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Abstract: We present a perturbation theory for finite dimensional optimization problems
subject to abstract constraints satisfying a second order regularity condition. We derive
Lipschitz and Holder expansions of approximate optimal solutions, under a directional con-
straint qualification hypothesis and various second order sufficient conditions that take into
account the curvature of the set defining the constraints of the problem. We also show
how the theory applies to semi-definite optimization and, more generally, to semi-infinite
programs in which the contact set is a smooth manifold and the quadratic growth condition
in the constraint space holds. As a final application we provide a result on differentiability
of metric projections in finite dimensional spaces.
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Analyse de sensibilité de problemes d’optimisation avec
contraintes régulieres au deuxieme ordre

Résumé : Nous présentons une théorie de la perturbation pour des problémes d’optimi-
sation en dimension finie satisfaisant une condition de régularité au deuziéme ordre. Nous
obtenons des développements de type Lipschitz et Holder des solutions optimales approchées,
sous I’hypothése de qualification directionnelle ainsi que diverses conditions suffisantes du
deuxiéme ordre qui prennent en compte la courbure de ’ensemble définissant les contraintes
du probleme. Nous exposons 'application de la théorie & 'optimisation semi définie et,
plus généralement, a I’optimisation semi infinie quand ’ensemble de contact est une variété
lisse et la condition de croissance quadratique dans ’espace des contraintes est vérifiée.
L’application finale est un résultat sur la différentiabilité des projections orthogonales dans
un espace de dimension finie.

Mots-clé : Analyse de sensibilité, optimisation paramétrique, coflit optimal, qualifica-
tion directionnelle, conditions d’optimalité du deuxieme ordre, optimisation semi définie,
optimisation semi infinie, projections orthogonales, différentiabilité directionnelle.
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1 Introduction

In this paper we present a theory that allows to compute the asymptotic expansions of the
optimal value function v(u), as well as the optimal or “nearly optimal” solutions z(u) of
parametric optimization problems of the form

(P,) Nél)r{l f(z,u) subject to G(z,u) € K.

While the theory is fairly complete in the framework of mathematical programming where
the set K is polyhedral, the question is far from being settled in general, particularly when
dealing with infinite dimensional problems.

The differentiability properties of v(u) and z(u) strongly depend on the second order be-
havior of the unperturbed optimization problem, namely, quadratic growth and second order
optimality conditions. Therefore, an essential difficulty in the general setting comes from the
curvature (in a properly defined sense) that may appear with non-polyhedral constraint sets
K. A number of generalized notions of polyhedricity have permitted to develop a perturba-
tion theory for some relevant classes of infinite dimensional optimization problems [3, 13, 18].
Nevertheless, the curvature terms seem unavoidable for such problems as semi-infinite pro-
gramming (i.e. minimization problems with an infinite number of inequality constraints) or
semi-definite optimization. The latter is the particular case of (P,) where Y = S? is the
space of p x p symmetric matrices, and K = S% is the cone of positive semi-definite matrices.
When f and G are affine functions, the semi-definite optimization problem is known as the
linear matrix inequalities (LMI) problem

n
LMI Mi tr: A A >
( ) gcei%ln{c:c 0+;mz i =0},

where A > 0 is used to denote A € S%. This is an important particular case which has been
recognized in the past few years as a very convenient framework for optimization problems
arising in various fields [7, 8]. However, relatively few papers have considered sensitivity
analysis of such problems. The best results obtained so far, which are due to [26], provide
explicit formulas for the expansion of the value function, solution and multiplier, under
rather restrictive hypothesis which permit the use of the implicit function theorem.

An alternative approach for treating these difficult problems by taking into account the
curvature of K, has emerged recently [3, 4, 9, 14, 15]. The novelty in this approach is the use
of second order tangent sets and a second order property of the set K, called (inner) second
order regularity, introduced in [3]. In [4] we discussed the weaker condition of outer second
order regularity, under which there is no gap between second order necessary and sufficient
optimality conditions. In the present paper we explore the implications and limitations of
inner regularity in connection with sensitivity analysis of optimal solutions of perturbed
optimization problems.

RR n "~ 2989



4 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

We begin by studying the sensitivity results in the abstract setting (P,). We then show
how they apply in the framework of semi-infinite programming, and particularly for semi-
definite optimization problems. Before proceeding with the abstract results, let us illustrate
some of them through an elementary example where the computations can be carried out
explicitly.

EXAMPLE. Consider the family of convex semi-definite problems

M; 1.2 gt Trow) 1.1
me]lélzw1+az'2+2$2 S.t (u . =0, (1.1)

where « is a given nonnegative constant, and u € IR is a real parameter. When u = 0, the
above problem has a unigque optimal solution T = (0,0), which satisfies Slater’s condition.
Moreover, there exists a unique Lagrange multiplier

. -1 0
=0 )

and the second order growth condition (hence the strong second order sufficient condition)
holds. The linearized problem, which captures the first order behavior of the optimal value
function, is given by

1V£lin hi1 + ahy  s.t. ( ;Ll ;:,Q ) >0,
with unique optimal solution h = (\/a, 1/ /@) if a > 0, and no solution if o = 0.

When o > 0 Theorem 4.1 (see section /) applies: since the linearized problem has a
unique optimal solution, the same holds for the auxiliary second order approzimating problem
and we get z(u) = (v/a, 1/v/a)u + o(u) for any o(u?)-optimal trajectory x(u), u > 0.

When a = 0, Theorem 5.1 applies, leading to an expansion of the form z(u) = o(\/u).
We will discuss this case in section 7.

Our perturbation analysis is based on: (i) a concept of second order regularity, (ii)
second order sufficient optimality conditions, and (iii) the directional constraint qualification
introduced in [3]. We distinguish between three basic cases, in the spirit of [3, 5]. The first
and second cases, illustrated in the example above, are when the strong and weak (second
order) sufficient optimality conditions hold, leading respectively to Lipschitz and Holder
stability of optimal trajectories. The third case is when the set of Lagrange multipliers is
empty, and the optimal solutions are once again Holder stable of degree 1/2. The derived
results are similar to those obtained for nonlinear programming problems, except for the
additional terms related to the curvature of the set K.

The paper follows the method of upper and lower estimates of the objective function
[3, 5, 12, 14, 22, 23]. The upper estimates are those obtained in [3]. The novelty lies in the
theory of lower estimates and the expansion of approximate solutions.

INRIA
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2 Preliminaries

In this section we review some known results on first order sensitivity analysis and second
order optimality conditions, that are needed in the sequel. We also fix the notations used
throughout the paper.

