 2. The solution of

N N
0=xzH(qz)+ Zakﬂ(qu) with Eak =0

k=0
reqular al x = 0 is given by
. (_x)nq(;‘) . - k
H(z)= _ with A(t) = at®.
(@) nz:;) [[=1 Alg™) ® kZ:O ’

We apply lemma 2 to staircase polygons, we choose a = y and we get the solution

T(gx) - = (—go)g)
Sx:y( —1) with T(z)= S
(*) T(x) (=) ,; (¢ q¥; @)n
Surprisingly, this works also for directed column-convex polygons:

D(z)=y (E(qx) - 1) with  E(z i y — Dga)" q(g).

E(x) = (4,99, 95 0n

M. Bousquet-Mélou [3] found by other means that for column-convex polygons

G(z,y,q) = y%
where
_ zq i —1 (1= )" U (2, )n
(1-y)(1-yq) Z( )n V(¥4 On-2(39; %1 (yq; O)n(y” q#z)n_l
and

(=" (1= )" %" (1245 )20y
(6 Dy 0)5-1(Y8 (Y2 G On—a

In [11] we consider simpler models of partially convex polygons as stacks and Ferrers diagrams
(see Fig. 8).

For stacks (s = 2) and Ferrers diagram (s = 1), we obtain a non-alternating g¢-series for the
generating function

B =

[M]e

n

x ey Z yQ)

(zq;q)5_1(1 — zq™)
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7

Stacks Ferrers diagrams

FicurEe 8. Typical configurations of stacks and Ferrers diagrams.

and a rational function for the perimeter-generating function
zy(l— )t

G )= ———"—.
($7y7 ) (1_:5)8_3/

These models are interesting, as they show “pathological behavior”. We have seen that considered
as a function of z, the radius of convergence is a continuous function, while considered as a function
of ¢, it has a jump discontinuity at ¢ = 1 in the generic case for the vesicle models. But in the
generic case we have left continuity at z.(1) whereas for stacks (z.(¢) = 1/¢) there is an isolated
point z.(1)at ¢ =1 (z.(17) =1 > (1) > .(1%) = 0). Thus stacks and Ferrers diagram are too
simplified to give a reasonable physical model.
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Partitions of Integers: Asymptotics

Philippe Dumas

Projet Algorithmes, Inria Rocquencourt
December 11, 1995

[summary by Philippe Dumas and Bruno Salvy]

Abstract

The study of the asymptotics of the number of partitions of integers under various
constraints is a very rich area initiated by two papers of Hardy and Ramanujan. Some of
this literature is surveyed here.

Ifo < A <Ay <--- < A, are positive integers, their sum n = A+ Ay +-- -4+ A, is called a partition
of n into v summands (or parts). The number of partitions of n is denoted p(n) or p,. When there
is no constraint on the A;, it is easy to see that the generating function of the p,’s satisfies the
following identity due to Euler:

(1) Plg)=> pd" =[]

n>0 k>0

1
1—gk’

Euler’s pentagonal theorem also gives a formula for the reciprocal of this generating function:

[ee]

[Ta-d)= > (=1)mgrem=1re,

k>0 m=—00

This last relation yields a simple way to compute the number p, by recurrence. Numerous other
relations on partitions and their congruence properties can be derived from identities on generating
functions. See in particular [1].

1. Origins

The asymptotic analysis of the generating function P(q) is very difficult. There are singularities
at all roots of unity, which implies that the circle of convergence is a natural boundary. It can be
proved that a saddle-point method applies. The coeflicient p, is given by the contour integral

1 [P
= — d
Pn = Sin /7 gntl %

and the main contribution comes from the neighbourhood of 1, which yields

2) p e (W\/@ .

Then the next contribution comes from the neighbourhood of —1, then from the neighbourhood
of exp(+2i7/3), etc. Thus the contour of integration has to go through an infinity of saddle-points,
whose contribution to the integral have to be estimated. It turns out that these contributions
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are related by a modular transform. For, the generating function P(¢) is related to Dedekind’s 7

function:
eivrr/ 12

imr/12 2iTmT
n(t)=ce | | 1—e = —
( ) m—l( ) 7)(6“”—)

The final result is the following theorem [9].

THEOREM 1. The number p(n) of partitions satisfies

p(n) = D" A, + O(n~*),

¢§iemG@W?g) Ag= DL e,

¢q = ’
21y/2 dn /= 5 pAg=1,p<q

and w, , s a certain 24qth root of unity.

where

This result is very precise: since the O() term tends to 0 and the number p(n) is an integer, it is
sufficient to consider finitely many terms of this asymptotic expansion to compute the exact value
of p(n). In practice, the number of necessary terms is quite small. Theorem 1 has been refined
by H. Rademacher [15] to obtain a full asymptotic expansion which is convergent. Other special
types of partitions have been treated the same way. All these works rely on the theory of modular
functions.

Wright followed the way opened by Hardy et Ramanujan in several works [20, 21, 22]. For
instance, he studied the asymptotics of plane partitions, with generating function

1
P lane(n) qn = DAY
et = iy
The result has the following form
K )
~— /3
pplane(n) TL25/36 €xp (Cn ) ’

which should be compared to (2) for ordinary partitions.
All these results are obtained by a saddle-point method combined with a Mellin transform.

2. Mahler’s partition problem

In [12] Mahler studies the partitions whose summands are constrained to be powers of some
integer r > 2. In that case, the generating function becomes

I = o = Pa).

Mabhler computes an expansion of log p.(n), whose error term is a O(1). This expansion shows that
pr(n) is essentially of order exp(log® n/2logr). The basic tool is a functional equation

fz+w) = f(2)

w

= f(qz), with ¢ = 1/7.

The result was improved by de Bruijn [5], using a Mellin transform approach to the logarithm,
followed with a saddle-point method. Besides, in de Bruijn’s work, » > 1 can be any real number
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and Mahler’s error term is expressed as the sum of an oscillating series. This oscillating behaviour
is studied in more detail by Erdés and Richmond in [7, 16].

3. Saddle-point method

It it quite lucky that in the case of unrestricted ordinary partitions the whole computation
provides an asymptotic convergent series. If one adds constraints on the summands of the partitions
it is in general not possible anymore to derive a convergent asymptotic estimate of this form. In
these cases, only the saddle-point close to 1 is considered and its contribution to the integral is
often itself an infinite sum.

Meinardus [1, 13] gives some general conditions which ensure that the saddle-point method works.

He considers a generating function
1
kl;[l (1= g’
where the numbers a,, are real nonnegative, and the conditions concern the Dirichlet series D(s) =
> r>q @r/k*, which extends as a meromorphic function to the left of its abscissa of convergence.

Roth and Szekeres [18] study a generating function

I +4¢™).

E>1

They assume the limit s = lim;_ ., log A, /log k exists, and use some arithmetical conditions on the
summands A;. Their result was extended by Richmond [17], who gives several sets of conditions.
As an example, Roth and Szekeres give the following expansion for the number of partitions into
distinct prime summands,

1 \/7 / ( <1og log n) )
og qprlme 1 og n log n .

The works of Meinardus and of Roth and Szekeres use the saddle-point method. The differences
between them is rather a matter of style. Meinardus studies the behaviour of the generating function
in the neighborhood of 1 using a Mellin transform; this gives an approximate saddle-point equation
and an approximate saddle-point; next the Cauchy integral is studied. Roth and Szekeres directly
use the saddle-point method and their result is expressed in an implicit manner; every application
needs an auxiliary computation, in some cases with the Euler-McLaurin formula or with the Mellin
transform, to obtain an explicit expansion.

4. Tauberian method

In [10], Ingham asks for a set of conditions not highly extravagant which leads to a result about
the asymptotic behaviour of the number of partitions. He considers a sequence of real numbers 0 <
AL < Ay < --- < A < --- and its count function A(u) = |[{As; Ax < u}|. The use of this function is
natural because the generating function

P(e™) = H e,\ks Zp e

k21

and the count function are related by

+o0
logP(e™") = / log
0
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Under the hypothesis

A(u) = Bu® + R(u), / Mdv = blogu+ c+ o(1),
0 u

v — 00
he proves that
Py(u) ~ Kule=/20=0=1 2 axp(Cu®), with a = 3/(8 + 1),

for some explicit constants /K and C'. Here the function P,(u) generalises the function p(n) we used
previously; precisely, if P(u) is the number of solutions in nonnegative integers of the inequation
niAL+ngAs+ -+ 0. A 4+ -+ < u then for positive h, Py(u) = [P(w+ h) — P(h)]/h. Henceif h =1
and the summands A are integers, Py(n) is simply p(n). The function P(u) already appears in the
work of Mahler, because it satisfies the equations p(rm) = P(m+0) and P(u)— P(u—1) = P(u/r)
in that case.

The proof relies on a special Tauberian theorem. Indeed, the generating function appears to be
a Laplace transform,

Ple?) = /000 e dP(u).

The Tauberian theorem of Ingham provides an estimate of P(u) in terms of ¢(s) = log P(e™*) and
the solution o, of the equation ¢'(0,) +« = 0 (which can be seen as a saddle-point equation).

The proof of Ingham works for P(u) without any further condition, but for P,(u) one of the
hypotheses is the monotonicity of this function. Auluck and Haselgrove [2] have extended the
result of Ingham, and removed some of his hypotheses. Bateman and Erdds [3] have shown that
for integer summands A; the function p(n) = Pi(n) is monotonic if and only the set of summands
has the following property: there are at least two A’s and if one removes any A the remaining A’s
have greatest common divisor unity.

5. Weak results
Hardy and Ramanujan [8] study the number Q(z) of solutions of the inequation
2(123(135(15 .. .pal’ “e S T

into integers satisfying a» > ag > --- > a, > ---. The numbers 2, 3, ..., p, ... are the prime
numbers. If A, is the sum of the logarithms of the k first prime numbers, Q(z) is essentially
P(log z). They prove that

27 log x
1 = —(—/— 1).
ogQ(z) = 73\ oglogz T o(1)
Such a result, which gives an equivalent of log P(u), is called a weak result.
The tools used by Hardy and Ramanujan is a Tauberian theorem; under some simple conditions
this theorem says that

log A, = Bee/0+9) [1oghl+e) g
if the behaviour near 0 of the logarithm of the Laplace transform
f(s) = Zane_z"s = / e dA(s)
n>1 0

is known, namely

_ A
s—0 g logﬁ(l/s).
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In these formulae A, is the summatory function
Ay =a+ay+ -+ ay,, A(z)=A, forn<z<n+l.

The result is applied to the generating function

1
Ple) =] ——
i1 1 — e 2
which satisfies
2
log P(e™*) =

s—0 6slog(1/s)’
with £, = logn.
Brigham [4] extends the work of Hardy and Ramanujan, by considering the generating function

P = Il =

k>1
and the following hypothesis about the count function
u) = Z v ~ Ku*log” u, a > 0.
k<u

Two students of Bateman, Kohlbecker [11] first, and Parameswaran [14] next, consider the func-
tional relation between the count function A(u) and the summatory function P(u),

log / e dP(u / log 7——— dA ().
6 su

Kohlbecker shows the following behaviours are equivalent
A(u) ~ u®L(w), log P(u) ~ u®/0+*) L* (), (a>0).

The function L(w) and L*(u) are slowly varying, that is L(cu) ~ L(u) for every ¢ > 0. Moreover
(L, L*) is a dual pair; in every concrete case, L*(u) is explicitely computable from L(u). The way
from P(u) to A(u) is an Abelian theorem, and the way form A(u) to P(w) is a Tauberian theorem,
like in the work of Hardy and Ramanujan.

Schwarz [19] gives a result which is surprising by its simplicity. The count function A(u) tends
to infinity (as we assumed in all preceding assertions) and satisfies A(2u) = O(A(u)) as u — oc.
Under this hypothesis the behaviour of log P(u) is given by

log P(u) o o(oy) + uo, + O (uau \/¢(Uu) log w(iu)) ,

where o, is the solution of the equation qb(a) + u = 0 for u large, and

B ¢”(O’)
Elog e)\ko’ (o) = l¢/(o)]2

k>1

Schwarz gives a host of examples: ordinary partitions, A\, = k, A(u) ~ wu; partitions into prime
numbers, A\, = pi, A(u) ~ u/logu; partitions into rth powers, A\, = k", A(u) ~ u/"; Mahler parti-
tions, A\, = r¥, A(u) ~ log, u; partitions whose summands are A\, = k* or k!, A(u) ~ log u/loglog u,
for example.
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Conclusion

There is a wealth of papers on this subject. Parameters of partitions such as the number of
summands can also be treated by the same kind of subject, although the computations are generally
more technical. This is the problem that started Ph. Dumas in this domain, see [6] for details.

(1]

[8]
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Measures of distinctness for summands in partitions and compositions

Hsien-Kuei Hwang
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[summary by Philippe Dumas]

Abstract

Statistical properties of integer partitions and compositions are studied. The approach
is based on generating functions and complex analysis, and uses Mellin transform.

The problem under treatment is mainly based on a work by Richmond and Knopfmacher [4], who
considered compositions with distinct summands. It is also based on a work by Knopfmacher and
Mays [2], who studied the number and the sum of distinct summands in compositions by elementary
means. The approach of Hwang and Yeh [1] is different. It is based on generating functions and
complex analysis, which allows them to consider a general scheme: the summands are taken form
an infinite positive integer sequence (J;), and various types of partitions or compositions, inspired
from combinatorial data structures, are studied.

