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Abstract

In this paper we present some especial procedures for the numerical solution of
the optimal scheduling problem of a multi-itemn single machine. We study the infinite
liorizon case and the optimization criterion is the average cost. We establish the solu-
tion of the problem in terms of viscosity solutions of the Quasi-Variational Inequality
(QV1) system associated to the problem. The existence of solution of the QVI and the
uniquencss of the optimal average cost are proved. A method of discretization and a
computational procedure are described which allows us to compute the solution in a
short time and with precision of order k. We obtain an estimate for the discretization
error and develop an algorithm that converges in a finite number of steps. In our
method the nodes of the triangulation mesh are joined by segiments of trajectories of
the original systent. This feature allows us to obtain the k-order precision which, in
general, is impossible to obtain by usual methods.

Résumé

On présente ici quelques procédés spéciaux pour la solution numérique du probléme
optimal d’une machine multi-produit pour le cas d’horizon infini quand le critére
d’optimisation est le colit moyen. On établit la solution du probleme comme la so-
lution de viscosité d’un systéme d’inéquations quasi-variationnelles (QVI) associées au
probleme. On montre 'existence de solution du systeme QVI et I'unicité du coit op-
timal moyen. On donne une estimation pour 'erreur de discrétisation et on développe
aussi un algoritlune trés efficient qui converge dans un nombre fini de pas. On fait la
description d'une méthode de discrétisation et d'un procédé permettant d’obtenir la
solution en employant des petits temps de calcul avec un précision d’ordre k, k étant
la mesure de la discrétisation. La caractéristique principale de cette méthode est le
fait que les nodes de la triangulation sont unis par des segments des trajectoires du
systéme originel. Cette caractéristique permet d’obtenir la précision d’ordre k qui, en
général, est impossible d’obtenir par les méthodes habituelles. '

Keywords: scheduling problems. quasi-varialtional incqualities. Bellman equation. vis-

cosity solution. average cost, numerical solution.

Mots clefs: problémes d'ordonnacement. inéqualions quasi-variationnelles. équation
de Bellman. solution de viscosilé. cotit moyen. solulion numérique.
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1 Introduction

In this paper we study the optimization of the production schedule of a multi-item single
machine (see [2], [12], {13]). The objective is to find an optimal production schedule that
minimizes the average cost for an infinite horizon. Speciffically we will try to minimize the
following criterion

J(a (") = limsup ~ / Flu(s).dims) ds + qldiorndy) | | (1)

where §; are the switching times of the control policies used (see [1}, [4], [8], [22]. [24], [25],
[26], [27], {28] and [29] for a more general description of similar problerns).

By using dynamic programming techniques (see [9]) and taking into account the switching
cost, it is possible to find an optimal feedback policy, in terms of any solution in the viscosity
sense of the following first order Quasi-Variational Inequalities (QVI) system.

aUd gd)+f-p>0 in Q.

U, < S4U) in €2, 2)

(%g (d) + f- ,u) (Us - S4U)) =0 in Q.

being
§4(U)(z) = min {q(d,ci) + Ud-'(x)} z€Q. deD. (3)

This system is obtained considering a sequence of optimization problems with non zero dis-
count rate. In a strict sense, the relation between the discount. problem and the optimization
with average cost problem is: Vo € @, Vd € D

,1\1_1’% /\U,\:p:g(lg J(a()).

To obtain the numerical solution of system (2), we develop in this work a procedure based
fundamentally in this convergence property, whose validity holds for the continuous problem
as well as for the formulation associated to the fully discrete problem. We will obtain an
estimation of the following type

lw— el < Ck.

We propose an algorithm which converges in a finite number of steps. We also present.
numerical results for the case rn = 2 (optimization of a machine with two itews).
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2 Description of the problem

2.1 Description of the production system

At any time the machine is cither idle or producing any one of m different items. We will
denote by '

o d = O the idle state of the machine

e d =1,...,m, when it is producing item d.

For each item d = 1, ..., m; we define the problem data as follows
e 74 the demand by unit time of item d
e py the production quantity by unit time at the machine setting d
e M, the inventory capacity constraint of item d
e g(d, E) the switching cost of the machine from state d to d
o f(z.d) the instantaneous inventory-holding/production cost

We will always assume a non zero loop cost condition:

3go > 0 such that for any closed loop do. d,, ..., dp, dpy , With dp = dp_y, p < m, we have

P

Z g(di.di-1) > qo (4)

1=0

and we suppose that the following conditions are verified

g(d.d) >0 Vd#d q(d,d)=0 VdeD,
(5)
q(d,d) < q(d,d) +q(d,d), Vd#d#d

In addition. we assume that the switching time is small enough to be disregarded and that
the following condition. under which a feasible schedule exist. holds

m

Y X (6)