2.1 Basic notation

We consider the parametrized family of optimization problems (P,) with f : X x U — R
and G : X x U — Y mappings of class C2. The space of “decisions” X is assumed to be
finite dimensional, U is a topological vector space of “parameters”, and the “constraint” set
K is a nonempty closed convex subset of the Banach space Y with topological dual Y*. The
feasible set, optimal value, and set of optimal solutions of (P,) are denoted respectively

®(u) = {ze€X:G(z,u)€ K},
v(u) = inf{f(z,u):z € (u)},
S(u) = Argmin{f(z,u):z € ®(u)}.

Similarly, given an optimization problem (P), we denote by ®(P), v(P) and S(P), the
feasible set, the optimal value, and the set of optimal solutions of (P).

For v = 0 we view the corresponding optimization problem (P,) as unperturbed and
assume that it has an optimal solution zy € S(0). We shall consider perturbations along a
fixed direction d € U, that is to say, we investigate the local behavior of the optimal value
and optimal solutions of the problems (P;q) for small ¢ > 0. For € > 0, we say that a point
z € X is an e-optimal solution of (P,) if z € ®(u) and f(x,u) < v(u)+e. For a nonnegative
valued function e(¢) we shall also consider trajectories z(t) of £(t)-optimal solutions of (Pyq).

The support function of T C Y at y* € Y* is a(y*,T) := sup{(y*,v) : y € T}, while
dist(y,T) := inf{|ly — 2|| : 2 € T} is the distance function to 7'. The tangent and normal
cones to the set K at the point y € K are defined as

Tk(y) = {heY :dist(y +th,K)=o0(t)},
Nk (y) {y"eY": (y",h) <0, VheTk(y)}

Finally, for a function h : Y — IR, we denote by h'(y, d) its directional derivative

W (y, d) = lim Y1) = hy).

2.1
t10 t ( )

If W' (y,d) exists for every d € Y we say that h is directionally differentiable at y, and we
define (when it exists) the parabolic second order directional derivative

h(y + td + 3t*w) — h(y) — th'(y,d
W' (y;d, w) = lim (y +td+ 5t°w) — h(y) (y,d)

. (2.2)
10 112
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6 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

2.2 First order analysis

Optimality conditions for (P,) are usually stated in terms of the associated Lagrangian and
generalized Lagrangian

L(z,A\u) = f(z,u)+ (A G(z,u)), AeY™,
LI(z,a,\u) = af(z,u)+ (AG(z,u)), (a,A)€eRXY™.

The Fritz John necessary conditions for a local minimum z of (P,) are
DL (z,a,\,u) =0, a >0, A\ € Ngk(G(z,u)). (2.3)

The set A9(z) of generalized Lagrange multipliers (o, A) # (0,0) satisfying (2.3), may be
empty when Y is a general Banach space. However A%(x) # @) in two important cases: when
Y is finite dimensional and also when K has a non empty interior [17, 28].

If the multiplier « in (2.3) is non zero, then we can take @ = 1 and the corresponding
first order necessary conditions become

D,L(z,A\,u) =0, A € Ng(G(z,u)). (2.4)

The set Ay(z) of Lagrange multipliers satisfying (2.4) is non empty and bounded [19, 28],
whenever the following constraint qualification, due to Robinson [20], holds

(CQ) 0 € int{G(z,u) + D,G(z,u)X — K}.

Let us summarize the first order differentiability properties of the optimal value function
v(u) and the optimal solutions. To this end, for the given perturbation direction d € U and
the (unperturbed) optimal solution xo € S(0), we consider the following linearization of the
family of problems (Pq),

(PLy) Min D (z0,0)(h,d) st. DG(wo,0)(h,d) € T (G(w0,0)),

together with its dual (cf. [1, 27])

(DLd) Max DuL(ZL'o, A, O)d.
A€Ao(zo)

The directional constraint qualification at the point xg in the direction d, which is essentially
Robinson’s constraint qualification for (PLg), is (cf. [1] and [3, Part I])

(DCQ) 0 € int{G(zo,0) + DG(z0,0)(X x R.d) — K}.

It is clear that (C'Q) implies (DCQ), and that both conditions are equivalent if d = 0.

INRIA



Sensitivity analysis of optimization problems under second order regular constraints 7

Theorem 2.1 Suppose that (DCQ) holds. Then there is no duality gap between problems
(PLg) and (DLy), i.e. v(PLg) = v(DLy), and

v(td) — v(0)

lim sup < v(PLy). (2.5)

t10
Moreover, the common value v(PLg) = v(DLg) is finite if and only if Ag(zo) # 0, in which
case the set S(DLg) of optimal solutions of (DLg), is a non empty weak® compact subset of
Ao(z0)-
Furthermore, if there exists an o(t)-optimal trajectory Z(t) of (Pq) such that ||Z(t)—xzo|| =
O(t), then the directional derivative v'(0,d) exists and v'(0,d) = v(DLg). In the latter case

S(PLg) coincides with the set of accumulation points of the differential quotients (x(t)—xzo)/t
where x(t) Tanges over the set of all possible o(t)-optimal trajectories of (Pyq).

For a discussion of this result and relevant references, the reader is referred to [6].

2.3 Second order optimality conditions

Let us briefly state the theory of second order optimality conditions for the unperturbed
problem (Pp). To this end we skip the argument u, and all derivatives are understood with
respect to z only.

Recall that the second order tangent set to K at the point y € K in the direction
2z € Tk (y) is defined as

T (y,2) = {w € Y : dist(y + tz + 1t*w, K) = o(t?), ¢t > 0}, (2.6)

and that (under some first order qualification conditions) a second order necessary optimality
condition is given by (see [4, 9, 15])

sup {Dmeg(wo,a,/\)(h, h) —a(A\,TZ(h))} >0, VheC(x), (2.7)
(e, A)EA9(z0)

where T2(h) := TE(G(zo), DG(z9)h), and C(zo) is the critical cone
C(Ill'o) = {h € X: Df(:L'o)h <0 DG(xo)h € TK(G(.’E()))}

Unfortunately, for sufficient conditions it is not enough to change the weak inequality in
(2.7) into a strict one, but one needs the following concept (see [4]),

Definition 2.1 A set A CY is an upper second order approrimation set for K at the point
y € K in the direction z € Tk (y) with respect to a linear mapping M : X —'Y, if for any
sequence y +tpz + tir, € K, where ty, | 0 and ry = Mgy, +ay, with {ay,} being a convergent
sequence in'Y and {qr} C X satisfying trqr — 0, the following condition holds

lim dist(ry, A) = 0. (2.8)

k— oo

RR n“ 2989



8 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

If this holds for any M, i.e. (2.8) is satisfied for any sequence y + tyz + 3tary € K such
that tr, | 0 and tprr, — 0, we say that A is an upper second order approximation set for K
at y in the direction z.