There are different ways to estimate the degree of distinctness between the summands of a
partition or of a composition. In this summary we content ourselves with the number of summands
which occur h times or more in a partition or composition, though Hwang and Yeh consider many
other criteria. This number may be viewed as a random variable X[l indexed by the sum n of the
partition or composition. In the case of compositions, the formula

ShA;

c [R]y —
Z » E(X ) Z (1= A(2))(1 = A(2) + 22

n>1 i>1

where ¢, is the number of compositions of n and A(z) = > 2%, provides a way to determine the

asymptotic behavior of the mean E(X[).
Let us consider the simple case \; = j; so that ¢, = 2"~ We have

3 v 1 _ log n
E(X!M) =log,n — = — = T(x)n ™ < )

with x; = 2ikm/n. The proof is in four steps and relies on the formula

) n 1 . 1—=z
E(X,E])IZ(l— Tl ]1—22+zj(1—2))'

ji=1

First, Rouché’s theorem implies that the polynomial 1 — 2z + 27(1 — z) has only one root (1+4¢;)/2
inside the umit circle. Next the Lagrange inversion theorem gives an explicit expression of ¢j,

namely
1 ¢ i1 (KL
& = D 35 2 (z + 1) (=1) i)

£>1 i=0
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The singularities of the generating function being known, the next stage is an application of
Cauchy’s formula. One obtains

- 1 log n
E<X21]>=Z(1‘1+gn)+0< =)
J

ji=1

This new sum is a harmonic sum which can be expressed as an inverse Mellin transform, hence

_ —1/24i00
(X —1/ T(s)n=*U(s)ds + O (10”) ,

2T J_1/2-ic0 n

with
U(s) = Yisilog(l+¢)7%, R(s) <0,
4°/(1-2°)+ V(s), R(s)< 1.
This provides the announced formula. The analysis differs from Knuth’s one [3] and gives a better
error term. The big oh term may be replaced by a sum

1k
Z — E @y ¢(log, n) log” n,
n £=0

E>1

where the @ ;s are periodic functions. More generally one obtains

bx) = pxt) - 5 (Hzmm)n—m) ro ().

jllog?2 o

All this is relative to the case A\; = j.
In the general case A(z) = ); 2% cannot be written as 2°A;(2?) with d > 2 and the count

function
Az) = Z 1
A<z
tends to infinity with z. Under these conditions, one obtains

E(X[) = A(log, (cn)) + O(1),

where r and ¢ are defined by A(p) = 1, r = 1/p end ¢ = 1/p/A'(p). One may say there is a
logarithmic transition from the behavior of A to the behavior of E(X ).

Hwang and Yeh consider others compositions like cyclic compositions where compositions are
considered up to circular permutation, or branching compositions where the summands label the
nodes of a binary tree.
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Asymptotics and scalings for large product-form networks via the Central limit
theorem

Jean-Marc Lasgouttes
INRIA Rocquencourt

May 6, 1996

[summary by Philippe Robert]

1. Introduction

This talk considers the following closed queueing networks: there are n queues and m,, customers
traveling in the network, the service rate at queue k& when there are g; customers is fiy, ,(gz). A
customer finishing his service at queue k goes to queue ! with probability pj; where P, = (py ;) is
an irreducible stochastic matrix with invariant measure 7, = (71 ,,...,T, ,), defined by 7, P, = 7,
and 7, + -+ 4+ 7, , = 1. The service discipline can be FIFO, LIFO, or Processor sharing. To
this network is associated a Markov process given by the vector of the number of customers in the
queues (Q ). It is well known that this Markov process has a unique equilibrium measure P, such
that,if ¢1,...,¢, > 0and ¢ + -+ -+ ¢, = m,,,

n

PnQ,n:qv"'7Qn,nIQn :Zn_qln 9
(@ =a 1= G L et

9k
ﬂ-k,n

with the normalizing condition

n qk
ﬂ-k,n

Frn = 11 (1) -+ paen (i)

g1+ +gn=m k=1 Hi,n

The explicit expression for the equilibrium measure is not really informative because of the nor-
malizing constant which is not easy to handle. It is difficult to get a qualitative insight on the
network (such as the mean queue lengths and their variances). A way to cope with this problem is
to consider asymptotics. The paper considers the case where the number of queues and the number
of customers tend to infinity with some normalization between them.

2. The equivalent network

The main idea is to introduce the open network defined by n independent parallel queues with
service rate i, ,(2) and arrival intensity A, , at queue k.
The distribution of the number Xy , of clients in queue £ is given by

. 1 (Anﬂ'kyn)x
fk,n :uk,n(l) o ,uk,n(w)

where f; , is a (simple) normalizing constant.

P(ka = JJ)
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THEOREM 1. For any choice of m,, there exists a unique A, such that if 5, = X1 ,+---+ X, »,
then E(S,) = m,. In this case for any q1,...,¢, > 0 and 1 < { < n,

1 n

P(Ql,n =q, s Qnpn = Qn) = m H P(Xk,n = qk)7
n = n/ k=1

P(E::@-}—l Xkyn Z::K—}—l Tnk’n)
P(S, =m,)

X P(Xl,n =4q1,-- '7X£,n = QZ|Sn = Tnn)-

£
P(Q1,n =q, s Qen = Q) = H P(Xk,n = q)

k=1

Starting from this representation, the asymptotic results concerning the network are proved via
asymptotic results on 5,. Basically, in the same way as Kolchin [2] in another context, the authors
use local limit theorems of the following form.

THEOREM 2. Under “suilable” condilions, there exists a distribulion with density h and a se-
quence a, such that, for any integer z, lim, _ ., a, P(S, — m, = ¢) — h(z/a,) = 0.
3. Asymptotic expansions

The queues are partitioned into two sets, F,, and I,,. The set F, contains those queues k for

which liminf, {/,ukyn(l) -+ fg n(g) < 00; the set I, contains the other ones.

DEFINITION 1. Let
uk n

liminfq_»oo \q/,uk,n(l) .. ,uk,n(q)7 if k& € Fn7 and ASL = min =2

Hrn = ]
fn (1), if ke 1,, KEFn Tj

A sequence m? is said to be weakly critical, if for any 0 < ¢ < 1, g(¢) = limsup,,__, m,(t\2)/m®
exists and lim;_;_ ¢(¢) be either 1 or occ.

The critical sequences m? allow to distinguish between saturated and non-saturated regimes
of the network, depending on the limit of g(¢) at 1. One of the main results on the asymptotic
expansion of the equilibrium measure is the following theorem.

THEOREM 3. Assume lim,,_. oo maxy<p<n (Tpn/frn)/[T1n/tin + 4 Tpn/tnn] = 0. Let mY be
a weakly critical sequence, with the associated function g(t). Assume that lim,_.,_g(t) = 1. If
moreover, lim sup,,_, ., m, /m’ < 1 then, for any finite index j,

d 1
P@Qin=1q1,-.,Qjn=q) = HP(Xk,n = ) [1 " O(m—)] ‘
k=1 n
In particular, for all k£ € {1,...,n}, E(Q4 ) is uniformly bounded in n.
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Analysis of Quickselect

Helmut Prodinger
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October 16, 1995

[summary by Bruno Salvy]

Abstract

Quickselect is an algorithm due to Hoare which uses the same partitioning process as
Quicksort. As in Quicksort, there is a median-of-three version which reduces the number of
comparisons and passes. This is analyzed as well as a variant called multiple Quickselect.
All these analyses result in explicit expressions for the number of passes and comparisons.

Quicksort and Quickselect work as follows. The input is an array of n elements. First, one
of these elements—the pivot—is selected at random. Then partitioning takes place: the array is
rearranged so that its elements smaller than the pivot end up to the left of it, while the elements
larger than the pivot end up to the right (see Fig. 1). It is an important hypothesis for the analysis
that this partitioning should be stable, i.e. the order of the smaller elements and the order of the
larger elements should not have been modified during the partitioning. In the next step, Quicksort
and Quickselect differ. In Quicksort, whose aim is to sort the array, the same process is applied
recursively to both sides of the array. In Quickselect, whose aim is to find the jth element of the
array, the process is applied recursively to the side containing it.

In the case of Quicksort, the number of passes and the number of comparisons satisfy recurrences
from which follow explicit formule in terms of the harmonic numbers H, = > 7_, 1/k [5].

A classical optimization of Quicksort is obtained by selecting the pivot by a median-of-three
process: three elements of the array are selected at random, and the pivot is taken to be the median
one. The analysis of this optimization is well-known [3, 2]. In [4], the analysis of Quickselect with
this optimization is carried out. The same technique is applied to multiple Quickselect in [7]. We
now summarize these works.

pivdf"-el@_ment

| id

smaller T larger

correct position

Ficure 1. The partioning process
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1. Number of passes and comparisons

After the pivot has been selected by the median of three process, the probability that the parti-
tioning yields two sub-arrays of sizes (kK — 1) and (n — k) is
E—1)(n—k
N CESVCEY:)
(3)
Let F, ;(z) denote the probability generating function of the number of passes necessary to select
the jth element out of n under the assumption that all n! permutations of the array are equally
likely. Then by a simple generating function argument

j—-1
(1) Fn,j(z) =z [Zﬂ-n,an—k,j k ‘I’ﬂ-n] E Tn ka 1] )

k=1 k=j+1

for n > 3 while Fy1(2) = Fr1(2) = Fy2(2) = 2. The expected number of passes is obtained
as P,; = F, /(1) and the generating function P;j(z) = 3°,5; P, ;2" satisfies the following mixed
shift-differential equation derived from (1):

1 1 2k Pl(z)
9 —P-///Z :7_5: k-3 }: kZP/ = ]7.
( ) 6 J ( ) (1_2)4 k:3< ) —I_ ( )+(1_Z)2
Since this is really an equation in Pj, it is convenient to set D; = P;. Then, with the help of

Maple, it is possible to find closed-form formulae for D,(z), Dy(z), etc. All these functions are
linear combinations of (1 — z)~?log(1 — z), log(1 — z), (1 — z)~% and polynomials in z with simple
rational coeflicients. It is possible to spot patterns in these coefficients and this suggests studying
the bivariate generating function D(z,u) of the D;(z). From (2), it follows that D(z, u) satisfies a
linear differential equation:

T <(1 _12)2 iE —u;f) L=y <(1 —12)“ a —u;)“> |

with initial conditions D(0,u) = w, D,(0,u) = 2u(1 + ). This equation turns out to have a
(several pages long) closed-form solution involving the logarithms of (1 — uz) and (1 — z) and
rational functions in « and z. Extracting the coefficients then yields the following theorem.

THEOREM 1. Given a random permulation of n elements and 5 < j < n—4, the average number
of passes needed to select the jth element using Quickselect with a median-of-three partition is

24 18 18 12 12 304 6 185 12(j—1)?
Poi=—H,+—H +—Hypy i b ——— =2 2 I
i = gptin T gt T gptinn—g g 35(n+1—4) 175 7n e 35n2

42 =BG - 6G -2 -1 625 -5~ D 4G -3 - 1
35n2 35nt 35n2 35n8 ’
where nf = n(n —1)---(n —k+1).

For instance, to compute the median of 2n + 1 elements requires a number of passes Py, 41 41 =

H2n+1 + 3 36 Hn+1 +0(1) = 172 logn + O(1) instead of 2logn in the classical case. The savings are
thus about 14%

The number of comparisons is obtained in a similar fashion. In (1), it is sufficient to replace
the factor z by 2"~! to obtain the generating function of the number of comparisons (at each pass,
there are n — 1 comparisons during the partitioning). Then again, the bivariate generating function
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of the number of comparisons to select the jth element out of a random permutation of n elements
can be found explicitly, and extracting the coefficients yields the following theorem.

THEOREM 2. Given a random permulation of n elements and 5 < j < n—4, the average number
of comparisons needed to select the jth element using Quickselect with a median-of-three partition
1S

72 156 156 36 36 88 24 . 3(j—1)2 156]
Coi=on+ sl -2 gy P O g _
AT T TR A T T P B S TR T n 35n
360 -1 12(25-3)(J -1 18 -2)(j-1)? N 18(2j = 5)(j —1)* 12(j -3)(j — 1)®
35n2 35n3 35n4 35n5 35n8 ’

where n® =n(n—1)---(n —k+1).

Computation of the median therefore requires 11n/2+4O(log n) comparisons whereas the classical
method requires 4(1 4 log 2)n + O(logn) comparisons. The savings are thus about 19%.

The same technique also applies to several variants, such as counting only n — 3 comparisons per
partition or selecting the smaller of two random elements as the pivot.

2. Multiple Quickselect

In multiple Quickselect, one searches simultaneously for the elements of indices {ji,...,7,} (0 <
J1 < -+ <j, <n). The analysis is very similar to the analyses above and results in ezplicit formulae
for the number of passes and the number of comparisons. With obvious notation, one has

Plnij, ..o 0pl = Hjy + Hugaoj, + QXP:Hth—jt_l —2p+1,
t=2
Clnig, gl =2n+j, — 1 +2(n+ 1)H, —2(j1 + 2)H;, —2(n+ 3 — j,)Hpy1j,
- QZP: (je+4—Jic1)Hjp1-4,_, +8p—2.
t=2
Of course, as a special case, we recover the analysis of Quicksort when p = n.
A recent work of Lent and Mahmoud [6] gives asymptotic estimates for so-called grand averages:

1 . .
/P”yp = Ty Z P[n;]lw"v]p]v
(;)

1<j1<<§p<n
1 . :
Cop = m Z Clnsgus -y Jpl-
p/ 1<j1<<jp<n
Using the formule above and summing the harmonic numbers by direct manipulations or standard
generating function techniques [1], it is actually possible to derive closed-form formule for these
averages in terms of harmonic numbers [7].

