N

N

Numerical Computation of a Polynomial GCD and
Extensions
Victor Y. Y. Pan

» To cite this version:

Victor Y. Y. Pan. Numerical Computation of a Polynomial GCD and Extensions. RR-2969, INRIA.
1996. inria-00073729

HAL Id: inria-00073729
https://inria.hal.science/inria-00073729
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073729
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

NUMERICAL COMPUTATION OF A
POLYNOMIAL GCD AND EXTENSIONS

Victor Y. Pan

N° 2969
Aol 1996

THEME 2

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

NUMERICAL COMPUTATION OF A
POLYNOMIAL GCD AND EXTENSIONS

Victor Y. Pan>|<

Theme 2 — Génie logiciel
et calcul symbolique
Projet SAFIR

Rapport de recherche n 2969 — Aofit 1996 — 38 pages

Unité de recherche INRIA Sophia-Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 9365 77 77 — Télécopie: (33) 93 65 77 65

2 Victor Y. Pan

Abstract: In the first part of this paper, we define approximate polynomial
geds (greatest common divisors) and extended geds provided that approxi-
mations to the zeros of the input polynomials are available. We relate our
novel definition to the older and weaker ones, based on perturbation of the
coefficients of the input polynomials, we demonstrate some deficiency of the
latter definitions (which our definition avoids), and we propose new effective
sequential and parallel (RNC and NC) algorithms for computing approximate
geds and extended geds. Our stronger results are obtained with no increase
of the asymptotic bounds on the computational cost. This is partly due to
application of our recent nearly optimal algorithms for approximating polyno-
mial zeros. In the second part of our paper, working under the older and more
customary definition of approximate gcds, we modify and develop an alterna-
tive approach, which was previously based on the computation of the Singular
Value Decomposition (SVD) of the associated Sylvester (resultant) matrix. We
observe that only a small part of the SVD computation is needed in our case,
and we also yield further simplification by using the techniques of Padé ap-
proximation and computations with Hankel and Bezout matrices. Finally, in
the last part of our paper, we show an extension of the numerical computation
of the ged to the problem of computing numerical rank of a Hankel matrix,
which is a bottleneck of Padé and Berlekamp-Massey computations, having
important applications to coding and transmission of information.

Key-words: polynomial greatest common divisors (geds) and extended geds,
approximate gcds, Sylvester matrices, subresultant matrices, Hankel matri-
ces, Bezout matrices, Berlekamp-Massey computations, Padé approximations,
Hankel numerical rank.

1991 Mathematics Subject Classification: 68Q40, 47B35, 65D99, 68Q25,
65Y20, 65F30.

(Résumé : tsuvp)

* Current address: Mathematics and Computer Science Department Leh-
man College, City University of New York Bronx, NY 10468, USA Internet:
VPAN@LCVAX.LEHMAN.CUNY.EDU (Supported by NSF Grant CCR 9020690 and
PSC CUNY Awards Nos. 665301 and 666327)

INRIA

CALCUL NUMERIQUE DE PGCD DE
POLYNOMES ET EXTENSIONS

Résumé : Nous définissons les pged (plus grand commn diviseur) approchés
et généralisés de polynomes en fonction des valeurs approchées des racines des
polynomes en entrée. Nous relions cette nouvelle définition aux plus anciennes
et plus faibles en termes de perturbation des coefficients des polynoémes en
entrée ; nous montrons des lacunes des définitions déja existantes (lacunes
qu’évite notre méthode) ; puis nous proposons de nouveaux algorithmes effec-
tifs séquentiels et paralleles (RNC et NC) pour le calcul des pged approchés
et généralisés. Nos meilleurs résultats n’améliorent pas les bornes asympto-
tiques du coft des calculs. Ceci est partiellement di a4 une application de notre
récent algorithme presque optimal pour I'approximation des racines d’un po-
lynéme. Nous étudions aussi et développons une autre approche inspirée des
techniques d’approximation de Padé et de calcul de matrices de Hanhel et de
Bezout. Nous montrons ensuite une nouvelle extension du probleme de calcul
numérique de rang de matrice de Hankel, goulet d’étranglement des calculs de
Padé et de Berlekamp-Massey, ayant d’importantes applications en traitement
du signal, théorie du codage et de la transmission d’information.

