Geometric Ergodicity in Hidden Markov Models

François Le Gland 1 Laurent Mevel 1, 2
1 SIGMA2 - Signal, models, algorithms
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : We consider an hidden Markov model with multidimensional observations, and with misspecification, i.e. the assumed coefficients (transition probability matrix, and observation conditional densities) are possibly different from the true coefficients. Under mild assumptions on the coefficients of both the true and the assumed models, we prove that : (i)~the prediction filter, and its gradient w.r.t. some parameter in the model, forget almost surely their initial condition exponentially fast, and (ii) the extended Markov chain, whose components are : the unobserved Markov chain, the observation sequence, the prediction filter, and its gradient, is geometrically ergodic and has a unique invariant probability distribution.
Type de document :
[Research Report] RR-2991, INRIA. 1996
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:34:20
Dernière modification le : mardi 19 juin 2018 - 11:12:06
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:55:38



  • HAL Id : inria-00073706, version 1


François Le Gland, Laurent Mevel. Geometric Ergodicity in Hidden Markov Models. [Research Report] RR-2991, INRIA. 1996. 〈inria-00073706〉



Consultations de la notice


Téléchargements de fichiers