A sufficient condition for 2y to be a local optimum is (see [4])

sup  {D2,L9(z0,0, (b h) — o0, AR} > 0, Vh € Clao)\ {0}, (29)
(a,A\)EA9(z0)

where A(h) is any upper second order approximation set for K at the point G(zp) in the
direction DG(zo)h with respect to the linear mapping DG(zy) : X — Y. As a matter of
fact, (2.9) implies the following quadratic growth condition at x¢: there exist a constant
¢ > 0 and a neighborhood N of zy such that

f(x) > f(xo) +cllz — zo||?, Vz € ®(Py)NN. (2.10)

Notice that (2.9) requires the set A9(x¢) to be nonempty, i.e. it implies that the corres-
ponding (Fritz John) first order necessary conditions hold at xzo. We refer to (2.9) as the
generalized second order sufficient condition, and to the term o(),.A(h)) appearing in (2.9)
as the sigma term.

Since TZ(y, z) is contained in every upper second order approximation set A, the gap
between (2.7) and (2.9) reduces to a change from weak to strict inequality whenever one can
take A(h) = T2 (h). This remark leads to the following concept (see [4])

Definition 2.2 We say that the set K is second order regular at a pointy € K in a direction
z € Tk (y) with respect to a linear mapping M : X — Y, if the second order tangent set
T%(y, z) is an upper second order approzimation set to K aty in the direction z with respect
to M. If this holds for every linear mapping M and every direction z, we simply say that
K is second order regular at y.

Various conditions ensuring this second order regularity are discussed in [4]. In particular
it is shown that the cone S} of p x p symmetric positive semi-definite matrices is second
order regular at every point y € S%.

REMARK. Let us point out that the second order regularity used in [4] concerns the
outer second order tangent sets, so that the above concept should rather be called inner
second order regularity. Since in this paper we deal exclusively with the inner version, we
shall omit the term “inner”.

3 Lipschitzian and Holder directional stability of opti-
mal solutions

In this section we discuss quantitative stability of optimal or “nearly optimal” trajectories
for (Pq). We start our discussion with Lipschitzian stability where perturbations of optimal

INRIA



Sensitivity analysis of optimization problems under second order regular constraints 9

solutions are of the same order as perturbations of parameters. For that purpose we need
to strengthen the second order sufficient conditions (2.9) in the following way

sup  {D2,L(zo, \)(h,h) — (A, A(R)} >0, Vh € C(x0) \ {0}, (3.1)
AES(DLg)

where A(h) is an upper second order approximation set for K at the point G(x9,0) in the
direction D,G(z0,0)h with respect to the linear mapping

M(h,t) := DyG(x0,0)h + tD,G(z9,0)d, (h,t) € X x IR.

We refer to (3.1) as the strong second order sufficient conditions. These conditions were
formulated for nonlinear programming problems (i.e., without the “sigma” term) in [23]. In
the Banach space framework they were used in [27], also without the “sigma” term.

Let us remark that (3.1) can only hold if the set S(DLg4) of optimal solutions of the
problem (DL,) is non empty, which implies of course that the set Ag(z¢) of Lagrange
multipliers is non empty. Clearly the strong second order sufficient conditions depend on
the chosen direction d, unless the set Ag(xo) is a singleton or the constraint mapping G(z, u)
does not depend on w. When K is second order regular at G(z¢,0), we can take A(h) =
TZ(G(o,0), D;G(x0,0)h).

Theorem 3.1 Let (t) be an O(t?)-optimal trajectory of (Pig) converging, ast | 0, to a
point g € ®(Py) satisfying the (DCQ). Suppose that

v(td) < v(0) + tv(PLg) + O(t?), t >0, (3.2)

and that the strong second order sufficient conditions (3.1) hold. Then Z(t) is Lipschitz
stable at xg, i.e. fort >0,
1Z(t) — @oll = O(¢). (3.3)

Proof. We argue by a contradiction. Suppose that (3.3) is false and choose a sequence
tr | 0 such that Tk/tk — 00, where 73, := ||.’Ek — 1’0” with xp = .’Z’(tk) Let up := tpd and
hy == (z, — xo)/7. Since ||hr]| = 1 and the space X is finite dimensional, we can assume
by passing to a subsequence if necessary, that hy converges to a point h € X \ {0}.

Since z(t) is O(t?)-optimal and under (DCQ) we have v(td) < v(0) + O(t) (see [3, Part
I]), we get

[k, ur) — f(20,0) < O(t) = o). (3.4)

Since ¢, = o(7y), the left hand side in the previous inequality is 7D, f(zo,0)h + o(7%) and
hence we obtain D, f(xzq,0)h < 0. Moreover, since G(z,ur) € K and tp = o(7), we also
get DG(zg,0)h € Tk (G(x0,0)), and consequently h € C(=y).

We can write zj, in the form z = zg + 7h + 727k, with 7,7, — 0 and hence

G(xk,uk) = G(.’EQ,O)+TszG(.’L'(),O)h+tkDuG(SL'0,0)d+
37k (D2 G(20,0)ry + D3,G(x0,0)(h, b)) + o(7f).

RR n“ 2989



10 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

Since A(h) is a second order approximation set to K at the point G(z¢,0) in the direction
D,G(zp,0)h and with respect to the linear mapping (D,G(x0,0), D,G(9,0)d), and since
ty = o(Ty), it follows that

2ty DG (z0,0)d + 73 (DG(20,0)rk, + D2, G (20,0)(h, h))

€ 72 A(h) + o(?)By. (3.5)

where By denotes the unit ball in Y.
Let us now use the strong second order sufficient conditions (3.1) to select A € S(DLy)
such that
D2, L(z0,A)(h, h) — a(X, A(h)) > &k (3.6)

for some x > 0. It follows from (3.5) that

(A, 2t, Dy G(z0,0)d + 77 (DG (20, 0)7r + D2,G(z0,0)(h, h)))

< 720(A A(h)) + o(r?). (37)
By using the second order expansion
f(xkauk) = f(a:OJO) +Tkaf(w070)h+tkDuf(w070)d+ (38)

57T (Do f (20, 0)r, + D7, f (w0, 0)(h, b)) + o(7f)

together with (3.6) and (3.7), and since D,L(z,\) = 0, we obtain

2 2
f(xr,ur) = f(20,0) > tklzuf($o,0)d+ %Dy f(x0,0)r, + 3-D2, f(0,0)(h, h)
+7 (A, 24D, G(x0,0)d+ Dy G(wo, 0)ri+ D2, G(w0,0)(h, h))
k

~To (), A(h)) + o(72),
= tyv(DLq) + D2, L(z0,\)(h, h) — Ea(X, A(R)) + o(72),
> tyv(DLg) + 1672 + o(72).