THEOREM 3.
2p(n + 1)? 2(p—1)?
Py = Hypr —H)+1-2p— 22— 20
! ('n+2—p)(n+1—p)( =) S
1
Cop= [(QHP + 1)n3 — 8pH,n* + A4(p+2)H, + p)n2

nF 2=+ 1-7)
+2p(p— 9)H,n+ (2(4p+5)H, —5p* + p— 1)n+ 2p(p— 5)H, + 4(p+ 1)H, — p(p+ 7)] .
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Basic hypergeometric series, digital search trees, and approximate counting

Helmut Prodinger

Technische Universitat Wien
October 16, 1995

[summary by Michele Soria]

The transformation formula of Heine from the theory of basic hypergeometric functions allows
very simple and pleasant derivations of explicit forms of the level polynomials of digital search
trees [8], as well as of explicit forms of the probabilities in the “approximate counting” problem [7].

1. Basics about hypergeometric functions

This section contains basic notations and results about ¢-hypergeometric series (see e.g. [1, 3]).

g-Pochhammer symbol. Let us introduce the classical notations:
(@), = (1—a)(1—aq)---(1—ag"™"), (a)o=1, (@)oo = lim (@),

and observe that

(1) (a), =

Cauchy’s Formula.

= (O (e

Fuler’s identilies. The special case a = 0 is generally attributed to Euler:

" 1
O

n>0

and the so called Euler formula is obtained by first substituting a/b by @ and bt by b in Cauchy’s
formula, then setting ¢ = —1 and b = 0:




Heine’s transformation. Cauchy’s formula and equation (1) lead to Heine’s formula:

<a>n<b>nn_ oo c/b
2 a0 < 2.7

n>0 X n>0 at)

Setting ¢« = ¢, b =y, c = 0 and { = z in Heine’s transformation, one gets the simple formula

n

n Y
Z(@/)nz = (3/)00 Z ((])n(l — an)

n>0 n>0
2. Level polynomials in digital search trees

A digital search tree is constructed like a binary search tree, but the decision to go down to the
left or right is done accordingly to the binary representation of the key: if the first bit is 0, the item
goes left and otherwise it goes right; then the second bit is used to go down further left or right,
etc., until there is an empty node where the item can be stored. In order to study the average
search cost, we are interested in h,, 5, the expected number of nodes on level k (by convention, the
root is at level 0), in a tree built from n random data (i.e. in every decision, a bit 0 or 1 is equally
likely).

The level polynomial H,(u) = Y 5, hn ru® satisfies (see e.g. [5]) Ho(u) = 0, and for n > 1

(0= Y (k) (~ 1! (e,

k=1

By probabilistic arguments, Louchard [6] gave an explicit formula for the coefficients of H,(u), that
we shall derive here by means of hypergeometric functions. We introduce the bivariate generating
function H(u,z) =73, H,(u)z" and obtain easily:

H
(u,2) = 1—x2z x—l)

The use of Heine’s formula gives
k

H(u,z)= (1-12)2 ()eo g;) () (1 _ xquk) )

Then decomposing into partial fractions and applying Euler’s formula leads to

(W 1 y (u/q)* 1
) = e e~ 2 g T2l )
From this expression we get
H,(u) = [a"]H (u,2) = - _1u/q WY (?(Lé;fk)ku — gty

The coefficient of u' in H,(u) then transforms by Euler’s formula in

(2) hoi = [ Ho(u) = g7 = 3 L (1= gbyr(— 1)+ 4

[u']H,(uw)/(1 - u)) or leaf levels ([u']l — (1 —

Other parameters of interest, such as partial sums
u/q)H,(u)) can be obtained immediately from (2).
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3. Approximate counting via Euler transform

Approximate counting can be described by an automaton with states 1, 2,... Starting in state 1,
we proceed step by step. In one step we may either advance from state 7 to state ¢ + 1 with
probability ¢¢, or stay in state 7 with probability 1 — ¢'. The interesting parameter is the state
reached after n random steps. The original analysis of this problem was done by Flajolet [2] and
consists of an enumerative part and an asymptotic part. We will show here how hypergeometric
functions allow some shortcuts in the enumerative part. Let p, ; be the probability to be in state
[ after n random steps, and let Hi(z) = 3,5 Pn2". Using a decomposition path from 1 to [ into
stages, it is not hard to see that -

-1, (} 1) (%)
i=1 -z - q )) <_q)l

r—1

We shall go to the expected value after n steps by means of the bivariate generating function
H(z,y) =350 Hi(z)y'. Setting z = —£; and applying Heine’s formula, we get

Wt 37 A

n>0 n

H(xvy) =

8| =

One more Heine transform, with ¢ = 0, b = z, ¢ = yz and { = ¢ leads to

H(p) = 3 e e 5 RO L) 5,

e @aldn 2 (a7 L

The expected value after n steps, >, Ip, , is the coefficient of 2" in the partial derivative H,(z,y)
taken at y = 1. Since for n > 1

5o @l ey =~

we have

ZIHI (1— z) Z(q)n_lz".

>1 n>1

And to get the quantity of interest we have to extract the coeflicient of z" in the last expression.
This is done by using Euler’s transform: if f(z) = 3,5, a,2" then

ot (55) =S (e

n>0k=0

Thus

len,z = [2"] Zlﬂz(m) =1- Y (Z)(—l)qu(q)k_l.

1>1 1>1 k=1

This formula is equivalent to the one given in [4], where its asymptotic value is then obtained by

Rice’s Method.
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Claire Kenyon
CNRS - Villeurbanne
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[summary by Philippe Robert]

This talk considers the average case behavior of the best fit algorithm for on-line bin packing in
the case where the item sizes are uniformly distributed in {1/k,...,j/k}. The best fit algorithm
works as follows: the items are packed on-line, each item goes to the bin for which the wasted space
is minimized. The bins are of size 1. We focus here on the average wasted space of the algorithm.
It is known that this quantity is bounded when j is small compared to k ( j < v/2k 4+ 2.25—1.5) or
when j is sufficiently close to 1 or k. In the cases where it is known to be unbounded it appears to
grow linearly (see [1]). The motivation of this study is to analyze the sensitivity of the performances
of best fit algorithm with respect to the probability distribution of the sizes of the items. The main
result is the following theorem.

THEOREM 1. For the uniform distribution on {1/k,2/k,...,(k—2)/k}, the average wasted space
s bounded.

We sketch the main ideas of the proof. The main variable of interest is the the multi-dimensional
Markov chain S(¢) = (s1(1),...,s,-1(1)), where s;(¢) is the number of bins at time ¢ with a residual
space of size i/k. The transitions of this Markov chain are described as follows:

If the (¢ 4 1)th item is of size z/k,

— If s,(t) # 0 then a bin is completely full with this item and so s,(¢{ 4+ 1) = s,(t) — 1;

— if not and {s;(¢) # 0} is not empty and v = inf{¢ > z/s;(¢) # 0} then s,(t + 1) = s,(¢) — 1

and s,_.(t+ 1) = s,_,(t) + 1;

— Otherwise s;_,(t + 1) = s;_,(¢) + 1.
If W(t) = Y2F"is;(t) is the wasted space at time ¢, the theorem is that lim sup,_  E(W(t)) < +oc.
Because of the Markovian context, the first thing to check is whether the Markov chain (5(¢)) is
ergodic or not (i.e. has an equilibrium measure). A classical idea in this domain is to try to
construct a Lyapunov function which is decreasing at infinity if the Markov chain is ergodic. The
following result (see [2]) gives a useful criterion for our problem.

THEOREM 2. If X(t) is an irreducible homogeneous Markov chain on a countable state space
S C N, and if there exists an inleger b € N and a function f:S — R such that

(1) f(s) > Cys*, for some constants C', u;
(2) P(X(b)=1b]X(0)=a)=01|f(b) = fa)| > Cs;
(3) there exists a finite subset B of S such that E(f(X(b))— f(s)) < —¢ if s¢ B.

Then the Markov chain is ergodic with the invariant probability ™ satisfying
m(s) < Cem™0),

103



for some constants C' and 6.

The function f is usually called a Lyapunov function. The main assumption is condition (3)
which expresses that the trajectory of (f(X(%))) goes back ultimately (after b steps) towards the
origin in average when it is far away. In our case the Lyapunov function is the wasted space
f(s) = Z[fﬁ] 1s;. Using stochastic comparisons with simple random walks on the integers, it is
proved that the above assumptions are satisfied for this function. The result on the tail of the
invariant distribution shows that the wasted space converges in distribution and also in average.
Hence the wasted space is bounded.
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Abstract

The analysis of a learning problem motivates the definition of an urn model. In this
model, two kinds of balls representing bad and good data are allocated at random in a col-
lection of urns. This is a variation on the classical occupancy model where one is concerned
with allocation of one kind of balls in a family of urns. In this model, the relevant quantities
are the number of urns that contain more bad than good balls or as many good as bad balls.
We describe the law of those two quantities in the static and dynamic framework. The
investigation rely both on complex analysis techniques (generating functions) and proba-
bilistic tools (exchangeability, and finite De Finetti theorems). Using proper normalization,
the limiting phenomena are Gaussian random variables. Most interesting is the fact that
the moments of the laws are described using modified Bessel functions.

1. The modified urn problem

The modified urn problem was initially motivated by the analysis of the learning curve of sym-
metric functions under classification noise in the field of computational learning theory [6]. As in
the classical random allocation problem, &k balls are thrown at random into those m» urns. Balls
are allocated independently, and the probability to fall into some urn is 1/n. But here, balls
are not only allocated, they are also labelled independently at random as good (with probability
1—p > 1/2) or bad. The balance of one urn is the difference between the number of good balls and
the number of bad balls in that urn. All the issues tackled in this investigation have the following
flavor: what is the law of linear combinations of the numbers of urns with positive, negative and
null balances? This question can be answered in a static context, where k/n remains equal to a
positive constant a when n tends to infinity, or in a dynamic context, where urns are allocated one
at a time, and where we try to monitor the evolution of the fraction of urns with positive, negative
and null balances at different normalized times ay,...,a;,... with a; = k;/n.

The goal of this analysis is to extend results stated in [7] on the empty urn problem. The
empty urn problem can be treated by diffusion approximation techniques, or, using implicitly the
Markov property, by generating functions. The problem examined here does not share this property.
Moreover, the plausible enhancements of the state space that would make the fraction of urns with
positive balance a function of a Markov chain, lead to consider processes which take values in
infinite-dimensional spaces. The analysis presented in [1] relies both on generating functions and
simple principles.
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2. Generating functions

The generating functions manipulated here are of exponential type.

2.1. Generating function describing the behavior of one urn. Let y mark the number
of balls in that urn. Because balls are indistinguishable, the generating function describing the
number of ways of allocating balls in one urn is e¥. To reflect the fact that balls are of two kinds,
this is rewritten as e#¥t(1=#)/¥  Using a second variable z and expanding e¥(#*+(1=#)/2) "one notes
that the coefficient of y*z? is proportional to the probability that the urn has balance p when &
balls are thrown into it. We get:

¥ ((A—p)ztulz) _ Eap(y)zp_
pEL

The exponent of z is the balance of the urn. This expression stresses the importance of Bessel
functions. Modified Bessel functions of the first kind at order p € Z can be defined by:

_ (z/2)r+?
Ip(-T)— Z )’T‘!(T—I—p)!'

r>max(0,—p

Bessel functions obey the following identity: e¥(“+w) = > opez @I, (y). Then letting o = \/u(1 — p),

V(= wztn/z) = 5 (02/nt5m) — Yover ("N—Z)plp(Qay). Marking urns with positive balance by w, null
balance by v and negative balance by » , and letting

o =3 (2) heen =3 (4) nemwy vw=3 (7) heon = e - 2o - oto)

the generating function describing the sign of the balance in one urn is:

flu,v,w,y) = ud(y) + vly(20y) + wi(y).

2.2. Generating function for a sequence of urns. Because urns are exchangeable, the
generating function describing the states of a sequence of n urns is:

Flu,v,w,y) = f(u,v,w,y)" = (up(y) + vio(20y) + wip(y))" .

3. Exchangeability

The balances of different urns follow identical, non-independent but exchangeable laws: all per-
mutations of a tuple of balances indexed by different urns have the same probability. Recall that
the variation distance between two laws D and D’ is defined by:

D-D = Ep(Test) — Ep:(Test)].

1D = Dl = max_ | Ep(Test) — Ep(Test)
The following lemma shows that small sets of urns behave almost independently. Let P, be the
law of a tuple of ¢ independent random variables that are distributed as the difference between two
independent Poisson random variables with means pk/n and (1 — p)k/n.

ProrosiTioN 1. The vector of balances in urns 1 to © after throwing k balls in n urns is dis-
tributed according to a law Q; that is within variation distance 2i/n from P;.

The proof relies on the fact that conditionally on the number of balls allocated in urns 1,...,z¢,
the balances of the ¢ urns are independent and on theorem (5.1) in [2].
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4. Static analysis

The cost of an experiment (throwing & balls into n urns) is the sum of the costs of the urns. The
cost of an urn with null (resp. negative, positive) balance is Cy (resp. Cy, C3). Welet dy = Cy — C5
and d; = C'; — Cy. For costs relevant to learning theory applications, we have dy = d;.

