Sensitivity Analysis of Optimization Problems under Second Order Regular Constraints

Abstract : We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We also show how the theory applies to semi-definite optimization and, more generally, to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds. As a final application we provide a result on differentiability of metric projections in finite dimensional spaces.
Type de document :
Rapport
[Research Report] RR-2989, INRIA. 1996
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073709
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:34:35
Dernière modification le : vendredi 16 septembre 2016 - 15:10:08
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:23:14

Fichiers

Identifiants

  • HAL Id : inria-00073709, version 1

Collections

Citation

J. Frederic Bonnans, Roberto Cominetti, Alexander Shapiro. Sensitivity Analysis of Optimization Problems under Second Order Regular Constraints. [Research Report] RR-2989, INRIA. 1996. 〈inria-00073709〉

Partager

Métriques

Consultations de la notice

161

Téléchargements de fichiers

1164