Mots-clé : Plus grand diviseur commun de polynoémes, pgcd approchés,
matrices de Sylvester, matrices de sous-résultants, matrices de Hankel, ma-
trices de Bézout, calculs de Berlekamp-Massey, approximation de Padé, rank
numérique de Hankel

4 Victor Y. Pan

1. Introduction

Historically, the fields of algebraic computation and numerical computa-
tion have been developed by two distinct groups of people, having relatively
little interaction and overlaps with each other. Recently, however, substantial
efforts have been spent in order to bridge the gap between the two fields (com-
pare [AS88|, [BP94], [C88], [C90], [CGTW95|, [H90], [HS,a|, [KM94], [KM95],
[M94], [M94a], [MC93]|, [MD92]|, [MD94]|, [MD95], [MS95|, [NS91]|, [P87], [P92],
|PRT92|, [PSLT93|, [P94], [P95|, |[PZDH,a|, [R94], [S93|, [S93a|). Our present
paper should also contribute to these efforts: we study numerical approach to
computing polynomial greatest common divisors (geds) and extended geds, and
we show some further relations and applications to Toeplitz-Hankel computa-
tions, Padé approximation, and solution of the Berlekamp-Massey problem.

Computation of polynomial gcds is one of the fundamental problems of
algebraic computing. On the other hand, this is an excellent example of nu-
merically ill-posed problems. Consider, for instance, two polynomials u(x)
and v(z), where v(z) has a positive degree and divides u(z). Then, ged
(u(z),v(x)) = v(z) has a positive degree, but ged (u(z) + 6,v(x)) = 1 for
any constant 6 # 0. Thus, even an arbitrarily small perturbation of the input
polynomial u(z) may cause a dramatic jump of the output ged of u(z) and
v(x).

The study of this important subject has become popular in recent years
due to the pioneering papers [Sc85], [NS91], [KM94|, [HS,a], and [CGTW95],
in which approximate gcds have been defined so as to avoid the latter de-
ficiency. Namely, for two polynomials u(z) and wv(z), for the polynomial
norm || Y pia’ |= > |pil, and for a real b, an approximate ged, d*(z) =

ged™ (u(z), v(x)), has been nonuniquely defined as ged (u*(x), v*(z)), where
deg u*(z) < deg u(x), degv*(z) < degwv(z), (1.1)

| u*(z) —u(@) [27" [ul@) I, [[vi(@)—v@) <2 [v@) |, (12

and u*(z) and v*(z) satisfying (1.1) and (1.2) are (nonuniquely) chosen so as
to maximize deg d*(z). (In [Sc85|, a similar definition applies to bivariate
homogeneous polynomials u(x, z) and v(z, z) obtained from u(z) and v(x), so
that u(z,1) = u(x), v(z,1) = v(z); this allows one to treat degenerated u(z)
and v(z), of smaller degrees, by adding their zeros at the infinity.)

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 3

The algorithms of [Sc85], [NS91|, and [HS,a| for computation of such ap-
proximate gcds modify the Euclidean algorithm, which is the classical and
most common algorithm for the ged computation, whereas [CGTW95| relies
on computing the Singular Value Decomposition (SVD) of the resultant (Syl-
vester) matrix, S = S(u,v), associated with the equation

f(@)u(z) + g(x)v(z) = d(z), (1.3)

where
d(x) = ged(u(z), v(z)), (1.4)
deg f(z) + deg d(z) < deg v(x), (1.5)
deg g(z) + deg d(z) < deg u(z). (1.6)

|The triple of d(z), f(z), and g(z) is called extended gcd of u(z) and v(x).|
The SVD reveals numerical rank r of S, which defines an upper bound d, on
the degree d* of d*(x) [G95]. Assuming that, furthermore, the degree d* itself
is known, one may choose among four approaches to computing d*(x) listed
in [CGTW95|. In particular, according to one of the latter recipes listed in
|[CGTWO5], the cofactor polynomials f(x) and g(z) can be computed from a
nonsingular linear system of r equations defined by (1.3), and then, the ged
d(z) is easily obtained from the polynomial equation (1.3). The three other
approaches listed in [CGTW95| amount to the Euclidean algorithm, to a least-
squares approach, which apparently was included into the list for the sake of
completeness since, in its rudimentary form shown in [CGTW95]|, it leads to
severe numerical stability problems (|[GL89], Section 3.5.5), and to a version of
Lazard’s algorithm [L81], which is equivalent to the matrix pencil algorithm
of [KM94]. In [KM94| the authors use terminology of automatic control to
describe their approach, which involves the resultant and companion matrices
associated with the input polynomials u(x) and v(x).