41 Pd

m
. " Tq . .
In fact, we will always assume (6), because condition E — =1, forbids the machine to be
a1 Pd
m. .
. . . . Ly - s
in the idle state except for a total time 7 = E —, and this is not a natural condition for a
— Du
. . . v . - (1--!
problem with infinite horizon.
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2.2 The set Q of admissible states

Let 14(f) be the inventory level of item d at time ¢, starting at y,(0) = 24 . Thercefore, for
the global state "y” of the system, we have

(1) = (i (t), s ym(1))

(¥1(0), -.c, ym(0)) = (21, -oos 2m)-

(7)

As neither backlogging nor production over the capacity constraints are allowed for the
inventory state y4, the following restriction holds

0 S Ya S i\fd, Vd = 1. e I (8)

Let us divide the 2; values into three categories

-'1:7':0:
0<az; <M, (9)
I7:A/[,’.

An z point is classified using an m-tuple of digits a{z) = (ay, ..., @), where

z, =0 = a; =0,
0 < x; < M = a; =1, (10)
xr;, = A[l = a; =

Let us define
T(ay,....am) = {2z : a{z) = (a1, ....am)}.

The set @ of admissible states comprises only the set of points with at most one zero
component, because if we start from other points that do not verify this condition, we
cannot avoid the shortage of at least one item, i.e. ’

Q= U {T(ai,..., @i, ....ar) : at most one component a; = 0} . (11)
. a

Let us denote with 9Q~ the points of ) that are not admissible, i.e.

0Q™ = U{F(al, ey @iy ey Grp) ¢ At least two a; = 0} .

If we denote with Q2 the interior of (), we have

O={z : 0<z; <M;, i=1,...,m} =T(1,..,1). (12)
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2.3 ‘The evolution of the system

For any step function « : [0, 00) — D from the definition of 74, py, the following equation of

evolution holds
dy

pri g{a(?)), ‘ (13)
where
g9(a) = (gi(a), ..., gm(a)), (14)
being
—Tq if a #d.

ga(a) =
Pag—Td ifa=d.
Remark 2.1 Since g is piece-wise constant, the equation (13) has global solution for any

control policy. At the same time we always suppose that the function f is uniformly Lipschitz
in @, V¥d € D. ' :

2.4 The set A¢ of admissible controls
An admissible schedule is characterized by a sequence of pairs {6;,d;}. where 6, is the switch-
ing tirme, ‘

0<6,<b;<..<0,<8;,_,< .. : (15)

and d; € D: d; #d;-;; 1=0,1,... is the state of production in (6;.6; .,] .
For each 22 € J, d € D. we denote AZ the set of all admissible schedules with initial state 2
and initial machine setting d

| Al = {a() = (65,d))2 : do=d, VEER™. y(t) € Q}. (16)
In other words, we will consider sequences {6;,d;} such that the associated trajectories
remain in @, vt > 0.
2.5 The average cost

To cach control policy a (-) we associate the cost function (1). For each d € D and 2 € Q,
we define the minimum average cost

pa(z) =inf {J(a () : a()e AT} . (17)
Our objective is to find V2 € @ and Vd € D, a policy a2 (-) € A%, such that
J(@1 () = pa(®). (18)

In the following proposition we will see that py(2) does not depend of d and .
Proposition 2.1 3u € N such that
walx) =p  VeeQ, vde D. (19)




x4
(9

Proof. Let,2 € () and dde D. Taking into account the hypotheses about the dynamic
of the system, it is immediate to prove, by using the same techniques as those employed in
[13], that there exists a policy a (-) € A¢ and £ >0, such that

~

a(t) =z, ?/a:(ﬂ =d.
Let a€ Ag , we define a; € A2 such that

a(t) 0<t<t,
a (t) = |
' at—t) t>ft.
In consequence
J(ar (1)) = J(@ ().
From the definition (17)
pa(z) < J(ax ()

then, as the policy &(-) is an arbitrary admissible one, it holds
Ha(x) < pi(2).

As (z,d) and (x,cf) are also arbitrary, we conclude

pi(z) = pa(z) = p.

3 Use of viscosity techniques

We will use viscosity techniques (see [7]), in order to consider general solutions of the
Hamilton-Jacobi-Belman (H-J-B) equations system associated to this problem. Also with
these techniques, we can easily prove properties of uniqueness of solution and convergence
results.

3.1 Definition of the QVI system and its viscosity solution

Let us define ~

Q. = U ('Y: U'Yz_) ) (20)

i=1

v =U{T(a1, ..., 04y...,am) : ag =2} Q,

where

(21)
v; =U{(a1,..,aa, .. am) @ ag =0} Q,
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and
Qe = U {T{ay,...,a4,...,an) : at least two coeflicients aq = 0} .
a

By using the same methodology as that employed in [15], [16], we will say that, (U, u) are

a viscosity solution of (2), with boundary conditions (23)-(25) if

e they are continuous functions in @
e they satisfy Uy < S4(U)
e they verify the following boundary conditions, for 2 € (8Q.|J0Q )

Uiz) =S4 U)(z) Vd#d ifzeny;

Uy(z) = Sd(U)(fL) if €y

lim Uyz) =+
T—8QT

o %Z_ig (d)+ f— 1 >0 in § in the viscosity sense, i.e.