Since v(PLg) = v(DLg) and t; = o(7y), the last inequality contradicts (3.2), and hence the
proof is complete. J

REMARKS. Assumption (3.2) holds under the (DCQ) and if the following conditions are
satisfied ([3, 24]): the linearized problem (PLgy) has an optimal solution & = h(d) such that
for t > 0,

dist(G(z,0) + tDG(x0,0)(h, d), K) = O(t). (3.9)

In case the optimal solution A exists, condition (3.9) holds if the second order tangent set
T2 (G(x0,0), DG(x9,0)(h,d)) is non empty. If the space X is reflexive (in particular finite
dimensional), then existence of an optimal solution of (PLg4) is a mecessary condition for
Lipschitzian stability (3.3), [3]. As we shall see in the next section, second order sufficient
conditions of the type (3.1), with A(h) = T (G(z0,0), Dz G(z0,0)h), are “almost” necessary
for having the Lipschitzian stability (3.3). For nonlinear programming, where the sigma term
vanishes, this was already observed in [23].

INRIA
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As we already mentioned, the generalized second order sufficient conditions (2.9) do not
guarantee Lipschitzian stability of optimal solutions. Nevertheless these conditions imply
Holder stability of degree 1/2. The proof of the following result is similar to the previous
one and is based on the upper estimate v(td) < v(0) + O(t) instead of the stronger bound
(3.2) (ctf. [3]).

Theorem 3.2 Let Z(t) be an O(t)-optimal trajectory of (Piua) converging, ast | 0, to a
point xg € ®(Po) satisfying the (DCQ). Suppose that the generalized second order sufficient
conditions (2.9) hold. Then for t > 0,

Z(t) — mol| = O('/?). (3.10)

4 Second order expansions of the first kind

In this section we obtain a quadratic expansion for the optimal value function v(¢d) and a
first order expansion for optimal solutions. To obtain an upper estimate of v(td) we consider
paths of the form

z(t) = zo + th + 12w + o(t?). (4.1)

If the path z(t) is feasible, an expansion of G(x(t),td) leads to (cf. [3])

DG(x0,0)(h,d) € T(G(z0,0)) (4.2)
and
D, G(2,0)w + D>G(x0,0)((h, d), (h,d)) € Ti(h,d), (4.3)
where
Ti(h,d) := T (G(z0,0), DG (x0,0)(h, d)). (4.4)

A similar expansion of the objective function leads to the following optimization problem

(PQ ) minw sz(mo, O)w + D2f(.21‘0, 0)((h7 d)a (h’7 d))
d.h st.  DyG(mo,0)w + D2G(z0,0)((h,d), (h,d)) € TZ(h,d).

By minimizing it further with respect to h € S(PLg) we obtain (see [3] for details),

Proposition 4.1 Letzo € S(FPy) be an optimal point satisfying (DCQ) and suppose Ao(xo) #
(. Then fort >0,

) v(td) — v(0) — tv(PLg) .
1 < f P . 4.5
im sup I S pedd v(PQd,h) (4.5)

The dual problem of (PQq,,) can be written in the form,

(DQd,h) )\egl(a‘D}id){DzL(wm )‘7 0)((h7 d): (h’7 d)) - U()‘v ng(h’v d)}

RR n“ 2989



12 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

It is possible to show by methods of convex analysis that under (DCQ) and assuming that
the sets 772 (h,d) and Ag(xo) are non empty, for all h € S(PLgy) there is no duality gap
between (PQq,r) and (DQq,p) and their common value is finite (cf. [21],[3]).

The upper estimate (4.5) has the following lower counterpart in which the set 72 (h,d)
is replaced by an upper second order approximation.

Proposition 4.2 Let zy € S(Fy) satisfy (DCQ). For each h € S(PLy), let A(h,d) be
an upper second order approzimation set for K at G(xo,0) in the direction DG(zo,0)(h,d)
with respect to D,G(x9,0). Suppose that Ao(zo) is non empty and that there exists an
o(t2)-optimal trajectory z(t) of (Piq) such that ||Z(t) — zo|| = O(t). Then

v(td) — v(?lz_ tv(PLa) > v(Qy), (4.6)

lim inf
10

where v(Qq) is the optimal value of the problem

(Qa) pelin | max {D*L(zo,),0)((h,d), (h,d)) = o(A, A(h, d))}.

Proof. The proof is similar to the one of Theorem 3.1. Consider a sequence t; | 0 and
denote zy := T(ty), hy == t,;l(a:k — xy) and wuy := td. Since Z(t) is Lipschitz stable at xg
we have that hj are bounded so that, passing to a subsequence if necessary, we may assume
that hy — h for some h € X, for which it is not difficult to show that h € S(PLg) (see [3]).

We can write 2, = 2o +trh+ %t%rk with tx7rr — 0, and using the second order expansion

G(zr,ur) = G(20,0)+txDG(20,0)(h,d)+
3tk (Do G(w0, 0)ri + DG (w0, 0)((h, ), (h, d)) + o(t7),

(4.7
we may deduce
D,G(x9,0)r; + D*G(x9,0)((h,d), (h,d)) + o(1) € A(h,d). (4.8)

Similarly we also get

v(ur) —v(0) = f(zr, ur) — f(20,0) + o(tF) = (49)
txv(PLqg) + 33 [Dy f (0, 0)7s, + D2 f(20,0)((h,d), (h,d))] + o(t3). :

Let A € S(DLg). It follows from (4.8) that
<)‘a DwG("EOa O)Tk + DQG('TOJ 0)((h7 d)a (ha d))) - U(/\7 -A(ha d)) < 0(1)7 (410)

where the term o(1) can be taken independently of A since S(DLg) is bounded. By adding
half times ¢; of the above term to the right hand side of (4.9), and since D,L(zo, A,0) =0,
we obtain

v(ur) > v(0) + tyo(PLg)+

142[D2L(zo, A, 0)((h, d), (h,d)) — o'(X, A(h, d))] + o(t2). (4.11)

INRIA



Sensitivity analysis of optimization problems under second order regular constraints 13

Since A € S(DLg4) was arbitrary and h € S(PLg), we obtain (4.6) as claimed. J

Recall that sufficient conditions for Lipschitzian stability of optimal solutions are discus-
sed in Theorem 3.1. The lower estimate (4.6) coincides with the upper estimate (4.5) if for
every h € S(PLg) the second order tangent set 72 (h, d) can serve as an upper second order
approximation set, that is, under the additional condition of second order regularity. Thus
we deduce the following second order expansion of the optimal value function.

Theorem 4.1 Let 9 € S(Py) satisfy (DCQ). Suppose that Ao(xo) is non empty, that
there erists an o(t2)-optimal trajectory z(t) of (Pi) such that ||Z(t) — zo]| = O(t), and
that for every h € S(PLg) the set K is second order regular at G(x9,0) in the direction
DG(x9,0)(h,d) with respect to D,G(x¢,0). Then:

(i) Fort >0,

v(td) = v(0) + tv(PLg) + 1£2v(Qq) + o(t?), (4.12)
where v(Qq) € IR is the optimal value of the problem
(Qd) min max {D2L($07>\70)((h7d)7(had)) - U(/\aTI%(hvd))}

heS(PL4) AeS(DLy)

(ii) Every accumulation point h of (z(t) — zo)/t, with t | 0 and x(t) being an o(t®)-optimal
trajectory of (Piq), s an optimal solution of the problem (Qg). If in addition A(t) is a
Lagrange multiplier associated with x(t), then every weak* accumulation point of A(t) belongs
to S(DLd)

(iii) Let h be an optimal solution of (Qq) and let W be a corresponding optimal solution of
(PQa.) (assuming that such optimal solutions exist). Then there erists an o(t?)-optimal
trajectory for (Piq) of the form £(t) := zo + th + 12w + o(t?).