Using either the generating function approach or Proposition 1, one may derive the following
equivalents for the expectation and variance of the cost:

E(cost) ~ n [Cy + die”*1p(20a) + (do + dy)e” “¢d(a)] ;

Var(cost) ~ ndie™*|4¢(a) + [,(20a) — e ((2gb(a) + IO(QUa))2 + a((1- QM)IO(QUQ))2)] .

Using the generating function approach and a theorem in [4], one may also conclude that the
normalized and centered variable defined by: (cost — E(cost))/y/n is asymptotically Gaussian with
variance Var(cost)/n.

5. Dynamic analysis

In the dynamic context, balls are allocated one at a time. If balls are allocated in n urns,
the & = anth ball is allocated at time a. The cost is a random function of time. The average
function when n — oo is given by the above-stated expression for the average cost. The aim of this
investigation is to characterize the limiting behavior of the normalized centered processes. To prove
(weak) convergence of the processes to a limiting process, one needs to check that the sequence
of processes is relatively compact, and that the finite dimensional distributions of the processes
converge to the finite dimensional distributions of the limiting process.

Finite dimensional distributions are analyzed using both multivariate generating functions and
elementary arguments building on exchangeability of urns.

Balls are assumed to be thrown in two groups. The first group is marked by y; and thrown at
time ay; we use variable z; to distinguish good balls from bad balls, (a good ball is marked as
(1—p)yi2 and a bad ball as py, /2;). Similarly, the second group is thrown at time a, and marked
by y, and z,. Variables u;, v; and w; indicate the state of the urn after throwing the first group
(¢ = 1) and the second group (¢ = 2).

Letting
AI(%, 3/2) = E In(QUyl)I—n(20y2) = [10(20(3/1 + 3/2)) - IO(QUyl)IO(QU?D)]/Qa
n>0
o\ 1P
S = Y Lowhow) (7).
n>0,n+p>0 H

T(y,y2) = V(yr + y2) — S(y1, y2) — Lo(y1)Y(y2),

the following is derived:

ProrosiTioON 2. The multivariate generating function describing the behavior of a single urn at
the times oy and oy is

w1 w25 (Y1, Y2) + w102 AI(y1, y2) + wius (Y(y1)e?> — S(y1,y2) — Al(y1,y2))
+ v1walo(20y1)Y(y2) + v1ivalo(20y1)10(20Yy2) + viuslo(20y1)P(ys)
+ wwa T (Y1, y2) + w102 AI(y1, y2) + wrus ((y1)e?? — T(y1, y2) — AL (y1,92))-
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The single-urn generating function is used to compute the generating function of a sequence of
urns at different instants. Then the limiting value of the characteristic function of the cost at a
finite number of instants can be computed using saddle-point approximation methods as in [4, 5].

This allows to conclude that the finite dimensional distributions of the centered normalized
processes converge to the finite dimensional distributions of a non-Markov Gaussian process with
covariance between times oy and as:

dle=* ((IO(QO'QQ) + 2I5(20a1)Pp(as —ay) +4 E <g)j L(2009)L;_;(20(as — Ch)))

—e ™ <(Io(20a1) + 2¢(e)) (Io(2003) + 2¢(a3)) + (1 — 2u)210(20a1)10(20a2))) .

Proving the weak convergence of the processes to the above-stated Gaussian process requires the
proof of the relative compactness of the sequence of processes. This has not been done although
the verification of the Kolmogorov-Centsov criterion raises more cumbersome computations than
theoretical difficulties.

6. Questions

A plausible contribution of [1] is the presentation of a new kind of admissible construction: the
majority phenomenon that comes from building a combinatorial structure on two types of objects
(good and bad in this paper), then deciding on the type of the structure according to the type
of the majority of the basic objects. For example, we can have two types of basic objects, build
cycles on theses objects and combine these cycles into a set, then ask for the number of cycles of
the set that have a majority of elements of one type, or an equal number of elements of each type.
It should be possible to extend the distribution results on the number of components presented by
Flajolet and Soria [3] to study the number of components of a given type (good, bad or neutral)
for various combinatorial constructs.
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1. Introduction

A practical algorithm for lossy data compression is presented. It is derived from the lossless
Lempel-Ziv data compression. The principle of the scheme consists in considering approximate
pattern matching where no more than D% of mismatches are allowed.

An algorithm is considered to be lossless when D = (. For example Hoffman’s algorithm and the
Lempel-Ziv algorithm are lossless. Such algorithms are extensively used for text or data transmis-
sion or storage every time it is required to have error-free recovery. In this case the compression is
limited by information theory. With image or voice/sound compression, there is no need of exact
recovery since the noise in the record and/or the limited sensitivity of our eyes or ears will hide
the details of the data base. In this case the compression can be limitless, depending only on the
degree of fidelily one wants to keep in the recovery. Examples of lossy algorithms are JPEG, GIF,
and MPEG (for motion pictures), they are based on adaptation of Fourier or wavelet transform, or
on self-similarity search as in fractal compression.

The new lossy algorithm can be adapted to numerous applications as image or voice compression.
This universality of use simply comes from the fact that the new algorithm proceeds on the digital
transcription of the data regardless of their origin. In particular it can be adapted to image
compression provided some tuning. An adaptation for voice/sound is under study.

The scheme on image shows performance close to JPEG algorithms and outperforms fractal
compression. More importantly, it benefits of a much simpler “on line” decompression algorithm.
Another advantage is that the new algorithm is tractable to performance analysis when the database
(the text or the image to compress) follows a stochastic model.

2. Measure of fidelity

Before describing the algorithm we will introduce the performance measurement called fidelity.
Let z be a text of length n (|z| = n). On the transmitter side the compression algorithm encodes
z into ¢(x). The compression rate is the ratio |c¢(z)|/n. With lossless algorithms the average
compression rate, F|c(z)|/n cannot be better than the entropy h of the source from which the
database is built. In general the lossless algorithms asymptotically attain this theoretical bound
when n — oo. The better the algorithm is, the faster is the convergence:

lim Elc(z)|/n = h.

On the receiver side, the code ¢ is decompressed into ¢(c). With lossless compression ¢(c(z)) = z.
With lossy compression ¢(c(z)) = & which is of the same length as z (|Z| = || = n) but in general
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differs from z. In the following, we use the Hamming distance: d(z,&) is number of mismatches
between z and &, divided by n. We can also accommodate our results to more sophisticated
distances where mismatches have different weight per pair of symbols.

3. Lossy Lempel-Ziv compression Algorithm

Let z be a text. We denote z,, the nth suffix of z (starting at position n) and 2™ the nth prefix of
= (ending at position n). We denote ! the subword starting at position 7 and ending at position j.

The algorithm is a parsing algorithm. We suppose that at step & the text has been parsed up to
position n, i.e. 2" has been compressed into ¢(z"). The step k+ 1 will consist in finding the largest
prefix "% of x, which is a copy within distance D of a substring in ™. Assume this copy is at
position 7 in z". Therefore the new parsed position is n+ 7, and the encoded text is ¢(z") plus the
pair (4,7): c(az"*) = ¢(a").“(1,5)”. The substring 27+ is called the new parsed phrase and j is its
length.

4. Results

4.1. Rate-distortion measure. Let A" be the set of all sequences of length n and let S be a
subset of A”. We call P(.5) the probability weight of 5 in A”.

The optimal compression ratio depends on the rate-distortion function R(D), which is defined
as follows. Let w be a text of length n, we define Bp(w) as the D-ball of center w, i.e. Bp(w) =
{z :d(z,w) < D}. We define N(D, 5)as the minimum number of D-ball needed to cover §. Then:

R.(D,e) = min M7

ScA™ P(S)>1-¢ n

and the rate-distortion is defined as R(D) = lim._.q 0o Bn(D, ).

4.2. Generalized entropy. The generalized b-order Rényi entropy h,(D) is defined as follows:

_ b _ _ b
n—oo bk n—oo bk

For b — 0 we understand ho(D) = lim, .., E[—log P Bp(x)) | |z| = n]/k, provided the limit exists.

When D = 0 (lossless case) we naturally recover the known b-order entropies h(*) defined by
E[-P({z})log P({z}) | |«] = n].

4.3. Asymptotic results on lossy Lempel-Ziv. Under some probabilistic model (Bernoulli,

Markov, Mixing conditions), about the already parsed part of the text 2" we can obtain the following
result.

THEOREM 1. The length of the new parsed phrase L, satisfies:
. L, 1
im =
n—oo logn  ho(D)

The convergence is in probability and/or almost sure convergence.

For the Bernoulli model we prove that ro(D) is the compression rate of the lossy Lempel-Ziv
scheme and that limp_o R(D) = limp_o ho(D) = h. In the case of binary uniform database we

have ho(D) = R(D)

THEOREM 2. In the Bernoulli model, the lossy Lempel-Ziv algorithm is asymptotically optimal
when D — 0 and is asymptotically optimal for all D in the binary uniform Bernoulli model.

110
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Approximate string matching is one of the main problems in classical string algorithms. Given a
text of length n, a pattern of length m, and a maximal number of errors allowed, k, we want to find
all text positions where the pattern matches the text up to k errors. Errors can be substituting,
deleting or inserting a character. The solutions to this problem differ if the algorithm has to be
on-line (that is, the text is not known in advance) or off-line (the text can be preprocessed). In
this paper the first case is studied, where the classical dynamic programming solution is O(mn).

In the last years several algorithms have been presented that achieve O(kn) comparisons in
the worst-case [13, 6, 7] or in the average case [14, 6], by taking advantage of the properties of
the dynamic programming matrix. In the same trend is [3], with average complexity O(kn/+/c)
(c is the alphabet size). The algorithms which are O(kn) in the worst case tend to involve too
much overhead, and are not competitive in practice. Other approaches attempt to filter the text,
reducing the area in which dynamic programming needs to be used [12, 15, 11, 10, 4, 5]. These
algorithms achieve sublinear expected time in many cases (O(knlog, m/m) is a typical figure) for
moderate k/m ratios, but the filtration is not effective for larger ratios. A simple and fast filtering
technique is shown in [2], which yields an O(n) algorithm for moderate k/m ratios. Yet other
approaches use bit-parallelism [1] in a RAM machine of word length O(logn) to reduce the number
of operations. [9] achieves O(kmn/logn), which is competitive for patterns of length O(logn).
In [16], the cells are packed differently to achieve O(mnlogec/logn) complexity.

A new algorithm is presented which combines the ideas of taking advantage of the properties
of the matrix, filtering the text and using bit-parallelism, being faster than previous work for
moderate size patterns, as we are interested in text searching. One models the search with a non-
deterministic finite automaton (NFA) built from the pattern and using the text as input. This
automaton is simulated by an algorithm based on bit operations on a RAM machine of word
length O(logn). The algorithm achieves running time O(n), independently of k, for small patterns
(i.e. mk = O(logn)). This restricted algorithm is used to design two general algorithms.

The first one partitions the problem into subproblems, and has average time cost O(mn/logn) for
small @ = k/m (i.e. a < 1/logn), otherwise it is O(y/mk/lognn) (i.e. O(vkn) for m = O(logn),
else O(kn)). It involves also a cost to verify potential matches, which is shown to be not significant
fora<a; ~1- ml/\/@/\/a This algorithm is a generalization of an earlier heuristic [8, 2], that
reduces the problem to exact matching and is shown to be O(n) for @ < ay = 1/(3log, m), and
better than problem partitioning for a < aj = 1/(2log, m).

The second one partitions the automaton into subautomata, being O(k*n/(y/clogn)) on average.
For a > 1 — 1/4/c its worst case, O((m — k)kn/logn), dominates. This algorithm is shown to be
better than dynamic programming for k > log(n)/(1— a). One studies the optimal way to combine
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Condition Complexity Method used

mk = O(logn) O(n) the simple algorithm
a < ag O(n) reducing to exact match
ag < a < a; O(v/mk/lognn) exact match if a < aj

else problem partitioning
a>a ANk <logn/(1—a) O((m—k)kn/logn) automaton partitioning
a>a ANk >logn/(1—a) O(mn) plain dynamic programming

TaBLE 1. Complexity of the hybrid algorithm.

the algorithms. It is shown experimentally that the hybrid algorithm is faster than previous ones,
for moderate m. Table 1 shows the complexity.

As a corollary of the analysis, tight bounds are given for the probability of finding an occurrence
of a pattern of length m with k errors starting at a fixed position in random text. We also show
that the heuristic of [14] works O(kn) on average, with a constant tighter than that of [3].
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1. State of the Art

Let S ={s1,...,5,} be a set of strings over some alphabet X. A common superstring, or simply
superstring, of S is a string s such that each s; in S is a substring (i.e., a consecutive block)
of s. The shortest superstring problem is to find a superstring of the smallest possible length for
any given set of strings 5. The problem has applications in a wide range of areas including data
compression [6] and DNA sequencing.

Since the problem is NP-hard [6] a lot of effort has been taken to find good approximation algo-
rithms with guaranteed performance. Blum et al. [4] showed that the problem is MAX SNP-hard
and thus does not have a polynomial time approximation scheme unless P = NP. Tarhio and Ukko-
nen [9] and Turner [11] gave several approximation algorithms that achieve :-approximation with
respect to the compression measure, or the total overlap between adjacent strings in a superstring.
This approximation ratio has been improved to % by Kosaraju et al. [7]. Notice that superstrings
have the minimum length if and only if they induce the maximum total overlap. Such relation,
however, does not hold for approximations, and a good approximation for the length of the shortest
superstring is not necessarily a good approximation for the maximum overlap in the superstring,
and vice versa.