Vi € CHQ). if Uy — ¢ has a local maximum in 2, then

22 (z0) ) + (0. ) 4 2 0

o V2 €/ Uy(z) < S4U)(z), then 36 (z) such that

Uy

—gd)+f—p=0 in Bs(z) in the viscosity sense, i.e.

Jdx

Vi € C Y(Bs)(z)), if Uy — % has a local maximum in zq, then

2L 0) 9(d) + f(zo,d) 20,

Vi € CY(Bsy(2)), if Uy — % has a local minimum in 2, then

2% o) o(d) + (o, d) ~ < 0.

(22)




3.2 Uniqueness property in terms of viscosity

-

3.2 Uniqueness property in terms of viscosity

A constructive procedure for an optimal policy

Let Uy be any set of continuous functions, which are solutions in the viscosity sense of
the QVI system (2), with boundary conditions (23)-(25). By using them, an optimal feed-
back policy a* = {8,,d;} € AL can be obtained in the following way:

We define
90 —= 0, do = (i,

and recursively
9, =min {t > 6;_, : Uy_,(y(t)) = (Sd"‘(U)) (w()}. (26)
d; € {d eD : (Sdi—l(U)) (y(6:)) = q(di—1,di) + Ua(y(8:)), di1 # d } (27)

Next theorem establishes the optimality of the procedure.

Theorema 3.1 If U is a continuous viscosity solution of the system (2), (23)- (25) then the
policy constructed according to (26)-(27), satisfies

J(a*()) = inf {J(a() : aeAl}.

~ The proof uses essentially the procedure employed in {13], {16] and it will not be included
here for the sake of briefness.

Corolary 3.1 There erists at most one value of the parameter p such that (2), (23)-(25)
has a solution in the mscosity sense.

Proof. Let ussuppose that (U, i11), and (U2, uy) are two solutions in the sense of viscosity
of (2), (23)-(25).

It can be seen, by using the same techniques employed in [16), that in terms of a solution U’
we can find @&; (-) such that

and Vo € AY, it is verified

In consequence ‘
pr < T () =p < J(@ () = w.-
0

Remark 3.1 If U is a solution of (2), (23)-(25), then U + ¢ - ¢, is also a solution Ve € R,
being e = (1,...,1) € R™FL.
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3.3 Existence of viscosity solution
3.3.1 The discount problem

A Lipschitz-continuous solution of the system (2) with boundary conditions (23)-(25) can
be obtained considering a sequence of optimization problems with non zero discount rate
(we denote A this coefficient). For this type of problem, the solution is given by the unique
solution in the viscosity sense of the (QVI) system (28), with the boundary conditions (23)-
(25).

A
%(i—‘fg(d)Jrf—/\U;zo in Q,
Uy < S4U?) " in 0, (28)

(BU“A g(d)+ f— A Ui) (U2 - SU*) =0 inQ

Oz

The viscosity solution is defined in the same form as that used for the system (2), (23)-(25),
(see [2]. [15], [16]).

3.3.2 Relation betweeh the two problems

The relation between the discount problem and the optimal average problemn is given by the
following theorem. It gives a strict statement of the intuitive fact that problems with a low
“discount rate or with average cost are optimized by similar policies.

Theorema 3.2 By uvirtue of the feasibility condition (6), the following properties hold .
}in(l) MUY = p VeeQ, Vde D

YU € (ﬂ ( U @0 —U;)(IO)-(;)», o (29)
>0 \¢>A>0

(U, p) is solution of (2), (23) — (25).
Remark 3.2 In (29) and in the following proof we consider the topology of uniform con-

vergence in C(Q) .

Proof. As we have seen in the previous section, the following estimation holds

o< UM< C (1 + % + (log(d(z, dQ" )))—> : vz e Q, vd € D,

in consequence for 2 € QQ, d € D, it results

U@ < C (1A (1 + (ogld(z,0Q )))7)) - (30)
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Moreover, when K is a compact subset of @), the functions U* are uniformly Lipschitz
continuous, being the Lipschitz constant LK) independent of A. i.c. we have

102 () = Vs &) lsgramqey < LAE): (31)

Let

Ué (ﬂ ( U @ (-)~U£0(w°)-e)>).

s>0 \¢>A>0

o€ (ﬂ ( U AU&@O))).
>0 \e>A>0

Then, there exists a sub-sequence A\, —0 (that, in order to alleviate the notation., we will
denote A). with the following properties

Ug ()= U3 (2%) = Ua (). (32)
AU (2°) — o. (33)

We should remark that (31) implies

AN z)— o VY(z,d)eQxD.