Proof. From propositions 4.1 and 4.2 it follows that

lim inf v(td) — v(?)z— tv(PLy)
t10 5t

= 0(Qa)- (4.13)

From the computation in the proof of proposition 4.2, it follows that any limit point of
t=1(Z(t) — o) is solution of (Qg). As o (X, T2 (h,d)) <0 ([3, Part IT, Lemma 2.1]), we have
v(Qq) € IR. This proves (i).

If h is an accumulation point of (z(t) — xy)/t, then as we mentioned in the proof of
proposition 4.2, h € S(PLg) and the first part of statement (#) follows from (4.11) and
(4.5). Let A be a weak* accumulation point of A(t), where A(t) is a Lagrange multiplier
associated with x(t). It is easily proved that X is a Lagrange multiplier associated with .
From the inequalities (\, G(z(t),td) — G(z0,0)) < 0 and (\(t), G(z(t),td) — G(z0,0)) > 0,
and a first order expansion of G(z(t),td) — G(z0,0), we obtain (\, G'(z0,0)(h,d)) = 0. As
h is feasible for (PLg), and X is feasible for the dual problem (DLg), statement (i) follows.
Because of (DCQ), it follows by [3, Part I, Theorem B.2] that there exists a feasible path
#(t) of (Pyg) of the form specified in (iv). Moreover, f(#(t),td) = v(td) + o(t?) and hence
statement (7v) follows. I

The following is an immediate consequence of the assertion (7) in the above theorem.
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14 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

Corollary 4.1 Suppose that, in addition to the assumptions of theorem 4.1, problem (Qq)
possesses a unique optimal solution h*. Let z(t) be an o(t?)-optimal trajectory of (Pig) such
that ||Z(t) —zo|| = O(t). Then z(t) is right side differentiable att = 0 and the corresponding
right side derivative is equal to h*.

Let us give a sufficient condition for uniqueness of the optimal solution of the problem
(Q4)- Let us observe first that for any A, the function 9(z) := —a(A\, TZ(y, 2)) is convex.
Indeed, consider z1,29 € Y and let wy € Ti(y, 21), wa € Ti(y, 22) and a € [0,1]. Then, by
convexity of K, we have that

awy + (1 — a)ws € Te(y,az1 + (1 — a)z),

and hence
ad,wi) + (1 —a)(Xw) < oA, Tr(y,az1 + (1 — a)22)).

Since w; and we were arbitrary elements of the corresponding second order tangent sets,
we obtain that the function o(\,T%(y,-)) is concave, and hence () is convex. It follows
that if, for every A\ € S(DLy), the Hessian D2,L(x, A, 0) is positive definite over the linear
space generated by the (convex) set S(PLg), then the max-function of the problem (Qg) is
strictly convex over this linear space and hence S(Qg) is a singleton.

The right side derivative of Z(t), at ¢ = 0, can be viewed as the directional derivative, in
the direction d, of the corresponding o(||u||?)-optimal solution Z(u) of (P,). Note also that
if there exists an O(t?)-optimal trajectory Z(t) of (Pig) which is Lipschitz stable at zo, then
for A € S(DLd),

o(td) = f(z(t),td) + O(t?)
> f(j(t)atd) + (AaG(j(t):td) - G(:EO;O)) + O(tz) (4 14)
= f(0,0) + L(Z(t), A\, td) — L(zo, A, 0) + O(t?) )
> v(0) + tv(PLg) + O(t?).

The above inequality and (4.5) can hold together only if infycg(pr,) v(PQg,n) > —oo. Since
C(=mp) is the recession cone of S(PLg) (provided S(PLy) is non empty), and since under
(DCQ) we have v(PQg,) = v(DQq,1), we obtain that under these assumptions the following
second order conditions

sup {D2,L(zo, \)(h, h) — oA, TZ(h))} > 0, Y h € C(z0), (4.15)
AES(DLg)

where T2 (h) = T2 (G(z0,0), DG (z0,0)h), are necessary for Lipschitzian stability of optimal
solutions. Note the similarity of (4.15) with the strong second order conditions (3.1).
Theorem 4.1 extends previous results obtained in the framework of nonlinear program-
ming [1, 5, 23]. The main difference between the results presented in Theorem 4.1 and those
obtained in the nonlinear programming setting is the additional curvature term (“sigma”
term) and the assumption of nonemptiness of S(PLg). The condition (DCQ) and the exis-
tence of Lagrange multipliers (which follows from the strong second order sufficient condi-
tions) imply that (PLg) has a finite value and that its dual (DLy) has an optimal solution.

INRIA



Sensitivity analysis of optimization problems under second order regular constraints 15

In the nonlinear programming setting, the corresponding optimization problem (PLgy) is
linear and it has optimal solutions as soon as its optimal value is finite. However, for general
non polyhedral sets K we have to postulate that S(PLg) is non empty. If this is not true,
then as we mentined earlier, o(t)-optimal trajectories are not Lipschitz stable. In that case
we may apply the analysis of the second kind that follows.

5 Expansion of the second kind

In this section we discuss situations where approximate optimal solutions are Holder stable
of degree 1/2 (see Theorem 3.2) and the set of Lagrange multipliers is non empty. Then it
is convenient to consider paths of the form

z(t) := zo + t'/2h + tz + o(t). (5.1)
It follows that

f(m(t)7td) = f(.fL'(),O) +t1/2D$f($050)h+
5t[2D f(0,0)(2,d) + D, f(z0,0)(h, h)] + o(t)-

Expanding G(z(t),td) in a similar way we obtain that if the path x(¢) is feasible, then

(5.2)

D,G(z9,0)h € T(G(0,0)) (5.3)
nd
) 2DG(x0,0)(2,d) + D2,G(20,0)(h, h) € TZ(h). (5.4)
where
Ti(h) := Ti(G(20,0), Dz G(20,0)h). (5.5)

We need an additional assumption. We say that the strong directional constraint qualification
(SDCQ) holds if (DCQ) is satisfied and, given a path z(¢) of the form (5.1) and such that
(5.3) and (5.4) hold, then for v < 1 close to 1 one can find z, € X with 2z, — z, and a
feasible path ., (t) satisfying

., (t) = zg + 7t?h + tz, + o(t). (5.6)