The first constant-approximation algorithm for the length of the shortest superstring was given
by Blum et al. [4], who discovered a 3-approximation algorithm and proved that the “Greedy”
algorithm by Tarhio and Ukkonen [9] achieves 4-approximation. Their algorithms and analysis rely
on the close relation between the shortest superstring problem, that was shown by Turner [11] to
be reducible to the travelling salesman problem, and the cycle cover problem. The same relation
was exploited in subsequent papers [10] (= 2.89), [5] (~ 2.83), [7] (= 2.79) and [1, 2] (& 2.75).
Armen and Stein [3] have also recently obtained a 2%—approximation algorithm, independently of
our work.

Here we continue this line of work, and further improve the approximation ratio to 2% ~ 2.67
and to 222 ~ 2.596. The improved algorithms are similar to the previous algorithms in the sense
that they construct a superstring by computing some optimal cycle covers on the distance graph
of the given input strings, and then break and merge the cycles to finally obtain a Hamiltonian
path representing some superstring. The key to the improvement are new bounds on the overlap
between two strings.

2. Preliminaries

Without loss of generality, we assume that the set S is “substring-free” in that no string s; € S is
a substring of any other s; € 5. For two strings s and ¢, let y be the longest string such that s = zy
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and ¢ = yz for some non-empty strings = and z. We denote ov(s,t) = |y| the overlap between s

and ¢, d(s,t) = |z| the distance from s to t and pref(s,¢) = . Given a list of strings s;,,...,s;,,
we define the superstring s = (s;,,...,5;,) to be pref(s;,, s;,) pref(s;,, s;,) - -pref(s;,_,,s:,)s;,. It
is clear that each shortest superstring for S must be (s;,,...,s; ) for some permutation iy,...,%,

of {1,...,m}. Its length, opt(.9), and the total overlap between adjacent strings, maxov(5), satisfy:
ODU(5) = T s lsil — maxov(s),

2.1. Distance graph and cycle covers. The concept of a distance graph is central to all
existing approximation algorithms for shortest superstrings. Let Gs = (V, E,w) be a directed
graph, where the set of vertices V = {s1,...,s,,}, the set of edges £ = {(s;,s;) | 1 <@ # j < m},
and the weight function w is the distance function d(,). Gy is called the distance graph of . If
we denote the cost of a minimum weight Hamiltonian cycle on G's as Tsp(G), then obviously, for
any s; € 5,

Tsp(Gs) < opt(9) < Tsp(Gs)+ |si.

In other words, a minimum weight Hamiltonian cycle on Gs would be a very good approximation
of a shortest superstring of 5. Since TSP is NP-hard and has no good approximation algorithms,
we try to work with a relaxed version of TSP, the cycle cover problem defined below.

Given a directed weighted graph G, a cycle cover is a set of (simple) cycles such that each vertex
is contained in exactly one cycle. The weight of the cycle cover is the total weight of its cycles. A
minimum weight cycle cover can be computed in O(n?) time using the Hungarian algorithm [8].

Let Cyc(Gs) be the weight of a minimum weight cycle cover of Gg. Then we have Cyc(Gg) <
Tsp(Gs) < opt(5). To get an upper bound on opt(.9) in terms of Cyc(Gs) we have to look at the
particular structures and properties of strings.

2.2. Periodicity of strings and semi-infinite strings. A string z is a factor of a string s
if s = 'y for some positive integer i and prefix y of z (y may be empty). The factor of a non-empty
string s, denoted factor(s), is the shortest factor of s and the period of s is denoted period(s) =
| factor(s)|. A semi-infinite string s = ajas--- is said to be periodic if s = xs for some non-empty
string . The shortest such z is called the factor of s. Two (periodic semi-infinite) strings s,¢
are equivalent if their factors are cyclic shifts of each other, i.e., if there are strings x,y such
that factor(s) = zy and factor(¢) = yz. Otherwise, they are inequivalent. For each string s,
let s> denote the semi-infinite string ss---, and s,, = factor(s)> denote the periodic semi-infinite
string that is equivalent to s and begins with s. Note that in general s # s,. For example,
(010)* = 010010 -- - # (010),, = 0101 - - -.

Connections between a cycle in GGg and the periodicity of the strings obtained by breaking
the cycle are essentially given in [4]. Let ¢ = s;,,...,s;,,5;, be a cycle in Gg, and w(c) be its
weight. Without loss of generality, assume that ¢ has the minimum weight among all cycles in Gg
containing s;,,...,s;,. We will use:

LemMA 1. w(ec) =d(s;,,8:,) + -+ d(si,_,,8,) + d(sq,,8,) = period({s;,,...,5.)).

2.3. The overlap-rotation lemma. The key to the improved approximation bounds is our
overlap-rotation lemma below that follows from the classical Critical Factorization Theorem. Given
a semi-infinite string @ = aja, - -+, we denote the rotation a[k] = apapyr---.

LEMMA 2. Let a be a periodic semi-infinite string. There exists an integer k, such that for any
(finite) string s that is inequivalent to a,

1
ov(s, alk]) < period(s) + 3 period(a).
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(1) Construct the distance graph Gg for set 5.

(2) Find a minimum weight cycle cover C' on the graph G.

(3) For each cycle ¢ = s;,,...,5;,,5, € C, choose a string ¢. such that for some 7, . contains
(Sijpase-vsSi,sSigs--ns58,), and t, is contained in (s;,,..., 8, 85,1 5;,_,,8i,)-

4) Let T be the set of all strings chosen above and construct the distance graph Gz for T'.

) Find a minimum weight cycle cover C'C' on Gp.
) Break each cycle of C'C' arbitrarily to obtain a superstring of the elements in the cycle.
) Concatenate the strings found at Step (6) arbitrarily to produce a superstring § of 5.

(
(5
(6
(7

Ficure 1. The generic shortest superstring approximation algorithm.
In addition, if period(s) < period(a), then ov(s, a[k]) < 2(period(s) 4 period(a)).

Our proof is constructive; it requires two computations of critical factorizations done in time that
is linear in period(a). From now on, let @ denote a rotation of a satisfying Lemma 2. The bound
in the last lemma is roughly tight because for any rotation of the semi-infinite string (0"10"*11)>°,
there exists a string with period at most n 4+ 2 which overlaps with (0710"+11)> by at least 2n 4 2.

3. Approximation algorithms

Our algorithms are only slightly different from the ones in [1, 2, 3, 4, 5, 7, 10]. The main steps
are shown in Figure 1. We show first that this generic algorithm has approximation ratio 3. Noting
that

(SijyensSipsSigsnnnsSi;_yySi;) = factor((si, ... 8,8, 38, 1))8;,
it is straightforward [4, 10] that: opt(7) < opt(5)+Cyc(Gs) < 20pt(.5); hence, we have Cyc(Gr) <
opt(1') < 20pt(S). We make use of the following upper bound on the possible overlap between two
inequivalent strings s and ¢: ov(s,t) < period(s)+ period(¢), and show that it applies to the strings
in T. Then the total overlap represented by the edges broken in Step 6, OV, is at most the sum of
the periods of the strings in 7. By Corollary 1, OV <3 .. w(c) = Cyc(Gs).
Putting everything together, we can bound the length of the superstring s as

3] = Cye(Gr) + OV < Cye(Gr) + Cye(Gs) < 20pt(S) + opt(S) < 30pt(S).

The 2%-appr0$z'matz'on algorithm. Many researchers have tried to improve the performance of the
generic algorithm by polishing Steps 5 - 7. Nevertheless, Armen and Stein [1, 2] identified strings
that are not much longer than their factors as the bottleneck and tried to avoid them in Step
3. A key difference between our algorithm and all the previous ones actually is Step 3. The
previous algorithms all choose one of the strings contained in the cycle ¢, whereas here we look for
a superstring of the strings in ¢ that is not too long, to reduce OV. More precisely, we rely on:

LEMMA 3. For any cycle ¢ = s;,,...,8;,8;, € C, there exists a string t. such that for some j,
(1) t. contains the String (Si,,, - ..Si,,Sijs-+-»5i;)-
(2) t. is contained in the String (S;,,...,Si, ,Siys--+sSi;_15i;)-

(3) (fe)oo = (Bis 381 )oo-

The string ¢, can be found in linear time. We polish the generic algorithm by choosing ¢. in Step
3 and changing step 6 into: For each cycle of C'C', break the cycle by deleting an edge that goes
from a string to a string of equal or larger period, to obtain a superstring of the elements in the
cycle.
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Note that we do not treat the small cycles of C'C specially like the other algorithms do. Instead,
we cut the cycles with a bit of care. Clearly, in every cycle there must be an edge that goes from
a string to a string of equal or larger period. Applying Lemmas 2 and 1, we get

2 2 2 2
oV < 3 Zperiod(tc) =3 Z w(c) = 3 Cyc(Gys) < 3 opt(9).

ceC ceC

Hence, |3| = Cyc(Gr) 4+ OV < 22 opt(S5).

The 2%-appm$z'matz'on algorithm. Steps 5, 6 and 7 now become: Consilruct a superstring of T
using a good overlap approzimation algorithm. It was proven in [4] that the length apx(7") of the
superstring of 7" produced by a § overlap approximation algorithm satisfies: apx(7") < opt(T') +
(1 — 8)maxov(T). Our special choice of the cycle representatives ¢, in Step 3 allows to improve on
the standard bound used in all previous papers, e.g. maxov(7) < 2Cyc(Gs). By Lemma 2, we

prove that: maxov(T) < 2Cyc(Gs). We use the 28 overlap approximation algorithm in [7], and
get: apx(T) < opt(T) + (1 — 2)maxov(T) < 20pt(5) + 2 2Cyc(Gs) < 22 opt(9).

Concluding remark. We are still a long way from reaching the conjectured ratio 2 for approximat-
ing shortest superstrings.
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1.1.

Searching patterns: combinatorics and probability

Mireille Régnier
INRIA-Rocquencourt

July 8, 1996

[summary by Pierre Nicodeme]

Abstract

We formally define a class of sequential pattern matching algorithms that includes all
variations of the Morris-Pratt algorithm. We prove for the worst case and the average case
the existence of a complexity bound which is a linear function of the text string length
for the Morris-Pratt algorithm, using the Subadditive Ergodic Theorem. We establish some
structural property of Morris-Pratt-like algorithms, proving the existence of “unavoidable
positions” where the algorithm must stop to compare. We compute also the complexity of
the Boyer-Moore algorithm.

1. Sequential pattern matching algorithms

Basic Definitions. Throughout we write p and t for the pattern and the text which are

of lengths m and n, respectively. The ith character of the pattern p (text t) is denoted as p[i]
(t[1]), and by t! we denote the substring of t starting at position 7 and ending at position j, that is
t/ = t[i]t[i + 1] - - -t[j]. We also assume that the length m of a given pattern p does not vary with
the text length n.

We want to investigate the complexity of string matching algorithms [2]. We define it formally
as follows.

DEFINITION 1 (COMPLEXITY).

(1)

(2)

For any string matching algorithm that runs on a given text t and a given pattern p, let
M(l, k)= 1if the Ith symbol t[{] of the text is compared by the algorithm to the kth symbol
p[k] of the pattern. We assume in the following that this comparison is performed at most
once.

For a given pattern matching algorithm, a partial complexity function ¢, ; is defined as

Cr,s(tvp) = Z */w[l7k]
1e[r,s],k€[1,m]
where 1 < r < s <n. Forr =1 and s = n the function ¢, := ¢, is simply called the
complexily of the algorithm. If either the pattern or the text is a realization of a random
sequence, then we denote the complexity by a capital letter, that is, we write ', instead
of ¢,,.

An Alignment Position AP is a position of the text which is aligned with the first character of the
pattern during the processing of the algorithm, and such that, with the corresponding alignment,
at least one character of the pattern is compared with the text.
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DEFINITION 2. A string searching algorithm is said:

(1) semi-sequential if the text is scanned from left to right;

(2) strongly semi-sequential if the order of text-pattern comparisons actually performed by the
algorithm defines a non-decreasing sequence of text positions (/;) and if the sequence of
alignment positions is non-decreasing.

(3) sequential (respectively strongly sequential) if they satisfy, additionally for any & > 1

M[LE|=1=t 4,y =pi "
Note that condition (3) forbids unnecessary comparisons.

EXAMPLE (NAIVE OR BRUTE FORCE ALGORITHM). The simplest string searching algorithm is
the naive one. All text positions are alignment positions. For a given one, say AP, the text is
scanned until the pattern is found or a mismatch occurs. Then, AP + 1 is chosen as the next
alignment position and the process is repeated.

This algorithm is sequential but not strongly sequential. Condition (2) is violated after any
mismatch on a alignment position [ with parameter £ > 3, as comparison (I + 1,1) occurs after

(I+1,2)and (I +2,3).

EXAMPLE (MORRIS-PRATT-LIKE ALGORITHMS [3]). Morris-Pratt like algorithms are strongly
sequential; when a mismatch is found, they shift the pattern by the largest periodicity of the
prefix of the pattern examined at the corresponding alignment position. The Knuth-Morris-Pratt
variant remembers the last question concerning the mismatch position of the text and does not ask
it again; the Simon variant remembers all the questions at the mismatch position, and does not
ask them again. The efficiency of these algorithms is slightly better as the number of remembered
questions increases.