Let us see that (U, o) is a solution in the viscosity sense of (2). (23)-(25). By virtue of the
uniform convergence in (32), the following properties are verified

e U, are continuous functions in ¢
o U, satisfies U; < S4(U)
e U, satisfies (23)-(25)

oU, . . . . .
° a—d g{d)+ f — o > 0in § in the viscosity sense; in fact,
z

let v € C'(€2) such that
(Us-)(3) = 0> Us—w)(a) Vo € NEN(E)

(where we denote N(Z) a neighborhood of point 2 € (2).
For each A, let * € N(Z) such that it is a local maximum of (U; — ¢). i.c.

(U —)(@*) > (U} —9)(z) Yz e N(3).

Since Z is a strict maximum of U, — % in N(2), and as we are working with a uniformly
convergent sub-sequence of {U* (-) — Up (z°)}, we have
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Then, as U? is a viscosity solution of (28), it holds
Yy

W (2 9td) + 1) AU 20
by taking limit as A —0, it results
0,
0 #)g(@) + F(z.d) — 7 20

o Vi€ Q /[ Uy(z) < S4U)(Z), then 36(Z) such that

al, : . o\ . o
E—f gdy+ f-ec=0 in Bs(z) () in the viscosity sense.

Let ¥ € C'(Bsz) (Z)), such that |
(Ua = 9)(@) > (Ua —9)(2) Vo € Bya ()\{2}.
In a similar way it is proved

O # () + 13 d) 7 20

‘To obtain the other inequality, let ¢» € C'(Bgz) (£)). such that
(Ua — ¥)(@) < (U =) (x)  Vz € Byz) (¥)\{Z}.

As a consequence of both the uniform convergence of {U* (-) — U2 (2°)} and the con-
tinuity of operator S, for A large enough it results ‘

U} < SHUY)  in By (3).
For each A let 2 € Bs(z) (2), such that
(U7 —9)(e?) < (U3 ~¥)(2)  Va € Bsy(Z).

Then, by definition of viscosity solution of the system (28), it results

% (@) a(d) + £ )~ AU 0.
Clearly, as 2* — z, by taking limit as A — 0, it results
oY

o Zyg{d) + f(z,d) -0 <0.

Then (U, o) is a solution in the sense of viscosity of (2). By virtue of proposition 2.1, it
results o = p and in consequence every sequence AU* converges to .
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4 The discrete problem

4.1 Elements of the discrete problem
To define the discrete problem, we introduce an approximation which comprises a discretiza-
tion of the space W:2°((2) and a discretization of conditions (23)-(24). We usc the techniques
analyzed in {3], [5], {14], {18], [19]. [20] and the notations employed in {2].
4.1.1 Approximation of domain @
We will approximate @ with Q. = |J S¥, where Sjk is a finite set of quadrilateral elements
Jj
and, in consequence, (J;. is a polyhedron of ™. We define
k= max(diam(S;)).
J

We use a special uniform mesh B* of the space ®™. This mesh is defined in terms of an
arbitrary parameter b, in the following way

Bf = {:1;0 + ng el g integer} (34)
d=0

T,
h’d = —d h.
Pa
ho = (1 -> —") h
a1 Pd
€ = (—Tla y TTia ey Tm) h’O
ed = (_rl7 ceoy TTd—1y Pd — Td, = Td=1+ -+, —Tm) hd

We will say that S]k is an elementary domain of @), if it has the following form
m .
' S]‘?:xk+{m:;)§d e : CdE[O,l]}, * e BY,  SFcQ. (35)

We will denote with V¥ = {27, i = 1,...N} the set of nodes of Q) and we will denote the
cardinal of V¥ by N. The typical shape of this mesh can be seen in Figure 1.

Remark 4.1 If k is small enough, for any two vertices of V¥, there always exists a path
given by a natural trajectory of the system that joins the first one with the second one.

Remark 4.2 From (6) and (34) it results that B* can be generated by

m
B* = {;L‘O + Z et ¢ isan integer} ) (36)
d=1
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Definition 4.1 Discrete controls associated to the mesh.

We introduce a special family of controls by restricting the distance between switching times
in the following way

A% ={a() € AL : 6y —60; =ch* (is an integer} . (37)

An Interpretation of the Mesh

The special mesh we use originates a discrete optimal control problem. In that problem,
the system has an evolution given by the differential equation (13). but controls d; are ap-
plied during intervals whose length is ¢ 2% and the initial state 2 must be a node of V*.

In consequence, the trajectory associated to this control reaches a node of the mesh at every
switching time. ‘

Taking into account the interpretation of the discrete equations as the optimality conditions
over the Markov chain associated to this discretization, this interpretation implies that the
chain is deterministic in the sense that P;; = 0 or 1, etc. (see [23]).

This property of the mesh plays a key role in relation to the precision of the method and
the velocity of convergence of its computational algorithm.