In [3, Part II], where this assumption was introduced, it was proved that (SDCQ) is a
consequence of (DCQ) whenever the set K has a nonempty interior, which is the case for
semi-definite and semi-infinite optimization. Note also that (SDCQ) is satisfied whenever

(CQ) holds.
Consider the problem
(93) Min { Minzex  2Df(20,0)(z,d) + Dz, f (o, 0)(h, b)
! heCeo) | st- 2DG(9,0)(2,d) + D3 ,G(x0,0)(h, h) € Tg(h) [~

and its dual

D2 Mi M 2D, L ,)\,Od D2 L 7A70 h,h _ A77—2 h
(Pa) heCl(gclo)AeraZ)z(o){ (wo )d + D3, L(zo )(hyh) — (X, Ti(h))}
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16 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

Theorem 5.1 Let Z(t) be an o(t)-optimal trajectory for (Pyq) converging to a point Ty €
S(Py) satisfying (SDCQ). Suppose that the set of Lagrange multipliers Ao(xo) is non empty,
that for every h € C(xzo) the set K is second order regular at G(xo,0) in the direction
D,G(zy,0)h with respect to D G(xy,0), and that the following (weak) second order condi-
tions hold

iu%) ){DizL(wo,A,O)(h,h) —a(M\,T2(h)} >0, Vhe C(x) \ {0}. (5.7)
A€Ao(zo

Then:

(i) Z(t) is Holder stable of degree 1/2, i.e. |Z(t) — zo|| = O(t'/?).

(ii) There is no duality gap between problems (Q%) and (D3), and their common value
v(Q%) = v(D3) is less than or equal to 2v(PLg).

(iii) The optimal value function can be expanded as

v(td) = v(0) + 1tv(D3) + o(t). (5.8)

(iv) If h € X is an accumulation point of t=1/%(z(t) — xo), then h € S(D3).
(v) If (QF) has an optimal solution (h, z) and (CQ) holds, then there exists an o(t)-optimal
trajectory x(t) of (Pyq) such that x(t) = o + t*/2h + o(t'/?).

Proof. By the second order conditions (5.7) and the second order regularity of the set
K, statement (7) follows from Theorem 3.2. Assertion (%) and the upper estimate

v(td) < v(0) + 1tv(D3) + ot). (5.9)

are consequences of [3, Part II, Theorem 3.1]. To prove the converse inequality in (5.9) let
tr | 0 be an arbitrary sequence. Letting x := Z(t;) and using part (i), by passing to a
subsequence if necessary, we may assume that t;l/ 2(xk —1xp) converges towards some h € X.
Hence we may write z = z¢ + tz/zh + tr2r, with ti/2zk — 0. An expansion of G(xy, trd)
similar to (5.2) and the second order regularity of K lead to D,G(xy,0)h € Tk(G(xg,0))

and
2DG(x0,0)(2k,d) + D2,G(x0,0)(h, h) + o(1) € TZ(h). (5.10)

Since
f(zp, trpd) = v(trd) + o(ty) < v(0) + tpv(PLg) + o(ty) = f(20,0) + ot 1/2);

we have D, f(zo,0)h < 0, and therefore h € C(xo).
Let A € Ag(zo). Using D, L(zg, A, 0) =0, (A, D,G(x0,0)h) =0 and (5.10), we obtain
v(trd) =  f(zg, trd) + o(ty),
= f(0,0) + L(zk, A, trd) — L(zo, A, 0) — (A, G(zk, trd) — G(z0,0)) + o(tk),
= v(0) + 1tx[2DyL(zo, A, 0)d + D2, L(z0, A, 0)(h, h)]
te (X, 2DG(z0,0) (2, d) + D2_G(20,0)(h, h)) + o(ts),
)

(0 + 42D Lz, A 0)d-+ D2, Lz, 0,0} ) — o0, T2 ()] + o).

\Y
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Sensitivity analysis of optimization problems under second order regular constraints 17

This being true for any A € Ag(zg), we obtain

tr .
v(trd) > v(0) + = sup {2DyL(zo, \,0)d + D2, L(zo, X, 0)(h, h) — o(\, T (h))} + o(t).
AEAo(z0)

Together with (5.9) this proves (5.8), i.e. (iii), as well as h € S(D3), i.e. (iv).

It remains to prove (v). It follows from (C'Q) that there exists a feasible path of the form
z(t) = zo + t'/2h + tZ + o(t). Computing the expansion of f(z(t),td), we find that z(t) is
an o(t)-optimal trajectory, and the proof is complete. I

It may be surprising to observe that under quite natural assumptions (directional cons-
traint qualification and the standard second order sufficient conditions), the first order ex-
pansion (5.8) of the optimal value function involves the second order information, included
in the problem (D3%), and perturbed optimal solutions are not Lipschitz stable. This is al-
ready true for nonlinear programming problems. In that case the above theorem reduces
to results presented in [12] and [5]. The upper estimate (5.9) was obtained in the Banach
space framework in [3].

Note that if the second order conditions (4.15) hold, then h = 0 and any A € S(DL,) are
optimal solutions of the problem (D?) and hence v(D3) = 2v(DLg). Therefore we obtain
the following

Corollary 5.1 Suppose that the assumptions of Theorem 5.1 hold as well as the second
order conditions (4.15). Then fort >0,

v(td) = v(0) + tv(DLg) + o(t). (5.11)

6 Expansion of the third kind

In this section we discuss a situation similar to the one considered in the previous section
except that the set of Lagrange multipliers is assumed to be empty. We consider a point
xo satisfying the Fritz John optimality conditions, i.e. we assume that the set A§(zo) of
generalized Lagrange multipliers is non empty. These two conditions, Ag(zg) = @ and
A§(zo) # 0, imply that if (a, A) € A§(zo), then a = 0. We consider again paths of the form
(5.1). The main difference from the previous case is that now variations of the optimal value
function are of order O(t'/?), and for h € C(xy), D, f(xg,0)h can be negative. Consider the
following subset of the critical cone

C*(z0) = {h € C(xo) : 3 z € X s.t. 2DG(x0,0)(2,d) + D2,G(20,0)(h, h) € TZ(h)}.

It is worth pointing out that when Ag(zo) = 0@ and AJ(zo) # 0, and assuming (SDCQ), a
point A belongs to C?(zg) if and only if (see [3, Part II])

2DuLg(.’L‘0, 07 )‘7 O)d + D?:ng (.5130, 07 >‘7 0) (h‘7 h) < U(/\7 TI2((h))7 v (07 )‘) € Ag (.’170)
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18 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

Theorem 6.1 Let T(t) be an o(t)-optimal trajectory of (Piq) converging to a point xo €
S(Po) satisfying the Fritz John optimality conditions (2.8) and the (SDCQ). Suppose that
the set of Lagrange multipliers Ao(xq) is empty, that for every h € C(xq) the set K is second
order regular at G(z¢,0) in the direction D;G(xg,0)h with respect to D,G(xy,0), and that
the generalized second order sufficient conditions (2.9) hold with A(h) = T2(h). Then:

(i) Z(t) is Holder stable of degree 1/2, i.e. |Z(t) — xo|| = O(t'/?).