All of the cited papers, except for [Sc85]|, only present heuristic algorithms
that may fail for a large class of input pairs of polynomials. Furthermore,
the papers give no recipe for certification that the output is, indeed, a desired
approximate ged. Neither of the papers, including [Sc85], shows a good parallel
algorithm for approximate geds, and in fact, the power of parallelism seems to
be inherently limited, at least, for the Euclidean algorithm approach.

-
S Ot

RR n "~ 2969

6 Victor Y. Pan

The record sequential estimate for the number of bit-operations required
for computing such an approximate ged is O((b+ n)n?). [Here and hereafter,
O(f(b,n)) denotes O(f(b, n)log®(bn)) for some constant c, that is, denotes the
values of order f(b,n) up to a polylogarithmic factor in bn.] More precisely,
the latter bit-cost bound has been obtained (in [Sc85]) under the assumptions
that

m = deg v(z) < deg u(x) =n,
0.5 <||u(z)||<1, 0.5<|v(z)]<T1,
and all the zeros of u(z) lie in the disc {z : |z| < 0.25}.

The next example shows another problem with all the cited approaches.
Namely, the idea of shifting from the input polynomials u(z) and v(z) to their
2~b_neighbors appears to be quite natural but may lead to some undesirable
consequences.

Example 1.1. Let b = n be large, u(z) = 2", v(z) = (z — 0.5)""%. Then
ged (u(z),v(z)) = 1. Moreover, the distance between the only zero z = 0 of
u(z) and the only zero z = 0.5 of v(z) is large enough to suggest that, under
any reasonable definition, an approximate ged of u(x) and v(x) should be a
constant too. Under the cited definition of [Sc85|, [NS91], [KM94], [HS,a|, and
[CGTW95], however, such an approximate gcd equals — 0.5, since we may
choose, say, u*(z) = u(z) — 27" and v*(z) = v(z). Thus, perturbation of u(x)
by 27° (for b = n) may cause a gigantic jump of an approximate ged if it is
defined as above.

Our present paper extends the study of numerical computation of the ged
into three directions. Pursuing our first direction, we impose some require-
ments on approximate geds that both imply (1.2) (cf. our Lemma 3.1) and
enable us to exclude the above undesired phenomena of amplification of small
input perturbations, heuristic character of the computation and absence of
the output certification. In spite of such stronger requirements, we will still
compute an approximate ged, for any pair of input polynomials u(z), v(z),
by using O((b + n)n?) bit-operations, as under the assumptions of [Sc85]. In
terms of the number of arithmetic operations and comparisons involved, we
reach the bound O(n?) (see the end of Section 4).

Moreover, unlike the previously known algorithms, our algorithms allow
their substantial parallel acceleration. Namely, they only require to use po-
lylogarithmic parallel time and polynomial number of processors (thus being

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 7

in NC or RNC), under the customary PRAM models of parallel computing,
which we will assume when we state our parallel complexity estimates. (The
reader is referred to [KR90|, [BP94| on definitions of PRAM models, NC and
RNC.) Furthermore, except for some auxiliary computation of matchings or
connected components in graphs, our algorithms only require some computa-
tions with polynomials, which are essentially reduced to application of FFTs
on the n-th roots of 1, and such an FFT only requires O(logn) time and si-
miltaneously n processors, under PRAM models, as well as under some more
realistic models of parallel computer architecture, such as hypercube, butter-
fly, and shuffle-exchange processor array models (see e.g. [Le92|, Section 3.7,
or [Q94], Chapter 8).

Besides various computational advantages, our approach provides an alter-
native insight into the problem of numerical computation of the gcds since the
essence of the problem is most clearly revealed via the study of the correla-
tions between the perturbation of the zeros of the input polynomials and the
perturbation of their ged.

The approach of our present paper that has lead us to the cited results on
approximate gcds relies on the reduction of the problem to approximating po-
lynomial zeros, where we apply the recent effective algorithms of [P95|, [P96]
(cf. Remark 3.2 in Section 3). In spite of high attention of the researchers to
polynomial zeros and ged, it seems that the latter direction, involving the com-
putation of maximum or maximal matchings and/or connected components in
bipartite graphs, has never been explored.