4.1.2 Approximation of the Boundary
We define, Vd = 1.....m

Ted = {ﬂ eVhk . 2+ higd) ¢ Qk} .
o ) (38)
Yog = {2, eV 2t +hig(d) ¢ Qu, Vd # d}.

4.1.3 Definition of the approximation space F*

We consider the set F* of functions w : Q* x D — R, w(-.d) eWH(Q;), such that in
each quadrilateral element Qg, w(:,d) is a polynomial which belongs to the Q! family (see
[6], [10], [11] for the corresponding definitions). It is obvious that any w € F* is uniquely
characterized by the values w(z?,d), 2' € V¥, d € D.

4.1.4 Discretization of H-J-B inequalities

We will usc the following discretization of conditions (2)

w(at,d) < Di(w, p*)(z) V(z*,d) € V¥ x D,
(39)

|
|
|
)
|

(et d) < SYw)(a) V(a',d) € V¥ x D.
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We define D4 (i, 4/F)(27) in the following form

hy

(Di(w. p)(@") = w(a’ +h'g(d),d) + / RYf (" + sg(d).d) ~ #k)(i-s

0
Vi € (Vk (CreaC ( L;de h?d) ) : (40)

(D;C(w’#k))(lj) = +oo va' € ('71:;(1U (U 7;:,(1)) .

rid

Remark 4.3 We can see that the definition of D% is consistent with (2) and takes into
account the constraints (23)-(25).

Remark 4.4 We can use (41) instead of (40):

(D (w, ) (a') = w(e + hg(d).d) + W(F(',d) — )

(41)
Vot € (V*ﬂc~,uﬂc(u m))-

r#d

4.1.5 Definition of operator P*

We define the operator P, : Fy x ® — F} in the following form
Py(uw, 1) (2, d) = min ((Dh(w, ), SUw)(x")) . V(&' d) € VEX D, (42)

4.1.6 Definition of the discrete problem

In relation to the QVI system, we introduce the followmo problemi which is defined in a
similar way to that we employed in [2].

Problem Py : Find (w, i*) such that w = Py(w. 1i¥) (43)

Definitions of discrete policies and auxiliary concepts
e Set of multi-valued or generalized discrete policies

A={A:VFx D P(D)}.

- @ Set of mono-valued discrete policies

©={AecA : V(' d)e V" x D, card(A(z'.d)) = 1}.
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e Transitions associated to policies

Let A € ©. We define

. T(z',d) = 2* if d # A(a',d),
T(z*,d) =
' T(2%,d) =2t +h¥g(d) ifd= A(a?,d).

o Cost of elemental transitigrxs
Let w € Fy, 27 € V¥ and a policy A € ©
ad Al ) ifd# A,d),

Fd(ld, A) =
ht fi(A(2?,d))  ifd = A2, d).

e Cycles associated to a policy
Let a discrete policy A € ©, we will say that
C= {(1)1, dl), ey (iL'q, dq)}

is one of the cycles associated to that policy if

(Ijﬂ,dj%—l) = (T(l'j,dj)’ A(zj:dj)) Vi=1,..4,

(xl,dl) = (T(l'q’dq)vA(Iq»dq))
e Average costs associated to a policy

Each cycle C previously defined has the following associated average cost

_Xq: Fy(z?, A)
u(C) = —= . —
A PR ) P SN (P Ny ]
J'=l,zd:j¢0 ( Pd; — T4, ) - j:l,zd:j_o ( T )

Remark 4.5 For the j index we use the addition modulus ¢, i.e. 297! = z!.

Remark 4.6 To unify notation we define

((l‘j‘l)d, - (ij)d,> _ ((mﬁl)l - (:’“'j)’> for d; =0,

Pa; — Ta; T
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in consequence we obtain the following notation

o inmmm
HHI= g 2ty — (27)g,\
by Gy

e Optimal discrete control associated to (w,u): ®

®(w,pu) CA

¢mwﬂﬁ®={g‘HW#Wﬂ®=wWJHﬂ@@}UBWAL
where ' '
. {d} if Py(w, p)(z*,d) = D§(w, p)(z*,d),
B(z*,d) = _ )
Q - if Pe(w, p)(z', d) # Dg('W7#)(Iltd)'
e Family of mono-valued realizations of optimal discrete controls associated to (w, i), M

M(w.p) C©

Muw,p) = {Ac© : Ala,d) € ®(w,u) (z,d); ¥(z',d) € V¥ x D} .

Proposition 4.1 There exists at most one value of parameter u* such that (43) has a solu-
tion w € F*.

Proof. Let (w!,p¥) and (w?, 1§) be two solutions of (43), such that pf < b
For each (w;, u¥) we can take a policy A" eM(w;, uf).