It was already noted [3] that after a mismatch occurs when comparing t[/] with p[k], some align-
ment positions in [[+1,...,/4+ k— 1] can be disregarded without further text-pattern comparisons.
Namely, the ones that satisfy t;if‘l # pi~, or, equivalently, piy # p¥~% and the set of such i
can be known by a preprocessing of p. Other ¢ define the “surviving candidates”, and choosing the
next alignment position among the surviving candidates is enough to ensure that condition (2) in
Definition 2 holds.

EXAMPLE (ILLUSTRATION TO DEFINITION 2). Let p = abacabacabab and t = abacabacabaaa.
The first mismatch occurs for M(12,12). The comparisons performed from that point are:

1. Morris-Pratt variant: (12,12);(12,8);(12,4);(12,2);(12,1);(13,2);(13,1), where the text
character is compared in turn with pattern characters (b, ¢, ¢,b,a,b,a) with the alignment
positions (1,5,9,11,12,12,13).

2. Knuth-Morris-Pratt variant: (12,12);(12,8);(12,2);(12,1);(13,2);(13,1), where the text
character is compared in turn with pattern characters (b,¢,b,a,b,a) with the alignment
positions (1,5,11,12,12,13).

3. Simon variant: (12,12);(12,8);(12,1);(13,2);(13,1), where the text character is compared
in turn with pattern characters (b, ¢, a, b, a) with the alignment positions (1,5, 12,12,13).

Positions 1, 5 and 12 are unavoidable for all these Morris-Pratt-like algorithms.

DEFINITION 3. For a given a pattern p, a position ¢ in the text t is an unavoidable alignment
position for an algorithm if for any r,[ such that » < ¢ and [ > ¢+ m, the position ¢ is an alignment
position when the algorithm is run on t'.
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THEOREM 1. [7] Given a pattern p and a text t, all strongly sequential algorithms have the same
set of unavoidable alignment positions U = |J_,{U;}, where

T : : l
= <
Ui mm{lrélélsll{tk <p}l,l+1}
and t'. < p means that the substring t\ is a prefiz of the pattern p.

1.2. Analysis. In the “average case analysis” we indicate that under assumption of Stationary
Model (both strings p and t are random realizations of a stationary and ergodic sequence), the
average complexity €, may be computed by a direct application of an extension of Kingman’s
Subadditive Ergodic Theorem due to Derriennic [4] . See also [5].

LeEMMA 1. [7] A strongly semi-sequential algorithm satisfies the following basic inequality for all
r such that 1 < r < n:

|Cl,n - (Cl,r —I_ Cr,n)l S 277127

provided any comparison is done only once.
We get also:

THEOREM 2. With p a paltern of size m, t a lexl of size n, and a strongly-sequential algorithm,
the number of comparisons is given by:

(a) worst case: lim,, _ ., max; c,(¢,p)/n = ai(p),
(b) p given, t random: C,(p)/n "> ay(p) (on the average),
(¢) p,t random: lim, ., £, ,C,/n = a3 > 1.

In the Boyer-Moore algorithm [1], a window of size equal to the size of the pattern is moved
from left to right, with shifts depending of the text and pattern contents; inside the window,
scanning is performed from right to left; the Boyer-Moore algorithm gives a counterexample
to the preceding theorem, inside the class of pattern-matching algorithms: given the text t =
{---yPaz*(bazbzz)" - - -}, and a pattern p = {z*az?bz?a}, it is impossible to find a set of unavoid-
able positions for the Boyer-Moore algorithm.

2. Boyer-Moore algorithm

For the Boyer-Moore algorithm, a head is the rightmost position of the text in the window after
a shift; let H, be the number of heads in a text of length n. We show by a Laplace transform
method the convergence of H, to a variable with normal distribution.

Both expectation and variance of H,, are functions of the shift polynomial, defined as f,(z) =
3, 024 where d(a) is the shift of the first occurrence of letter @ from the right extremity of the
pattern and g, is the probability of occurrence of letter a. With this definition, the shift polynomial
of the pattern 10001 is £(z + 2*), with uniform distribution for letters 0 and 1.

When considering the complexity CI¥1 of the algorithm for a fixed pattern P and a text of length
n, we define X; as the number of comparisons done for an alignment at position 7, and Z; = 1 when

7 is a head, 0 otherwise. We have

After an algebraic manipulation, we take the expectation:

E lC,EH] _ % X": E[X,Z;) - % Xn: EIX;(1 = 7))

n
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From this decomposition, we show that £ [%C’T[LP]] — ¢p, and give an expression for cp. We show
also that the fourth moment is bounded.

With these results for moments, we apply a central limit theorem for dependant variables [5],
where the strong mixing condition is equivalent to independence of positions sufficiently distant.
This proves the convergence of CIX1 to a variable with normal distribution.

Unavoidable positions. Almost surely, for a random text, there exists one unavoidable position;
formally, we say that Zj is determined by t;4q ---1;_; if this string is sufficient to tell whether
Zr = 0 or 1. We denote the indicator of this event by

5(1) -1 ) :
k — 1{Z) determined by tjy1-tx_1}s

we have then:
LEMMA 2. E[1— 9] < pt=i=2 where p < 1, for k — j > 2m.

Proor. [Sketch] If f,(f) = 0, then p,,_; does not occur m — 1 times consecutively in #;41 -+ -tz_1.
Given a fixed set of m — 1 consecutive characters, the probability that not all of them are equal to

Pm_1is A, with A < 1. The probability of no string of m — 1 consecutive occurrences of p,,_; is at
most ALE=i=2m=DI: fake p = AVCm)

3. Number of occurrences of a word

We extended the classical result of Guibas and Odlyzko [6] to the Markovian case, giving all
moments. This is done by constructing language expressions that characterize both models, and
by analysis on the corresponding generating functions.
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[summary by Marianne Akian]

Abstract

Endowing real (or natural) numbers with max and + laws leads to an idempotent semi-
ring which has been reinvented in many domains: graph optimization, language theory,
statistical physics, quantum mechanics, discrete event systems, etc. The talk presents ap-
plications together with basic results of the so-called (max,+) algebra.

Introduction

We say that (S,®,®) is an idempotent semiring or dioid [19, 2] if & and @ are associative
laws on S with neutral elements 0 and 1 respectively, @ is commutative and idempotent, that is
a®a=a,® is distributive with respect to the @ law and 0 is absorbing with respect to the ®
law. By the idempotency property, a &b = 0 implies ¢« = 0. Then, the ¢ law is not symmetrizable
(and not simplifiable). However, idempotency leads to “simplifications” that partially compensate
the non simplifiability. An idempotent semiring is said commutative when ® is commutative and
it is a semifield if the ® law is invertible. Examples of commutative idempotent semifields are
Rmax = (RU{—00}, max,+) with 0 = —o0 and 1 = 0, Ryin = (RU {400}, min, +), (R*, max, x)
which are isomorphic. They are called respectively (max,+), (min,+) and (max, X) algebra and
are used in operations research [7], graph theory [19], discrete event systems [2, 14, 13], dynamic
programming, Hamilton-Jacobi-Bellman equations [28, 1, 8], exponential asymptotics [29, 23, 5, 4].
The subsemiring Ny, = (NU {400}, min, +) of Ry, called tropical semiring, is used in language
theory [21, 22, 33, 34, 25, 24]. Concerning theoretical results on (max, +) algebra, an historical
reference is [7]. More recent accounts can be found in [2, 28], collections of survey papers will be
presented in [20] and a general and complete bibliography can be found in [26].

1. Some applications

1.1. Shortest path problem. The traditional application of the (min, +) algebra concerns the
shortest path problem in a graph [19]. Let G be a graph with nodes denoted {1, ..., n} representing
towns and arcs representing roads. Let A;; denote the time to go from ¢ to j (or the length of arc
(7,7)) with A;; = 400 when there is no arc. If A = (A;;) is considered as a (min, 4+) matrix,

(Ak)ij = @ A, @ - @A, ;= min Ay, + -4+ A

. 21,0k —1
21,50k —1

represents the minimal time from ¢ to j (or the minimal distance between ¢ and j) in k steps. If
A* = @32 A", then (A*);; represents the minimal time from ¢ to j.

123



A similar problem arises in discrete deterministic optimal control. Let now A;; represent the
cost of ¢ to 7 transition, b; the final cost in state ¢ at time N and let »? denote the minimal cost
of a trajectory starting in ¢ at time n < N. The value function v" satisfies the backward dynamic
programming (or Hamilton-Jacobi-Bellman) equation

v = min A;; + v]’”l, v, = b

J
that is v" = A ® v"*! with v = b, which is the (min, +) analogue of the Kolmogorov or backward
Fokker-Planck equation, (final or transition) costs replacing probabilities [1, 8]. More generally,
dynamic programming equations with continuous time and state are solved using (min, +) algebra

in [28, 23].

1.2. Synchronization problems. Let us consider a manufacturing system where 2 types of
parts are assembled, taking a fixed duration 7. Let u;(?) denote the number of parts of type i = 1,2
arrived at time ¢ and y(¢) the number of parts assembled. Then

y(t) = min(u(t — 7),us(t = 7)) = ur(t — 7) B ua(t — 7)

in the (min, +) algebra. If now u;(n) (resp. y(n)) denotes the date of the n-th arriving of part ¢
(resp. of the n-th assemblage of parts), we obtain

y(n) = 7+ max(u(n) + us(n)) = 7 & (us(n) G us(n))

in (max, +) algebra. More generally, any problem that can be modelled by a timed event graph
(a subclass of timed Petri nets modelled synchronization features) can also be represented by a
(min, +)-linear dynamical system (for counter variables)

{x(t) =AQa(t—1)8 B®u(l),
y(t) = C @ x(1)

or by a (max,+)-linear dynamical system (for dater variables y(n), z(n) and w(n)). A linear
system theory in (min, +) and (max, +) algebras analogous to the classical linear control theory is
developed in [2].

1.3. Exponential asymptotics. Let us consider a one-dimensional system of n atoms with
energy H,(q1,.-.,q.) = V(g1) + > 5o K(qr_1,q), where g, is the position (state) of the n-th
atom with ¢; < -+ < ¢, and K(q,¢') = V(¢') + W(¢' — ¢) is the sum of the potential V in
position ¢ and the potential energy W linking nearest neighbours. The Gibbs distribution of
this system has density exp(—8H,(q1,...,44))/%n, where (3 is the inverse of the temperature and
Zn =Yg 0 p(=BH,(q1,...,q,)) is the partition function. Let T be the transfer matrix

qul = exp (_ﬁ](((L q/)) ’

@ be the row vector with entries ), = exp(—fV(¢)) and e the vector with entries 1. Then
Z, = QT" 'e and the probability for the first atom to be in position ¢ is P(q) = Q,(T" 'e),/Z,.
For good matrices T', P,(¢) tends to P(q) = Q,R, when n goes to infinity, where R is a right
eigenvector of the transfer matrix such that ¢) - R = 1. Similarly, the probability of the n-th atom
tends to L,, where L is a left eigenvector of the transfer matrix such that L -e = 1. Moreover, for
any transfer matrix, log Z, /n tends to log p, where p is the Perron root of 7. The free energy by
atom is then A =logp/p.
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If now the temperature is zero (3 = +00), either the previous results have to be obtained passing
to the limit in § using the property that the (min, +) algebra is the limit of the (R*, +, X ) semifield:

-1
s

or a similar reasoning has to be done directly in the (min, +) algebra. In this last case, the transfer
matrix method is replaced by the effective potential method [5, 4]. Let us consider the (min, +)-
matrix K in place of T. The effective potential of the extremal atom of a semi-infinite chain of
atoms extending to the right (resp. left) is equal to F(¢) = V(¢) + R, (resp. F(q) = L,), where
R and L are right and left (min, 4 )-eigenvectors of K such that min, V(¢) + R, = min, L, = 0.
The energy by atom for a minimum-energy configuration is then the (min, +)-eigenvalue A of K:
K@R=AR=A4+R, LK =A®L =X+ L. Exponential asymptotics also occur in large
deviations and asymptotics of Schrédinger equations (WKB method) [29, 23].

-1
lim —log(e™#* + ¢ 7"} = min(a,b),

o4 log(e™* - ™) = a + b;

1.4. Language theory. A finite automaton with cost or distance is an automaton with mul-
tiplicity over the tropical semiring N,;,. For any rational language L over the finite alphabet X, a
finite automaton with cost A can be constructed, recognizing L* = U L™ (where product means
concatenation) and counting for each word w € L* the least n such that w € L”. This has been
used by Simon and Hashiguchi [21, 22, 33] to solve positively a long standing problem of J. A. Br-
zozowski, the decidability for a rational language of the finite power property (FPP) (a language
L has the FPP iff there exists N such that L* = UY_ L™). Indeed, the automaton A has only one
initial state and one terminal state and since the language I has the FPP iff A is limited (that
is costs of recognized words are bounded), the FPP is equivalent to the finite section property
of a finitely generated subsemigroup of matrices of NI *". Following this first application, other
decidability properties for finitely generated subsemigroups of matrices over the tropical semiring
and/or automata with cost have been studied [21, 22, 33, 34, 25, 24].

Similarly to cost automata, (max, +) automata can be also constructed. They allow to represent
heaps of pieces and parallel (multitask, multiresource) discrete event systems [17, 16, 27].

2. (max, +) linear algebra

2.1. Solutions of linear equations and subsemimodules. Since the @ law is not sym-
metrizable in a dioid, general linear equations are of the form A@ e b = C ® =z @ d. Important
particular cases are A® ¢ = b and 2 = A® « § b. The following result is classical [7] and shows
that the first particular equation is not easy to solve.