The second direction of our study is described in Sections 6 and 7, where
we relate the ged of u(z) and v(z) to Padé approximation of the formal power
series defined by the ratio u(1/x)/v(1/x) and to the associated Hankel matrices
and Bezout linear systems. While developing this approach, we demonstrate
its four substantial advantages over the earlier SVD approach of [CGTW95]
(in particular, in terms of both numerical stability and computational cost).
Namely, we avoid computation of the SVD, since, in our case, we only need
to compute the sign sequence for the values of the characteristic polynomials
of the associated matrix and its leading principal submatrices, which only
amounts to one of the several stages of the customary algorithms for the SVD
(cf. |GL89|, |[Par80|). Moreover, unlike the SVD computation (which involves
irrational values even where the input is integer), our modification enables us

RR n "~ 2969

8 Victor Y. Pan

to perform all our computations by using rational arithmetic (with no roundoff
errors) and a few comparisons (cf. Remark 7.1 in Section 7). Furthermore,
in the major case where the input is real, the computations can be further
simplified since we operate with Hankel and Bezout matrices, which are sym-
metric, unlike Sylvester matrices used in [CGTW95]. Finally, application of
Bezout matrices enables us to improve numerical stability of the computations
dramatically (cf. [BP94|, Sections 9 and 10 of Chapter 2). It should be noted
that in our second approach, of Sections 6 and 7, we have yielded model in-
dependent improvements of the earlier approach of [CGTW95|, since in these
sections we have assumed a customary definition of approximate gcd, used in
[CGTWO5]; this assumption has facilitated the comparison of our approach
with the one of [CGTW95] but has also implied that, in these sections, like
in [CGTW95], we have only computed an upper bound d; on the maximum
degree d* of approximate gcds, instead of computing the value d* itself. Unlike
[CGTW95], however, we have supplemented (at the end of our Section 7) an
extension of our approach of Sections 6 and 7 to computing an approximate
ged of degree d*, based on a certification algorithm that relied on a simplified
application of our techniques of Section 3 (cf. Remark 3.3).

Our third approach, presented in Section 8, may have substantial practical
impact. Here, our goal is the computation of the Hankel numerical rank of a
Hankel matriz H. We use this term in order to define the minimum rank of
Hankel matrices H* that approximate H sufficiently closely (under a fixed rule
of measurement). The latter computation is the bottleneck of numerical com-
putation of Padé approximation of an analytic function, which is computatio-
nally equivalent to numerical recovery of the coefficients of a linear recurrence
(of a length at most n) from its 2n first terms, known as the Berlekamp-Massey
problem (see [Gr72|, [BGY80|, and Problems 1.5.2b and 1.5.3 and their solu-
tion algorithms in [BP94|). The Padé-Berlekamp-Massey computations have
many highly important applications in the areas of symbolic computing (for
instance, to sparse multivariate polynomial interpolation [BP94|, Section 1.9),
signal and image processing, and coding theory and practice (in particular,
Berlekamp-Massey computations are crucial stages of the linear feedback re-
gister synthesis and the BCH decoding [Be68|, [BGY80]). In Section 8, we
reverse the direction of our Sections 6 and 7 and show an extension of our
first approach (as well as of any black box algorithm for numerical polynomial

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 9

geds) to designing effective algorithms for the computation of Hankel nume-
rical ranks of Hankel matrices. The algorithm of Section 8 is immediately
extended to computing the Bezout, Toeplitz, and Sylvester numerical ranks of
the Bezout, Toeplitz, and Sylvester matrices, respectively.

Our approach of Section 8 has some distant technical resemblance to one
stage of one of the algorithms of [P96] for splitting a polynomial into two
factors over a fixed annulus free of the zeros of the input polynomial. In the
present paper, however, we reverse the direction of [P96|, where the ged and
Padé computations are used as auxiliary tools for approximating polynomial
7ZeT0S.

More recently, the present author has learned about two other interesting
papers on approximate geds, [EGL96| and [KL96]. In the former paper, a
lower bound on the degree d* of the approximate gcds has been computed
via Euclidean algorithm, and an upper bound has been computed via SVD
of the associated Sylvester matrix; for a large class of input pairs of polyno-
mials (though not for all inputs) these two bounds coincide with each other,
which completes the soluton. In the latter paper, quadratic programming tech-
niques (which can be viewed as an extension of the least-squares approach of
|[CGTWO5]) are applied in order to compute the degree d* itself, as in our
present work, though the computational cost bound, stated in [KL96| in terms
of the number of the arithmetic operations involved, is a polynomial of a hi-
gher (unspecified) degree in m + n and is exponential in d*, that is, this cost
bound is generally much higher than the arithmetic bound O((m + n)?) of
our paper. In both papers [EGL96| and [KL96|, approximate gcds have been
defined based on the relations (1.1), (1.2).