Let C = {(2!.dy), ..., (29,d,)} be a cycle associated to A?; for every j = 1, ..., ¢, we have, by
virtue of (43)

' 23 g — (29)a,
w'(z’,d;) < w'(T(27,d;), A2(:1:j,dj))+Fdj(l‘j,A2) — ( Jay ~ ( )J/ﬂl‘.

pdj - Td_.,

In consequence, by addition along the cycle we obtain

Zwl(l_ Z ( A2(:L’ d. )) +Fdj(l'j,A2) _ (Z‘J* )dj — (?J)dj #Q) )

J=1 J=1
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Taking into account Remark 4.5, we have

q .
w'(29,d;) < Z w'(T(27,d;), A% (27, d;)) ,
j=1
therefore .
(27+1) (2’
> Ry 4 2 3! et
j=1 j=1 pd _'Td

In consequence

zq:Fd.(asj,AQ)

j-1

k
ﬂl-— q

> )y
Pa; — Td;

J=1

In the same way we obtain

q
> Fy(ad, A
j=1

‘/I:j+1)d) - (x])d) .

Pa; — Td;

k _
Hy = q

=1
Therefore it results p& > p¥, which is a contradiction. Then ub = ub.
a
Remark 4.7 If (w,p) is a solution of (43), then w + ¢ - e is a solution Ve € R, being
e = (1,..1) € Rm-DAN.

4.1.7 Definition of operator P}

We repeat here the definition of operator D"j\’k, introduced in (2]
(Di*w)(z?) = (1 — Ah?) w(zt + hig(d),d) + h? f(2,d)

Vi € (V"ﬂC”/{,dﬂC (U 7’1:,(1)) .

r#d (44)

(Dhuw)@) = +oc ~  Vr'e (”'37dU(,§L 7>)

The operator P : Fy, — F} is defined by
(Pew)(2',d) = min ((Diw)(z"), (S*(w))(2")), Va' eV* Vde D, (45)
and the following problem allows us to find the unique solution U** of the discrete discounted

cost, problem
Problem Pj : Find the fived point of operator I
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4.2 Relation between problems P, and P}

The relation between these two problems is established in the following form.

Theorema 4.1 By virtue of feasibility condition (6), we have

lim AUM (2 d) = p* vz’ € V¥, vd € D. (46)

Also, V2o € V¥ VYdy € D

Vw € (ﬂ ( U (UMK () = UM (a0, do) -e))) , (w.p*) s a solution of P..  (47)

s>0 \¢>A>0

Proof. In first place let us see that for each pair (¢f,d), {AU;*(2".d) : A € R~} is
bounded.

Let (z%,d) € V* x D, by virtue of the construction of the mesh, there exists a closed cycle
to which it belongs; therefore, there exists M (k) (which does not depend on A) such that

UM (2, d) < %") (48)

then
0 < AUM < M(k).

Moreover, two points (z',d) and (2%,dp) of V¥ x D, can be joined by a path. This path has
an associated cost that is uniformly-bounded with respect to A. in consequence there exists
K (2%, z%,d,do) such that

UM (2, d) — UM (2%, do)| < K(2',2%.d, dy). (49)

Let {)\*} be a sub-sequence such that there exists f1, w(z*,d) for which the following conver-
gence holds.

MUK (2 do) — [, (50)
A UM (2t d) — UM (2%, dy) — w(z',d). (51)
By virtue of (49), Vz* and Vd
XU K do) — fi. (52)
Let us see that (w, 1) is a solution of P*. We have, Va' € V¥, Vd = 0....,m,

U’\"’k .’ri,d _U,\",»k l‘io,do — P/\U,\",k) l‘i,d _ U’\V’k(l'io,do —
k

min ((DQ"’U""*") (z%) — UMk (a0, do), (S UN"*) (z') — UM+ (fo,do)) .
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(DU *) () = UX*(z%, do) =
UMk (2" + hg(d),d) — U* (¢,do) + h* f(a',d) = X B U"* (&7 + h? g(d), d) .
By taking limit when A¥ —0, we obtain
(Di(w, ) (2%) = w (+ + b g(d),d) + - (f(a",d) — 1) .
Morcover, as

(87U"4) (&) = U H (", do) = mmin min (g(d,d) + U*"*(z',d) - U"*(z", o) ),

we have 4 .
/\lsmo (Sd ur" “) (') — U"* (:L"O,do) = S%(w)(z?).

Finally, V2' € V¥, ¥d = 0, ..., m, we have |

lim U ‘(1 d) — U *(a%, dy)

Av—0

=lim (min ((D}*U"F) (a') = UN* (2%, do) , (STUNF) (') = UX"* (a2, do) ) )

= min (lim (D}*0Y") () - UM (2, do) , lim (S*UP"%) () = U+ (2, o))

v—0

— min ((DS(w, ) (%), SH(w)(a"))
i.e., we have ' . '
w(z*,d) = min ((Dg(w, @) (%), §*(w) (),
in consequence (w, fi) is a solution of P¥. From Proposition 4.1 it results
T
As the subsequence A that we have chosen is arbitrary, we conclude that there exists a

unique accumulation point. This conclusion implies that all the sequence is convergent, i.e.

lim AUM(2,d) =

A—0
]

Remark 4.8 In fact it can be proved - using basically the fact that the set of feedback
policies of the discrete problem is finite — that the following cstimation of the convergence
velocity holds .