(i3) The optimal value function may be expanded as

v(td) = v(0) + t*/20(Q3) + o(t/?), (6.1)
where v(Q3) is the optimal value of the problem

(93) 1\/J}Ilianf(a:0,0)h s.t. h € C*(xp).

(iii) If h is an accumulation point of t—*/2(Z(t) — x0), then h € S(Q3).

The proof of this theorem is similar to that of Theorem 5.1 and will be omitted (see
also [3, Part IT]). Theorem 6.1 extends similar results obtained for nonlinear programming
problems in [2].

7 Applications and examples

In this section we discuss some applications and particular examples of the developed theory.

7.1 Second order regularity in semi-infinite programming

Let us first show that Theorem 4.1 itself can be used to verify second order regularity of a
set defined by an infinite number of inequalities. Suppose that for every x € X the function
f(z,-) : U — IR is concave and that the mapping G(z) does not depend on u, and consider
the set

O:={ueU: f(z,u) >0, Yz € 3}, (7.1)

where & := {z € X : G(z) € K}. Since the functions f(z,-) are concave, the set © is
convex. Clearly the set © can be also defined in the form ©® = {u : v(u) > 0}, where
v(u) := infyece f(x,u) is the corresponding optimal value function.

Consider a point ug € © and denote Ag := {z € & : f(z,u9) = 0} the set of minimizers
of f(-,uo) over ®. Note that Ag # 0 iff v(ug) = 0 and in the later case the set Ay is the set
of minimizers of f(-,uq) over ®. Suppose that there exists a compact set ¥ such that for all
u in a neighborhood of uy and some a > v(uo),

{red: f(z,u) <a} CX.
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Sensitivity analysis of optimization problems under second order regular constraints 19

We refer to this assumption as the inf-compactness condition. By Danskin theorem [11],
under the inf-compactness condition, the optimal value function v(u) is directionally diffe-
rentiable at ug and, provided v(ug) = 0, its directional derivative is given by

v'(uo,d) = inf D, f(z,u)d. (7.2)
T€EAQ

We assume that Ag is non empty and denote
Ay(d) == {z € Ag : Dy f(x,u0)d = v'(ug,d)}.

We also assume that the following second order growth condition holds for the function
f (-, up): there exist a neighborhood N of Ag and ¢ > 0 such that

f(z,u0) > ¢ dist(z, Ag)?, Vz € @NN. (7.3)

Theorem 7.1 Suppose that the Slater condition holds, i.e. there is @ such that f(x,u) >0
for all x € ®, that the set Ay is non empty and finite, that the inf-compactness condition
and the second order growth condition (7.3) hold, that for every xo € Ag the (CQ) holds and
for every h € C(xzg) the set K is second order regular at G(zo) in the direction DG(xg)h
with respect to DG(xo). Then the set © is second order regular at wo and, if in addition
v'(uo,d) = 0, then

T(%(uo,d) = {w eU: _Duf(.'lfo,UO)w + H(mﬂad) Z 07 Vz’o € Al(d)}a (74)
where k(xg,d) is the optimal value of the problem

hodin Ael\f(ii(?;o){DzL(wo, A w0)((h, ), (h,d)) = (X, T (h))}. (7.5)

Proof. Consider a point xg € Ay. As we mentioned earlier, o is a minimizer of f(-,uo)
subject to the constraint G(-) € K and hence can be viewed as an optimal solution of the
corresponding (unperturbed) problem (P,,). Note that in the present case the constraint
mapping G(-) does not depend on u. By restricting the optimization problem to a neigh-
borhhod of zy, we obtain from Theorem 4.1 that the corresponding optimal value function
9(u) can be expanded as

1A)(UO +td + %tzw) = f(xﬂauO) + tDuf(wO:UO)d + %t2§zo (da w) + O(t2)a (76)
where &,,(d, w) is the optimal solution of the problem

Min  Max {D,L(2o, A\, uo)w + D*L(zq, A, u0)((h,d), (h,d)) — a(\, T (h))}.
heC(zo) AeAo(zo0)

The additional term D, L(zq, A, uo)w in the above expansion appears since the optimal value
function is expanded now along the parabolic curve (with the additional term 1t*w), and
this term is equal to D, f(zo,uo)w since G(-) does not depend on u. Note also that the set
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Ao(zo) of the corresponding Lagrange multipliers is non empty because of the (CQ) and
that existence of Lipschitz stable optimal solutions is ensured by the second order growth
and inf-compactness conditions. Such analysis can be performed at every point of the set Ay
and the optimal value function v(u) is given by the minimum of the optimal value functions
corresponding to points zy € Ay. Consequently we obtain that the optimal value function
v(u) is second order directionally differentiable and its second order directional derivative
v""(ug,d, w) is given by the minimum of functions &,,(d,w), o € A1(d). Because of the
Slater condition this implies (7.4), as proved in [4].

Note that, under the Slater condition, Te(uo) = {d € U : v'(ug,d) > 0}. Therefore if
v'(ug,d) < 0, then T&(uo,d) is empty. Also if v'(ug,d) > 0, then T3 (uo,d) is the whole
space U. Consequently, in order to show second order regularity of ©, we have to consider
only the case when v'(ug,d) = 0. Consider a sequence uy, = ug + txd + 3tir) such that
ty 1 0, tprr, — 0 and v(ug) > 0, i.e. up € ©. Consider also a point z9 € A;(d) and a path
z(t) = mo + th + 1t?z + o(t?) for some h € C(zo). By using the second order expansion of
G(z(t)), it is not difficult to see that such a path can be feasible, for small ¢ > 0, only if

DG(xo)z + D?G(x0)(h, h) € TZ(h). (7.7)

By the Robinson-Ursescu stability theorem, because of the (CQ), the above condition is
also sufficient for existence of such feasible path. Let xp := z(t) = xo + txh + %tizk be
such that G(zx) € K and 2 — 2. Then, since f(zo,u0) = v(uo) =0, h € C(z0) and hence
D, f(zo,u0)h =0, Dy f(x0,u0)d = v'(ug,d) = 0, we obtain

f($k7’u'k) = %ti [Df($07u0)(z7 T'k) + DZf('TOJ uO)((ha d)7 (h, d))] + O(ti)a (78)

where the term o(t7) can be taken uniformly in 2 for z in a bounded subset of X. Moreover,
f(2k,ur) > v(ug) > 0 and hence