THEOREM 1. A € R2X" is invertible iff A = DS, where D and S are diagonal and permutation
matrices.

THEOREM 2 ([30, 36]). Any finitely generated subsemimodule of R%  has a base (minimal gen-
erating family) which is unique up to invertible linear operations.

THEOREM 3 ([3, 14]). For any matrices A, B € RI'X" the set of solutions of AR x = B®@ x is
a finitely generated semimodule.

Let us solve x = A®x @ b. To any dioid is associated a partial order: a < b < a®b=05. In R,
it is the classical order <, in Ry, it is the opposite order >. The dioid (S, @, ®) is complete if any
set (even empty) has a least upper bound and if @ is distributive with respect to infinite sums. R,ax
is not complete but it may be completed in the complete dioid R, = (RU {+00, —oc}, max, +)
with the convention +00 + —00 = —oo (0 is absorbing).
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THEOREM 4. In a complele dioid S, the least solulion of t = a ® x B b is a* @ b, where a* =
Dpena” = sup,cya”. Similarly, the least solulion of v = A@x @b in 8" is ¢ = A*b. Il can be
computed by Gauss algorithm.

In order to solve the general equation A @z b = C ® z @ d, a symmetrization of R, seems
necessary. Although no idempotent field or ring containing R ., exists, a symmetrized idempotent
semiring S,,.x has been constructed. It contains positive numbers = € R,,,,, negative numbers Sz,
but also doted numbers @ = z Sz which are not invertible. Symmetrizing linear equations in R ,,,,
we obtain balance equations in S,,,., where z balances y iff z © y is doted. In S,.,, determinants
can be calculated and linear balance equations can be solved using Cramer formula or Gauss-Seidel
and Jacobi algorithms [2, 14, 31].

2.2. Subsolutions of linear equations: residuation.

DErFINITION 1. Let f: (E,<) — (F,<) be a nondecreasing application between lattices. f is
residuable iff {z € E, f(z) < b} has a maximal element for any b € F.

THEOREM 5. If f : S — S’ is an application between complete dioids such that f(0) = 0 and
J(sup,cx @) = sup,cx f(x) for any subsel X of S, then [ is residuable.

As a corollary, any multiplication operation (by a scalar or a matrix) is residuable. Let us
denote by a\b = max{z,a®2z < b} and b/a = max{z,z ®@a < b} the residuations of multiplications
by the scalar a in any complete dioid. The residuation of the multiplication by a matrix in R, ..,
A\b = max{z € R, A®z < b} gives the vector with entries (A\b); = inf; A;;\b; = min; —A;;+b;,
that is the R, product of the matrix —A? by b. Applications to system theory can be found in [2].
While linear operators represent the earliest behaviour of a system, the latest behaviour can be

represented by a dynamical equation involving residuation.

2.3. Spectral theory. The most useful result of (max, +) linear algebra is perhaps the following
analogue of Perron-Frobenius theorem.

THEOREM 6 ([7, 35, 32, 18, 6, 10]). Any irreducible matriz A € R2X? has a unique eigenvalue
p(A) and

! Aiis + -+ Aii
p(A) = dp_ tr(AF)¥ = max max —°2 Tt Ay

k=1,...mi1,... 0k k
If A is reducible, the previous formula gives the maximal eigenvalue.
The (min, 4) eigenvalue is then the minimal mean cost (ergodic cost) of a control problem or the

asymptotic production rate of a manufacturing system, etc. Asin the statistical physics application
of section 1.3, it can be obtained as the limit of the Perron root of a matrix.

THEOREM 7 ([12, 11]). Let A be any n x n matriz with entries in R*. If ppp(A) is the Perron-
Frobenius root of A and p(max x)(A) = exp(p((log A;;))) ils (max, x )-eigenvalue, we have
p(max,x)(A) < pPF(A) < np(max,x)(A)-

CorOLLARY 1. Let A°" = (Aj};) and e’* = (exp(BA;;) denote the r-th power of A and the
exponential of BA for the Hadamard product. For any matrix with positive entries

1

pimax o (A4) = Tim. (ppp(A7))7
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and for any matriz with entries in R .,

1
p(A)= lim —

oﬁA)
B——+oo ﬁ )

log ppr(e

THEOREM 8 ([6, 9]). For any irreducible matrizx A € R2%2 there exists ¢ and N > 1 such that
Arte = p(A)°A™ forn > N.

In the context of timed event graphs, this means that the system reaches after a finite transient
behaviour (of length N') a periodic regime of period ¢ in which the production rate is equal to the
eigenvalue.

These periodicity results can also be dealt with using rational generating series over the (max, +)
semiring [2, 15].
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Abstract
In 1994 Leonard Adleman published a paper giving an algorithm to solve the Hamiltonian
path problem using DNA manipulations and presented the results of an actual experiment

applying this algorithm to a particular graph. The basic operations and the algorithm are
described, and the potential of these methods as a means of computation is discussed briefly.

1. Introduction

Using basic techniques of DNA manipulation and standard lab equipment, Adleman finds a
Hamiltonian path in a directed graph consisting of 7 nodes and 14 edges (figure 1). Finding such
a path, that starts and ends at specified vertices while passing through every other vertex exactly
once, is a problem which has no known polynomial time solution. In fact, this problem is NP-
complete, and so it is considered unlikely that such a solution will exist. This is the first time
biological methods have been used to solve hard computer problems, and it is still unknown to
what extent the available DNA operations may be used to solve other problems.

2. Basic Operations

DNA manipulations form the basic operations operations of a DNA computer. It should be
emphasized that the biological techniques presented here are routine laboratory procedures, and
require no special equipment or expertise. Strands of DNA are made up of sequences of bases rep-
resented by the letters {A,C,G,T}. Each sequence has a (Watson-Crick) complementary sequence,
that is, the sequence that binds with the original to form a double strand. In the complementary
sequence, each base in the original is replaced by its complement (A < T', C' < G).

@

] \ 6

2 5

Ficure 1. The directed graph used in the experiment.

129



Osg

Oo

O¢

Ficure 2. PCR - Polymerase Chain Reaction to replicate a specified segment of DNA

The following operations are available. Each one will be discussed briefly, without entering into
too many technical details.

creation: A strand of DNA made up of a given sequence of bases can be created. These days,
creating a specific short sequence is a matter of filling out the mail-order coupon, writing the check,
and sending them off to the laboratory in the catalogue. Here “short” often means of length 20.
joining: Complementary strands will spontaneously join together to form a double strand. Strands
can also be concatenated. If two strands are brought into juxtaposition because they have both
joined to part of a third, complementary strand, then under the action of a ligase enzyme a bond
forms between the first two strands so that they become a single longer strand. An example is
found in figure 3. This bond persists even if the strand then separates from its complement.
copying: Many copies of a given strand of DNA can be created by polymerase chain reaction
(PCR). The strand to be amplified is defined by two primers, which are segments of DNA. The
primers are the start and the complement of the end of the sequence of interest. For example, say
Oy and Og are segments of DNA, and the problem is to create copies of every sequence of DNA
in the test tube that contains Qg followed by an unknown sequence of bases followed by Og. Then
the primers for this PCR are Oy and Og, where the bar indicates the Watson-Crick complement.
The amplification works roughly in the following way. Many copies of Oy and Og are added into
the test tube. The mixture is heated, which causes the strands of DNA to separate. As it cools,
the primers attach themselves where they can, that is, one to the beginning of the edges beginning
with 0, the other to the end of the edges ending in 6. The primer then forms the start of a new
chain that grows out from it, forwards from O, and backwards from Og, as shown in figure 2. This
process is repeated, and the number of strands consisting of the segments of interest doubles each
time. A few hours will suffice to have ample quantities of these strands, though in practise, the
duration used is often “one night”.

sorting: DNA strands can be sorted by length. This is achieved by gel electrophoresis, a process
which involves separating the strands by their electrophoretic mobility, which is a function of the
number of base pairs.

extraction: Strands containing a specific segment of DNA can be extracted from the test tube.
Extraction is performed by separating the strands, and then using magnetic beads with a com-
plement of the segment to be extracted attached to each bead. Only the DNA containing that
segment will attach itself to the bead and be retained.

detection: The existence of DNA in a test tube is determined using PCR.
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0, TATCGGATCGGTATATCCGA

03 GCTATTCGAGCTTAAAGCTA
0, GGCTAGGTACCAGCATGCTT
Os_3 ¥ Os_4
GTATATCCGAGCTATTCGAGCTTAAAGCTAGGCTAGGTAC
CGATAAGCTCGAATTTCGAT
Os

Ficure 3. Encoding a graph in DNA. A path along the edges 2 — 3 and 3 — 4 is
formed when each edge becomes attached to half of the complementary vertex O3
and a ligation reaction occurs.

3. The Algorithm

Adleman uses a naive brute-force algorithm. Given a directed graph on n vertices, where the
path is to start at vertex v, and finish at vertex v,,;, the following steps will result in a solution
if one exists.

(1) Input the graph (creation).

(2) Generate many many random paths through the graph (joining and copying).

(3) Keep only the paths that start at v;, and end at v,,, (copying).

(4) Keep only those paths that enter exactly n vertices (sorting).

(5) Keep only those paths that enter all of the vertices at least once (extraction).

(6) If no paths remain, say “no”, otherwise say “yes”, and the remaining paths are solutions
(detection, copying and sorting).

An ordinary computer would not normally attempt such an algorithm, due to the enormous
numbers of cases to consider. Using DNA, these cases can be treated in parallel.

The algorithm is performed on the graph in figure 1, and the goal is to construct a path from 0
to 6 while passing through all the vertices exactly once. For convenience, the labels were chosen so
that the solutionis 0 — 1 —2 — 3 — 4 — 5 — 6, but of course this does not affect the diffliculty of
the problem. Obviously, in the case of this graph, the answer can be found by inspection. However,
this experiment demonstrates the feasibility of the technique.

Each vertex of the graph is represented by a random 20 base sequence O;. Using 20 bases means
the chances of that sequence appearing elsewhere in the DNA is miniscule. The Watson-Crick
complementary sequence is denoted O;. Each edge i — j in the graph is created by creating the
20-letter molecule that starts with the last ten bases of O; and ends with the first 10 bases of O;.
This sequence is denoted O;_;.

Mixing together all the the edges O,_; with O; for ¢ = 1,...,5 allows concatenations to occur
that forms random paths through the graphs, as required by step 2. For instance, O,_ 3 and Oz_.4
are edges in the graph. These edges can be concatenated together by using Os as a splint. This
new molecule represents a path from 2 — 3 — 4. See figure 3. Given the number of reactions and
the number of molecules formed, it is statistically extremely likely that the Hamiltonian path will
be created if it exists.

Step 3 is to keep only those random paths that start at 0 and end at 6. By “keep”, it is meant
that these strands are copied so many times that the presence of other strands becomes statistically
insignificant in comparison.

Step 4 is achieved by sorting the strands by length, and keeping those that are 140-base pairs
long, and thus enter exactly 7 vertices.
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In order to keep only the strands that enter each vertex at least once (step 5), first the strands
containing O, are extracted. Next, those strands containing O, are extracted, then O3z etc.

Then, for step 6, the presence or absence of DNA in the test tube is detected. If absent, there
is no Hamiltonian path for this graph. If present, amplification by PCR is performed, first using
primers Oqy and O; to create copies of the path between 0 and 1, then using Oy and O, to create
copies of the path between 0 and 2, etc. Then the lengths are determined. In this case, the
length of the molecule starting at Oy and ending at O, is 40, indicating that the vertex 1 comes
directly after vertex 0 in the solution. Multiple solutions would show up as multiple lengths for
each segment, and by determining the various second vertices from the lengths, these solutions
could be separated. A picture in the article [1] shows the result of this step. The solution found is
indeed ) =1 —-2—3—-4—5— 6.

4. Extensions

Richard Lipton has proposed an algorithm consisting of DNA experiments to solve the satisfac-
tion problem (SAT) [2]. Given a boolean formula involving n variables the problem is to assign
values to the variables such that the expression evaluates to true. A graph representation of the
problem is used, where each path through the graph gives an assignment to the variables. The
paths are generated using the same techniques as before. Briefly, the first step is to extract the
DNA that makes the first clause true, then extract the DNA that makes the second clause true,
etc. The paths through the graph can also be interpreted as n-bit binary numbers, where z; is true
means the ¢th bit is a 1, false means 0. Thus any binary number can be stored as a DNA molecule.

5. Advantages of DNA Methods

Both these problems are NP-complete, and so there is no polynomial time algorithm to solve
them on traditional computers, and little hope of finding one. The incredible parallelism of the
DNA-techniques means that exhaustive searches through all the possibilities can be done relatively
rapidly, and may be able to provide a solution to problems that traditional computers cannot solve.
For instance, it is estimated that DNA methods may be able to solve the Hamiltonian path problem
on graphs of up to 70 edges.

There are also less obvious advantages. DNA techniques are energy eflicient. Approximately
2 x 10'? ligation operations per 1 joule of energy can be performed, versus 10° operations per joule
for existing supercomputers. It is estimated that the energy cost of the other operations is similarly
tiny in comparison. Finally, as a storage medium, nothing else comes close. Information can be
stored in approximately 1 bit per cubic nanometer. In contrast, videotapes store information at 1
bit per 10'? cubic nanometers.