In the next six sections, starting with some preliminaries in Section 2,
we will describe and analyze our first two approaches. In Section 8, we will
show our extension of the second presented approach to computing Hankel
numerical rank of a square Hankel matrix. Section 9 is left for a summary and
brief discussion.

Acknowledgements. I gratefully acknowledge receiving reprints of [CGTW95]
from Andre Galligo and Erich Kaltofen and a preprint of [HS,a| from the for-
mer. My present work was substantially motivated by Andre Galligo’s com-
ments on [CGTW95|, delivered in [G95|, and partly by Erich Kaltofen’s interest
to the computaton of numerical rank of a Toeplitz matrix.

RR n "~ 2969

10 Victor Y. Pan

2. GCDs of Polynomials Represented by Their Zeros
Suppose that we have precomputed all the zeros of the input polynomials
u(z) and v(z) so as to represent these polynomials as the products of linear

factors:
h

u(zr) =u H(x —)", (2.1)

v(z) =0 1:[1(3: — zj)%, (2.2)

for complex u, v, y;, and z; and for positive integers u; and v;, where y;,...,yn
are pairwise distinct, z1, ..., 2 are pairwise distinct, and n = Z u; >m = Z ;.

? J

Then, we may compute a unique (up to scaling) polynomial, ged u(x),v(z)),
as follows:

Algorithm 2.1, computation of gcd.

Input: positive integers h, k, u1, ..., up, v1, ..., Uk, and complex u, v, y1, - - ., Yn,
21y ..., 2K, Where n = 2“1 >m = Z“j-

? J

Output: d(z) = ged (u(z),v(x)) for u(x) and v(x) defined by (2.1) and
(2.2).

Computation:

1. Doforj=1,...,k
if there exists ¢ = i(j) such that y; = z;,

then store the pair of z; and p; = min(u;, v;).

2. Compute and output the coefficients of the polynomial d(z) = [](z —

j
zj)*, where the product is over all j, for which the pairs of z; and y;

have been stored. (If no such pairs have been stored, output d(z) = 1.)

Correctness of the algorithm is immediately verified.

Let us estimate the computational cost of performing it.

Hereafter, O(t,p) denotes the simultaneous bounds O(t) on time and O(p)
on the number of processors involved, where we allow performing an arithmetic
operation or a comparison by any processor in unit time and where we assume

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 11

that O(t, sp) implies the bound O(st, p) for any s > 1 [KR90|, [BP94], so that,
in particular, the bound O(t, p) also implies the bound O(tp,1), that is, the
sequential time bound O(tp).

Stage 1 of Algorithm 2.1 can be performed (in a single parallel step) by
using at most hk < mn < n? comparisons, that is, at the cost O(1,n?).

Stage 2 can be reduced to recursive polynomial multiplications that can be
performed by using O(mlog® m) arithmetic operations executed in O(log® m)
parallel steps (compare, e.g. [BP94|), that is, at the cost O(log® m, m).

3. GCDs of Polynomials Represented by Approximations to
Their Zeros

Now, assume that the input polynomials u(z) and v(z) are represented
by their zeros y; and z;, defined within a fixed absolute error bound ¢, that
is, instead of u(z) and v(z), we are given a class of pairs of approximation
polynomials, %(z) and @(x), with their zeros lying in the -neighborhoods of
y; and z;, respectively. Then, the geds, d(z), of all such pairs 4(z) and o(x)
will be called 6-geds of u(x) and v(z), and among them, we will seek ones of
the maximum degree, ds, which we will call mazimum §-gcds. Alternatively,
one may seek a mazimal d-gcd, which divides no d-ged of a higher degree. For
0 = 0, both classes coincide, but not always so in the case of a positive 9.

Let us next relate 6 and b, for which polynomials with the zeros in the
0-neighborhood of the zeros of a given polynomial have their coefficients in the
270-neighborhood of its coefficients [compare (1.2)].