Do f (@0, uo)rs + min{Dy f(z0,u0)z + D* f(z0,u0)((h, ), (h,d))} > o(1),  (7.9)
where Z is the set formed by those z € X satisfying (7.7). By duality the minimum in (7.9)
is equal to the maximum in (7.5) and hence

i 2 - 2 > )
Duf(m07u0)7'k + hel\g’l({vlo) /\61\14(?6);0) {D L(‘rO: Aauﬂ)((ha d)7 (h7 d)) 0()‘7TK(h))} = 0(1)

Since the above inequality holds for any zy € A;(d), by the Slater condition and (7.4) it
follows that rj, € T3(ug,d) + o(1) which proves the second order regularity assertion. ||

7.2 Differentiability of metric projections

As an another application of Theorem 4.1, let us consider the question of directional diffe-
rentiability of metric projections. Let K be a convex closed subset of IR" and for a point
u € IR™ denote by Pk (u) the point in K closest to u (with respect to the Euclidean norm
|- 1)- That is, Px(u) can be defined as the optimal solution of the problem

Min 4u — o], (7.10)
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and is called the metric projection of u onto K. There are examples of a convex set K
in IR® (and even in IR?) such that the corresponding metric projection is not directionally
differentiable at a point ug ¢ K ([16, 25]).

The vector u in (7.10) can be viewed as a perturbation parameter in a neighborhood of
a given point ug. Let us observe that all assumptions of Theorem 4.1 hold, provided the
set K is second order regular at the point zg := Pk (ug). For a given direction d € IR", the
auxiliary problem (Q4) can be written in the form

Min {|ld — hl|> — o(X, Ti (20, h))}, (7.11)
heC(zo)

where A = (ug — zp) and
C(.’L‘o) = {h S TK(SE()) : (U() - IL'())Th = 0} (712)

By the discussion following Corollary 4.1, we have that the objective function in (7.11)
is strongly convex. Since it is assumed that the set K is second order regular at xp, the
second order tangent set T'(xg,h) is non empty for every h € Tk(zq). Moreover, since
T%(x0,h) C Try(a0)(h), we have that o(X, T%(xo, h)) is finite valued for all h € C(zo). It
follows that the objective function in (7.11) is also finite valued for h € C(xg) , and hence the
optimization problem (7.11) possesses a unique optimal solution. We obtain the following
result (see Corollary 4.1).

Theorem 7.2 Suppose that the conver set K C IR™ is second order regular at the point
xo := Pg(up). Then Pg(u) is directionally differentiable at u = uo and Py (ug,d) = h*,
where h* is the optimal solution of the problem (7.11).

7.3 An application to semi-definite programming

Consider, for example, the space S? of p X p symmetric matrices equipped with the scalar
product A+B := trAB, where A, B € §?, and the corresponding (Frobenius) norm || 4| :=

VA<A = /37, a}. It is shown in [4] that the set S} of positive semi-definite matrices
is (inner) second order regular at every point. Therefore the theory presented in this paper
can be applied in a straightforward manner to semi-definite programming problems.

Consider the cone K := S} and a point (matrix) B € SY. If B is positive definite,
then B belongs to the interior of Y and in that case Tx(B) = SP. If B is singular, then
Tk(B) = {H € 8? : ETHE = 0}, where E = [ey, ...,e;] is an n x s matrix whose columns
€1, ..., €5 form an orthonormal basis of the null space of B. Furthemore, consider H € Tk (B).
If the matrix ETHE is positive definite, then the second order tangent set T (B, H) = SP.
If ETHE is singular, then

T#(B,H)={W € S* : FTETWEF » 2FTETHB'HEF} . (7.13)

where Bt is the Moore-Penrose pseudo inverse of B, and F = [fi, ..., f,] with fi, ..., f, being
an orthonormal basis of the null space of the s x s matrix ET HE (see [26] for a discussion
and derivation of these formulas).

RR n "~ 2989



22 J. Frédéric Bonnans , Roberto Cominetti , Alexander Shapiro

For example, consider the metric projection Pk(-) onto the set K := SY. Tt is well
known that Pr(A4) = >, aiee] , where A = 3P | ajeel is the spectral decomposition
of A (i.e. «; and e; are eigenvalues and corresponding orthonormal eigenvectors of A),
It :={i:a; >0}, I_ :={i:a; <0} and Iy := {i : a; = 0}. It follows from Theorem 7.2
that Pg(-) is directionally differentiable at every point A € S? even if A has several zero
eigenvalues. Suppose that A ¢ S¥. The directional derivative Py (A, D) is then given by
the optimal solution of the corresponding auxiliary problem which we now calculate.

We have that the corresponding Lagrange multipler is given by A = ., a;eel. Let
H € C(B), where B := Px(A) =3

. oT
icr, €€ and

C(B) =% Z € Tk(B): Z aeel | «Z=0
il

If I, is empty, i.e. the matrix A is negative semi-definite, then B = Px(A) = 0 and hence
o(\,T%(B,H) = 0. If I is non empty, then Bf = 3~ teie] and it follows from (7.13)
that (cf. [26])

iely a
o\, Tx(B,H)) =2\-(HB'H).
Therefore the auxiliary problem can be written in the form
Min{||D — H|)? H 14
Min{|D - H|P? + (M)}, (7.14)
where
W(H) = —2tr [(Ziel_ aieiezr) H (Zieﬁ, az'_leiezT) H] ;i I #0,
0, lf I+ = @7
and C = C'(B) is the corresponding critical cone given by
C={ZeS8":EYZE » 0, ttBZ = 0}, (7.15)

where E; is the matrix whose columns are the vectors e;, i € I, E5 is the matrix whose
columns are e;, i € Io, E = [E1, E»], and B :=3",.; a;e;e}. Alternatively the cone C can
be written in the form

C={ZeS8?:El'ZE, =0, EIZE, =0, E] ZE> > 0}. (7.16)

We see that the objective function in (7.14) is quadratic and that C is a linear space iff the
set Iy is empty, i.e. iff A does not have zero eigenvalues. Therefore we obtain that Pg(-) is
differentiable at A ¢ K iff A does not possess zero eigenvalues.

EXAMPLE. Consider the example discussed in the introduction. When a > 0 all calcula-
tions are simple, as computing second order terms is not necessary. When a =0, Theorem

INRIA



Sensitivity analysis of optimization problems under second order regular constraints 23

5.1 applies. The critical cone is C(z) = {h € IR* : hy = 0; hy > 0}, when A = A, and the
Lagrangian simplifies to L(z,\,u) = 3z3, The auziliary problem (D3) reduces to

s ) hi 0 o
N%III h2—0'<A,TS+ (0,( 0 —hy s.t. hl—O, hzZO

The cost function of this subproblem is the sum of two nonnegative functions. Therefore it
has the unique optimal solution h = 0, as T$2+ (0,0) = S4. It follows that any o(u)-optimal
trajectory x(u), u > 0, satisfies x(u) = o(v/u). As a matter of fact, by direct computation
we find that the perturbed problem has a unique optimal solution Z(u) = O(u?/?).
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