AUM — 1F| < C(k) A

The proof uses elementary arguments and it will be omitted for the sake of briefness.

[0}
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4.3 Convergence of the method

Theorema 4.2 The following estimation for the difference between the optimal average cost
of the ortginal continuous problem and those corresponding to its discrete approximation holds

lu—p*| < Ch. (53)

Proof. We use the following triangular inequality

Dn\ _ U/\,kH + I/\ Uv\,k _ #k‘ ]

i —pf| < ,,u—/\U’\’-}—A

By taking limit when A —0 we obtain (53), since by virtue of [2] it is verified
C(K)

o - v, < S8

being '
U = U] = max {|U}&) - UM (z,d)| : = € VE(K. de D},
where K is a compact set that does not depend on & such that

KcQ, Knap- =0.

5 Numerical algorithm

We define here an algorithm which uses value iteration and policy iteration techniques and
also makes use of the properties established in Theorem 3.2. This algorithm takes into
account the methods described in [17], [21] and it is a natural modification of the algorithm
presented in [2].

5.1 Preliminary definitions

e e¢—suboptimal multi-valued discrete controls associated to w: A,

A €A
(54)
(A w)(2',d) = (B.w)(2",d) N (Cew)(a',d),
where '
(B.w)(z*,d) = {JG D : (Paw)(z",d) +e> q(d,(Z) + w(mﬂf)} .
{d} if (Paw)(', d) > (Dtw)(z') —¢. (55)

(Cew)(a',d) = . |
0 if (Pauw)(zl,d) < (D5w)(2?)—e.
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e Lincar system associated to a feedback discrete policy A € ©.

We consider a linear system that we denote in a brief way
L(u,p) =b. (56)
For this system, the relation that defines each equation is

u(z’,d) = (D} u, ) (a?) if A(u)(2'.d) =d,

u(a?,d) = q(d,d) + u(2’,d) if A(uw)(2'.d)=4d.
For the discount problem A, we also consider the linear systery associated to a policy
Ae€®©
L =3, (57)
where the relation that defines each equation is
w(z?,d) = (D) u)(a?) if A(u)(z’.d) =d.

u(z',d) = q(d.d) + u(z’,d) if A(w)(2".d)=d.

Ity
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5.2 A fast algorithm

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step- 9:

Step 10:

Step 11:

Set A>0,0<y<l,wPeF, >0, e>0, vr=0, A=\
v=v+1, n=0 A = {@}(m+1)xN
7 =7+ 1, compute w*" = P} (w1 1), AYT = A (w"")

If A" =AY, r=r+1, and go to Step b
else, r = 0, AY = A¥" and go to Step 3.

Ifr>7, gotoStep3
else, choose any A" € © such that
V(z?,d), A(2,d) € A¥(2',d)
and construct the system L* associated to A*"

If det(L*) # 0, compute the solution v of the system L*v = j3
else, r =0, A" = {(Z)}(m“)"N, and go to Step 3.

fo#P v, f (v=00rv<uw"), w¥=v,v=v+ln=0r=0
: A = {0} " and go to Step 3

Form the system L associated to A*"

Test if the system L(u, u*) has at least one solution and compute it
else, go to Step 11

If TEST(u, p*, A7) = 1, end (A" is an optimal policy)

1 .
w10 = Z ¢, AF! =) and go to Step 2
Y

Remark 5.1 Essentially the function TEST must check that the policy A%", is optimal
for the discrete problem with average criterion. This property holds if the pair (u, p*) is a
solution of (43).

Although the pair could not be a solution of (43), the policy A*” may be optimal in the
sense that there is another pair (w, u*) which is a solution of the system L(w, u¥) = b, and
that in addition it is a solution of (43). If this holds, TEST brings a function with that

property.
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5.2.1 Definition of the auxiliary function TEST

The function TEST(-u., ik, A) is computed by the following algorithm:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

v=1 w=u A"=A

- compute S¢ = {cycles associated to A}

if w¥ = Py(w?, u¥) TEST=1. End.

v = Pp(w?, u¥)
choose (2°,dg), such that v(2%, dg) < w(2?,do)

compute O(w", u*) and choose any Ae M, u*)

form A € © in the following way:

Az, d) = A™(a*,d), if (2%,d) # (2°,do)

A(2°,do) = A(2°, do)
compute C = {circles associated to A}

if C is not included in C, TEST = 0. End
else, find the maximum element of the set of vectors w that

L(w,p*) = b,

imawaO,
a3

where L is the linear system associated to 4
v=v+1, w¥=w, A" = A, and go to Step 2.