Lemma 3.1. Let u(x) and a(x) denote two polynomials of a degree n, with
the same leading coefficient u and with their zeros y; and ¥;, respectively, such
that

|y,—gz|§5, i=1,2,...,7’b.

Then
| @(z) —u(z) |<|| ul=) | (1+6)" —1) .

Proof The value || u() —u(x) || / || u(x) || reaches its maximum for

n

—uH Yi) =u[](z — y; —) = u(z — §) and for some nonne-
] =1

RR n " 2969

12 Victor Y. Pan

gative y;, 1 = 1,...,n. For such u(x) and u(x), we have

| a() I—Wlﬁjiﬁ’ <V/Z'H<i§:|IU“)it o <

lu@ 135 (1) =@ @ ar -).

O
In particular, if
<1420 —1, (3.1)

then (1+6)" <1+ 27° and consequently,

li(z) —u@) <27 [[u] -

Similarly, we have || 9(z) — v(z) [|< 27°, thus satisfying (1.1) and (1.2) for
u*(z) = u(z) and v*(z) = 0(z), having their zeros in the d-neighborhoods of
the respective zeros of u(z) and v(z) for § of (3.1).

Corollary 3.2. Let § < (1+27%)Y™ —1. Then, any 6-gcd of u(x) and v(x)
is a ged of two polynomials u*(x) and v*(x) satisfying (1.1) and (1.2), provided
that deg u(z) < n, degv(x) < n, provided that deg u(z) < m, deg v(x) < n.

Next, we will extend Algorithm 2.1 to computation of d(z) = ds(z), a
maximum J-ged of u(z) and v(z).

Algorithm 3.1, computation of a mazimum 0-gcd.

Input: positive § and complex w, v, Y1, ..., Yn, 21, .-+ 2Zm, M < N.

Output: coefficients of a maximum J§-ged, cz(s(:r) of the two polynomials,

f[a:—yz Ha:—z] . (3.2)

Computation:

1. For all pairs (4,7), i =1,...,n, 5 =1,...,m, test if |y; — z;| < 26. If so,
store the pair (7, j).

2. Define a bipartite graph, G, by two sets of its vertices, Y = {y1,...,yn}
and Z = {z,...,%m}, connected by an edge (y;,2;) if and only if the
pair (i,7) has been stored at Stage 1. In this graph, compute a maxi-
mum matching (vi,, 25,), - - -, (¥i,, 2j.), that is, one having the maximum
cardinality, r

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 13

3. Compute and output the coefficients of d(x) = ds(z), a d-ged of u(z) and
v(x), defined by the equations

r

ds(z) = -z, zy= (v, +2,)/2, a=1,...,r.
q=1

Correctness of the algorithm is immediately verified.

Let us estimate the computational cost of performing this algorithm.

Stage 1 involves less than n? subtractions and as many comparisons, which
all can be performed in two parallel steps, that is, at the cost O(1, n?).

Stage 2 can be performed sequentially by using O(n*®°) comparisons [HK73],
that is, at the cost O(n??, 1), or by using O(log® n) parallel steps that perform
O(n*38) comparisons and arithmetic operations [GP8§|, [CW90], that is, at
the cost O(log® n, n33%).

Stage 3 is similar to Stage 2 of Algorithm 2.1 and has the same cost es-
timates, that is, O(n log? n) arithmetic operations that can be performed in
O(log® n) parallel steps.

The precision of the values involved in this computation (for § = 28 /(||u(x)||+
lv(x)][)) is bounded by O(B) at Stage 1, by O(logn) at Stage 2, and by
O(Bds), ds = degds(x), at Stage 3. Under these bit-precision bounds, the
cited complexity estimates are easily translated into Boolean (bit-) complexity
bounds. In particular, the overall sequential bit-operation cost of performing
Algorithm 3.1 is bounded by O(n’B + n??).

If one is satisfied with having a maximal (rather than maximum) §-ged,
then Algorithm 3.1 can be simplified since at its Stage 2, one will only need
to compute a maximal (rather than maximum) matching, that is, a matching
not being a subset of a larger matching in G. A maximal matching can be
computed by using O(n?log®n) comparisons performed in O(log®n) parallel
steps [IS86], that is, at the cost O(log®n,n?), or with randomization (under
the CRCW PRAM models) in O(n*logn) comparisons performed in O(logn)
parallel steps [II86], that is, at the cost O(logn, n?).