More investigation is needed to determine which kinds of problems can be handled by these
methods. The probability and effect of errors during the operations needs to be studied, as well as
the possibility of creating new basic operations. It is possible but not yet known if a DNA molecule
could encode a Turing machine, where the actions of certain enzymes would perform the operations
of the machine.
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Abstract

The Mellin transform has been used in signal processing as a tool to investigate scale
invariance. We review some of the recent studies by Wornell [3] and Cohen [2].

1. Introduction and examples

Assume we need to classify ships from radar signals [4]. The echo can be more or less compressed,
depending on the angle between the axis of the ship and that of the radar signal. Nevertheless,
one would like to be able to compare several echoes with different extension or compression rate,
in order to decide whether or not they belong to the same kind of ship. A first approach would
be to interpolate the signals, so that they would live on supports of equal size. A second one is
to use some kind of transform that would ignore scale variations. The Mellin transform fulfils
such a requirement; more precisely, the moduli of the Mellin transform of a signal f(z) and of any
dilation of f(z) are the same. If time invariance is furthermore required, one may perform the
Fourier-Mellin transform: Given an original real signal f(z), the analytical signal is defined by
Jo(z) = f(z) + ifa(z), where fy(z) is the Hilbert transform of f(z). Let F(f,)(w) = F(w) be the

Fourier transform of f,. The quantity
+oo 2

1Geya(iz)|” = ‘/ W ()| dw
0

is both shift and scale invariant on the z axis.
Section 2 gives a more detailed description of scale invariant linear systems. Section 3 presents
a general framework for scale analysis.

2. Linear systems

If (t) is the input signal, a linear system outputs y(¢) as follows:

W(1) = S(a(1)) = /+°° o(FK (1, 7) dr

where K(t,7) denotes the kernel of the system.
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2.1. Shift invariant systems. As is well known, shift invariant systems are such that:
St—1)=ylt—17)<= K(t,7)=V(t—-1)

where V' is the impulse response of the system, i.e., V() = 5(6(¢)). It follows that y is obtained
by convolving 2 and V:

y(1) = /_:o 2PV = 7)dr = (2 % V(D).

The eigenfunctions of these systems are the exponential functions: ¢ — €', s € C. The Laplace

transform
L(z)(s) = X(s) = /+°° (t)e=" dt

— 00

enables to change convolution into multiplication: L[(z xy)](s) = X (s)Y (s).

2.2. Scale invariant systems. We are now interested in having S(z(¢/7)) = y(¢/7). One can
easily check that this is equivalent to K(¢,7) = aK(at,ar). The system S is characterized by two
lagged impulse responses:

Ex(0) = S(8(t—1)),  €(1) = S(6(t+1)

v = [ emg T - [ atnewn

- .

For causal signals and systems with causal response,

y(t) = /0+Oo x(r)£+(t/r)(i_—7— = (z o &)(1) (scale convolution).

The kernel K is such that: K(t,7) = &(t/7)/7. The eigenfunctions of the operator thus defined are
the functions ¢ — ¢°. The associated eigenvalue is the Mellin transform:

M(z)(s) = M(s) = /0+°° £(r)r— dr.

We can then write: M[(z ¢ y)](s) = X(s)Y(s). The Mellin transform plays for scale convolution
the role that the Laplace transform plays for ordinary convolution.

Application to scale differential equations. One defines the derivative with respect to the scale by:

. x(et) — z(t)
Vi(z)(t) =lim ——2———.
(2)(t) = lim ———
If z is differentiable with respect to ¢, V(z)(¢) = ta’(¢). One can check that the derivative with
respect to scale corresponds to a multiplication by s in the Mellin domain.

2.3. Generalized scale invariance. More generally, one considers systems such that S(z(¢/7)) =
72y(t/7). This holds if and only if K({,7) = a~*~Y K (at,ar). For causal signals, the lagged impulse
response £, is such that:

v = [ e s
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2.4. Jointly time and scale invariant systems. We now wish to have both
Sz(t—1))=y(t—1) and S(z(t/T) = mry(t/T).
One can show that the kernel should be a generalized homogeneous function of degree A — 1:
v(t) = a~ P Yy(at)
Hence,
(1) = Chlt]u(t) + Cot| " u(—1), if =\ ¢ N,
TGt () 4 Colt) Tt u(—1) + C386U (1), otherwise,

where the C; are constants and u(t) is the Heaviside function.

3. The scale representation

The starting point of this approach [2] is the following simple remark:

— The content of the signal z at time ¢ is nothing but z();
— the content of the signal = at frequency f is given by its Fourier transform X(f).

Our purpose is then to define the concept of scale and the content of the signal z at scale ¢. The
idea consists in associating a physical quantity ¢ with an Hermitian operator A. Let us begin with
common physical quantities: time and frequency. The operators 1" and F’ respectively associated
with ¢ and f are:

T :z(t) — ta(t), F:a(t)— —i(é—f.
In the frequency domain, we obtain:
dX
TiX(f)'—”ﬁa FX(f) = FX().

It should be noticed that 7" and F do not commute:
[T,F]=TF — FT = 1.

This is the reason why we get an incertitude principle on { and f. We now define the scale operator
as follows:

1
C= §(TF + FT).
The following relations justify this definition:

e Ca(t) = e"/zx(e"t), eCX(f)= e_"/zx(e_"f).
Whereas
e a(t) =zt + 1), e TX(f)=X(f-0),
[T,C] = TC — CT = T, [T, F] = FC — CF = —iF.

Therefore, there exists an incertitude relation between scale and time, or between scale and fre-
quency:

1
AcAt > 3 |(t)]
where the average time is defined by
(1) = /t|x(t)|2 dt.
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The equality is reached for the signal:

z(t) = kt® exp [—ﬁt +i(c)In (%)] .

Dually, we get AfAc > 1[(f)].
Let (¢, t) be the eigenfunctions of C: Cy(c,t) = cy(e,t). We find, for ¢ > 0:

1 .
(e, 1) = —=t"""%.

V21

We can now produce the direct and inverse transforms, for ¢ > 0:

D(e) = /a:(t)’y*(c,t) di = \/%/om ()4 d,
I i ie—1
2(1) = /D(c)fy(c,t) de = E/o D(e)i* de.

One can notice that we have recovered a Mellin transform, in the special case when ®(s) = 3. That
is why the Mellin transform was commonly renamed Scale transform in signal processing.
The average scale of a signal is given by: (¢) = [¢|D(¢)|*de. One obtains

= [ wwkora= [ oxmr,

One can deduce from these relations a notion of instantaneous scale, at time &: ¢, = t¢'(t), and

at frequency f: ¢; = —f¢'(f).

A more unified presentation can be found in [1, 2].
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Abstract
It is well known that the general problem of checking the satisfiability of a set of clauses is
NP-complete. Experimentations have shown that there is a threshold on the ratio “number
of clauses/number of variables” that separates the set of clauses for which a solution can be
(easily) found from those for which it is impossible to find a solution. The subject of this
talk is the r-SAT problem, in which the clauses have a constant number r of literals. This
summary is based on [2].

1. The problem

A literal is either a boolean variable z; or its negation z;. A clause is a disjunction of literals over
a set of boolean variables; for example x; V&,V T3V 24V T3 is a clause on the literals z1,...,z5. A
formula is a finite set of clauses, or equivalently a conjunction of clauses. The satisfiability problem
is to determine whether there exists a truth assignment (each literal is assigned a value {rue or
false) satisfying a given formula. This famous problem is NP-complete as soon as the number n of
literals is at least equal to 3; it was the first problem to be proved so [3, 4].

If we cannot find an algorithm that is guaranteed to work in polynomial time (worst-case com-
plexity), what about the average complexity? This natural question leads to the notion of random
clauses. The first point is to define a model of random clauses, i.e. a probability law on the set of
all possible clauses on n literals. Two approaches have been attempted (in both, clauses are chosen
independently of each other):

(1) Constant density: The literal z; is present in a clause with probability p;, its negation z; is
present with probability ¢;, and the probability that neither z; nor z; are present is equal
tol—pi — ¢

(2) Constant length: The problem is restricted to all clauses of given length r; there are C' =
2" (:) such clauses, and the probability distribution on this set is uniform: Fach clause is
chosen with a probability 1/C.

We choose m clauses amongst C', with replacement. The first model leads to clauses of variable
length; an easy analysis shows that, when the number m of clauses and the number n of variables
are polynomially related, almost every formula is satisfiable.

The model under active study is the second one, the so-called r-SAT problem. Simulations have
shown the importance of the ratio ¢, = Number of clauses/Number of variables: If ¢, is smaller
than some threshold value, the probability of finding an assignment of the variables that satisfies
the formula is close to 1 for n,m — +4o0; if ¢, is larger than this threshold, the probability of
finding an assignment that satisfies the set of clauses is close to 0 for n,m — +o00. This threshold
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is an increasing function of r; experiments lead to believe that the value for r = 3 is p = 4.25...
Moreover, the backtracking algorithms used to solve r-SAT behave differently according to the ratio
¢.. Experimentally, the difficulty of either finding an assignment satisfying a formula or proving
that a formula is unsatisfiable is exponentially greater when ¢, is close to the threshold than when
it is either lower or greater.

The theoretical proof of the existence of a threshold value for the ratio ¢, = n/m lags behind.
For 3-SAT, the best lower bound presently is 3.003, and the best upper bound is 4.64... (a result
established precisely by Dubois and Boufkhad, and presented in this talk). There remains a gap
between 3.003 and 4.64..., around the observed threshold 4.25.

2. The result

The main result is as follows:

A random 7r-SAT formula (r > 3) is unsatisfiable with probability asymptotically
close to 1, when n — 400, as soon as ¢, := m/n is at least equal to some specified
value ¢, pn .

This lower bound ¢, ,,;, is defined in terms of the solution z, of a transcendental equation, and
can be computed numerically with the help of a Computer Algebra System. For r = 3, we get
xg = 1.924714266..., which gives the bound ¢, < 4.642476157...

For r > 4, the bound obtained by Dubois and Boufkhad improves on the general upper bound
¢, < —log2/log(l —27"). For example, with r = 4, some minutes of experiment with Maple give
g = 2.69945696.... and ¢4 < 10.2168796..., which is a slight improvement on the known bound ¢, <
—log2/log(1—27") = 10.74005367... For r = 5, we obtained z, = 3.429641... and ¢, < 21.32022...,
which is still slightly better than the known bound ¢, < —log2/log(1 — 27") = 21.83230235... For
r = 10, the known bound gives ¢, < 709.436..., and Dubois’s method gives zq = 6.92993239... and
¢, < 708.935... These computations also show that the gain becomes marginal for large r. However,
experiments seem to indicate that the difference between the bound —log2/log(1 — 27") and the
threshold is slowly varying, and that the accuracy of the bound of Dubois and Boufkhad actually
increases.

3. The proof

The proof relies on the existence of a special type of solutions, called negatively prime solutions
(NPS), which are defined below, and to which is applied the method of the first moment. The idea
behind this method is simple. To show that some problem has no solution, define X as the number
of solutions of a random instance and show that the expectation E[X] can be made as close to 0
as desired. This argument, applied to the r-SAT problem, leads to the following reasoning:

Show that every satisfiable formula has at least one NPS (easy). The average number of
NPS of a satisfiable formula is then at least 1.

Compute the expectation F[NPS] of the number of NPS on the set of random formulee with
n variables and m clauses.

If E[NPS] = 0 then a random formula has no negatively prime solution, hence no solution.
Then we should compute E[NPS] and study its asymptotic behaviour as n, m — +o0o0 with
n/m=ec,.

3.1. Negatively prime solutions. A solution of a formula F' is defined as a set of n literals,
each variable appearing either as x; or as z;, such that the assignment of {rue to these literals
satisfies F. A negatively prime solution is a solution such that, if we substitute z; for a negative
literal z;, the resulting set is no longer a solution of F.
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It is easy to see that each solution of F either is a NPS, or leads to a NPS (by inverting negative
literals as long as possible). Thus the number of solutions of F' is greater than or equal to the
number of negatively prime solutions; the same holds for expectations, and the method of the first
moment, when applied to the number of NPS, will give a better bound than when applied to the
number of solutions, as for example in [1, 5].

It is possible to define a positively prime solution (PPS) in a similar way (an assignment minimal
for the substitution of z; to z;); as F[NPS] = E[PPS], the bound obtained is exactly the same.

3.2. The expectation E[NPS]. Dubois and Boufkhad show that

, j
E[NPS] = 3 i (?) (",l)i! S5 (%) (2 —1—r)" i,
0<i<j<n J

In this formula, 5;; is a Stirling number of second kind: 5;; is the number of ways to partition a
set of j elements into ¢ nonempty subsets.

In passing, they also remark that for any set of literals {l;,i = 1,...,n} (l; = z; or l; = &;),
there exists at least one formula thal has this set as a NPS.

The next step is to get an upper bound on F[NPS], using a bound on Stirling numbers due to
Temme [6]:

27 —r—1
21"
with A defined as the maximum of some function. The first term of the r.h.s. is o(1) when
n — 4oo; the behaviour of the second term (and of the upper bound) is given by A”. Then a
concavity argument is used to prove that A < 1 for ¢, greater than a value ¢, ,,;,, that can be
precisely defined. This shows that, for m/n > ¢, pin, E[NPS] — 0, i.e. a random formula cannot

be satisfied.

This approach does not give any information for m/n < ¢, ,;,; however a closer analysis (done
by the authors, but not presented in [2]) shows that E[NPS] > Q(n)A”, with a polynomial factor
Q(n), and the same exponential basis A; hence E[NPS] is of exponential order A™.

E[NPS] < ( ) T + e, V2?2 AN (1 + o(1)),
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