Remark 5.2 The function TEST is defined in such a way that when for a pair w - solution
of the L system associated to policy A*7 - the optimality condition is satisfied, we have

TEST(u, u*, A*") = 1.

Remark 5.3 It is clear that the maximum element computed in Step 5, can be found by
solving a linear programming problem. The existence of maximum element is immediate
and the search of this element can be solved by an ad-hoc algorithm without using a general
linear programming procedure. '

Proposition 5.1 The algorithm, which computes the values of the TEST function, con-
verges in a finite number of steps.

tw
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Proof. Let us suppose, by reductio ad absurdum, that the algorithm originates an infinite
sequence of values w®. By construction, it would generate a sequence of Markov’s chains
where the sets of associated cyeles are non-increasing in the following sense

C(A"Y) C C(AY).

In conscquence, after a finite number of steps C(A?) would remain fixed. From this condition
it is possible to see that the sequence of functions w" is decreasing and can only take a finite
number of values. This is a contradiction to the supposition that the sequence is infinite.

d

Lemma 5.1 If in the previous algorithm the set S¢ is not included in. S¢, there exists another

cycle C such that p(C) < p*.

Proof. Let C be a new cycle with ¢ nodes that, without losing generality, we will denote
by ,
C = {(Il,dl), ...,ﬂ:q,dq)} s

1.e. (.’L‘j;l,dj;ul) — (T(J;j,dj), A(:L'j,dj));

(a',d1) = (T(a%dy), A(z%,d,)).

By construction, we have that for every j = 1, ..., ¢ it is verified

(i . . g Joq. ol gV ((xj“l)d, - (xj)d,> k
w(z?,d;) > w(T(27.d;), A(2?,d;)) ﬂ—Fdj(m , 277, A2l d;)) u®,

Pd; — Td;

where at least one inequality is strict, hence

q
> w(l,d;) >
=1

zq:( (T(2?,d;), A(27, d;)) +Fdj(g_-.7'?xj—1’4(xj’dj)) 3 ((zf—l)dj - (m)d})#k).

— Pa; = T4,
As
owleddy) = Y w(l (@, d), A, dy)).

j: ]:]

Zq:Fd](a,J,J:j"],A ) < Zq: <(sz D, — (27)4, >#k'
=1

-
= Pd, d;

q q
1

we obtain
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In consequence, the average fi* along the new cycle satisfies

q
ZFdJ(:rj’Ij; x3"4(‘1-7’d1))

S

j=1 J

5.3 Convergence of the algorithm

Theorema 5.1 The algorithm. converges in a finite number of steps

Proof. The algorithm cannot remain in an infinite loop from Step 3 to Step 7 by virtue
of [13]. We will also see that the algorithm can not produce an infinite sequence by passing
through Step 11. In effect, if it passed through Step 11 an infinite number of times, it would

generate a sequence A” —0.
In fact, for the A*7 obtained after Step 7, we have that for every cycle associated to C,

N UNK(2 d) = u(C)  VY(2'.d) eC.
At the same time. by virtue of Theorem 4.1
UMKt d) - u* Y(z',d) e VF x D,

then, from some 7 it results VC
k
u(C) = pt,
i.e. the policy A*", is optimal, then it results TEST=1 and the algorithm finishes in a finite
number of steps generating the optimal discrete solution.

()

Iz



6 Applications

We have applied the above presented procedure to an example with m = 2 items and a
discretization of ¢} which comprises 50x50 nodes. The instantaneous cost function is linear
and does not depend on the parameter d, i.e.

flzy,29) = Cra;y + Coy Vd € D.

In Figure 2 it is shown the optimal trajectory obtained.

M; =0.833 | My, =0.833

7’1—"—"1 7‘2=1

I
)

D1 p2=15

01:01 02201

do,1 = 15 Q0 = 0

Qo2 =3 G0=10

g2, = 19 di2 =3

hy =0.017

Table 1:
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7 Conclusions

In this paper, we have presented both analytic and numerical results concerning the opti-
mization of the production schedule of a multi-item single machine system, for the case of
infinite horizon and average cost criterion.

We have analyzed the associated HJB equation (which here takes the form of a variational
inequalitics system of H-J-B type). We have proved the existence of solution of this QVI
system and the uniqueness of the optimal average cost.

We have also obtained a method of discretization which principal features is that the ap-
proximation has a A-order precision. This property stems from the fact that the optimal
cost functions of the problems with actualization coefficients A are uniformly Lipschitz con-
tinuous with respect to the parameter A, and from the especial type of mesh used in the
triangulation procedure.

In addition, we have developed a computational algorithm that obtains the solution of the
discrete problem in a finite number of steps. This property is also a consequence of the
especial type of mesh used.

'
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Figure 2: State space trajectory

"
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