Remark 3.1. §-ged of u(z) and v(zx) is constant if and only if the graph
G has no edges, so Stage 2 of Algorithm 3.1 can be removed if one only needs
to test numerically whether u(z) and v(z) are relatively prime.

Remark 3.2 Let us recall the complexity estimates for approximating
polynomial zeros, which can be viewed as a preconditioning stage for the com-

RR n "~ 2969

14 Victor Y. Pan

putations of this and the two next sections. We will recall that deg u(x) =n >
deg v(z) = m and will further assume that all the zeros of u(x) and v(x) lie
in the unit disc {x : |z| = 1}. (The latter assumption can be satisfied by
means of scaling the variable x, since the maximum distance from the origin
to the zeros of u(z) and v(x) is readily estimated [P95a], [P96].) Then, the
algorithm of [P95al, [P96] enables us to approximate all the zeros of u(z) and
v(z) within § = 278, at the cost of involving O(n) arithmetic operations or
O((B + n)n?) bit-operations, which all can be performed in polylogarithmic
parallel arithmetic time or in polylogarithmic Boolean time, respectively.

Remark 3.3 The pairwise distances between the zeros of the polynomials
u(z) and v(x) can be quite easily approximated even if we only know ap-
proximations to the zeros of one of the input polynomials. This is because
an effective algorithm is available that enables us to compute approximations,
d3, to the distances, d;, j = 1,---,k, from a fixed complex point simulta-
neously to all the k zeros of a given polynomial of a degree k (cf. [P87] or
Appendix B of [P96b]). In particular, such approximations within the rela-
tive error bound E(k) = c¢/k¢, for two fixed constants ¢ > 0,e > 0 [so that
dy <dj < (1+ E(k))d;, j=1,---,k], can be computed by using O(k log” k)
arithmetic operations.

4. A Simplified Algorithm for Approximate GCDs

Next, we will simplify the computations at Stage 2 of Algorithm 3.1, at
the price of relaxing some restrictions on the output polynomial J(x) Namely,
we choose d(x) among the (ud)-geds of u(z) and v(z), for some y satisfying
1 < pu < 4n — 6, but we only require that degd(z) > ds, that is, the degree
of d(z) is required to reach (or to exceed) the maximum degree, ds, of the
d-geds of u(x) and v(x), but is not required to reach d,s, the maximum degree
among the (ud)-geds. Later on in this section, we will extend this approach to
computation of a maximum é;-ged, for an appropriate 0;.

Algorithm 4.1, computation of a (u6)-gcd.

Input and Stage 1 of the computation are as in Algorithm 3.1.

Output: a real p, 1 < p < 4n — 6, and the coefficients of a (ud)-ged of
the polynomials u(z) and v(z) of (3.2), denoted d(z) and having a degree of
at least ds.

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 15

Stage 2. Define a bipartite graph G = G5 as at Stage 2 of Algorithm 3.1.
Then, compute all connected components of GG, ignoring only singletones that
have less than two vertices. For each component Cp, ¢ = 1,...,s, having at
least two vertices, let the two sets Y, and Z,, Y, C Y, Z, C Z, denote the
partition of the vertex set of C, induced by the partition of the vertices of G
into the two sets Y and Z. Letting |T'| denote the cardinality of a set T', write

v =Yy, K,=Y, if [V |<|[Z,], (4.1)

ve=\Z,, Ky=2, it |Y|>|Z,], (4.2)

for ¢ = 1,...,s. Compute and output p = pu(G) = 4dmax,; v, — 2,
K =K(6) =U;_, K,
Stage 3. Compute and output the coefficients of the polynomial

d(z) =][(= -a),

:CkEK

which is a (pud)-ged of u(z) and v(x) and has a degree of at most ds.

To verify correctness of Algorithm 4.1, observe that every simple path bet-
ween Y, and Z,, with all edges lying in (a component C, of) the bipartite
graph G, consists of at most 2y, — 1 edges (by the definition of v,). On the
other hand, each edge connects two vertices of G lying at a distance at most
26 from each other. Therefore, if z; € Y, (if z; € Z,, respectively), then any
point of Z, (respectively, of Y;) lies at a distance at most 2(2v, — 1)§ < ud
from z;. Finally, note that max, v, < Z,uq = n — 1, by the definition of v,

and that, consequently, y© = 4max, v, —(12 <4n — 6.

Clearly, the estimates for the computational cost of performing Stages 1
and 3 of Algorithm 3.1 also apply to the case of Algorithm 4.1, but Stage 2
(and, particularly, its parallel version) is substantially simplified, which im-
plies respective simplification of Algorithm 3.1, particularly, of its parallel ver-
sion. The computational cost of performing Stage 2 of Algorithm 4.1 is do-
minated by the cost of computing the connected components of the bipartite
graph . This computation only requires O(log2 n) parallel comparison steps,
which perform O(n?) comparisons of integers ranging from 1 to m +mn,m <n
[J92|, so the Boolean (bit) complexity of performing this stage is bounded by
O((log® n) loglog n, (n?log n)loglog n).

RR n " 2969

16 Victor Y. Pan

Next, we will extend Algorithm 4.1 to the computation of a maximum 6;-
ged, for an appropriate 6;. We may assume that the graph G has sy < m+n—2
components, for otherwise, every component of G would have had at most three
vertices, and then we would have easily computed a maximum J-ged of u(z)
and v(z). Now, suppose that we have performed Algorithm 4.1. Then, we
write g1 = p and compute the graph G = Gsuy, that is, the graph G of
Stage 2 of Algorithm 4.1 for § replaced by du;. In this case, for every ¢, every
pair of vertices y € Y,, z € Z, of the component C, of the original graph
G =GO =Gy is connected by an edge in the new graph G = Gs,,, that is,
the component C, turns into a bipartite clique. If the graph G has as many
connected components as G(©) has, then, clearly, the output polynomial cz(x) of
Algorithm 4.1 is a maximum (4)-ged of u(z) and v(x). Otherwise, the graph
G has fewer components than G. In this case, we may recursively compute
the graphs GU) = G, and the values p; = 4max, v,(GY~Y) — 2, where the
values v,(GU~1)) are defined by the relations (4.1) and (4.2) extended to the
graph GU™Y and where the maximum is over all connected components of
GU=Y j=2,3,..., until (in at most J < sy < m+n — 2 steps) we arrive at a
pair of graphs G('] &)) and G) having the same number of components. Then,
we perform Stage 3 of Algorithm 4.1 for K = Kj,, and output d(z) = ds,, (z),
a maximum (duy)-ged of u(x) and v(x). We will refer to the resulting algorithm
as to Algorithm 4.2. The deterministic complexity of its performance is
bounded by O(Jlog? n,n?), where J < m +n — 3.

Since u(GW) < 4n—6forall j, j = 1,2,...,J, J < m+n — 3, we may
alternatively set u(GU™Y) = 4n — 6, §; = (4n — 6)7, = 1,2,...,m+n — 3,
and compute the graphs GU) = Gy, for all j concurrently. Then we choose J
as the minimum 7 for which the graphs GY) and GU~Y have the same number
of connected components, apply Stage 3 of Algorithm 4.1 for K = Kj,,, and
output d(x) = ds,, (v), ps = (4n — 6)7, a maximum &;-ged of u(z) and v(z),
for §; = Sy < (4n — 6)76 < (4n — 6)™ 734,

We will cite the resulting algorithm as Algorithm 4.3, for computation
of a maximum d,-ged. Its correctness follows from the preceding argument.
The complexity of its performance is the same as for Algorithm 4.1 plus the
cost of construction of the additional bipartite graphs GO, ..., G") and of
computing their connected components. Therefore, the processor bounds of
performing Stages 1 and 2 are multiplied by m + n — 3, versus Algorithm 4.1,

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 17

whereas the time bounds at all Stages 1, 2 and 3 and the processor bound at
Stage 3 do not change, that is, we have the next deterministic bounds on the
overall cost, in terms of the number of arithmetic operations and comparisons
involved: O(1,n?) at Stage 1, O(log® n,n?®) at Stage 2, and O(log®>m, m) at
Stage 3 [we keep assuming that m < n].

Next, let us modify Algorithm 4.3 by applying binary search at Stage 2
in order to decrease its cost bound to the levels O(log®n,n?) (deterministic)
and O(log® n,n?) (randomized). Let E®) denote the edge set of the bipartite
graph G™ and let s, denote the number of connected components of this
graph, for h = 0,1,---,n — 2. Observe that F® is a subset of E**Y and
that 1 < spp1 < s < m+n — 3 for all h. At the first substage of Stage
2, which we will cite as Substage 2.1 of the entire algorithm, for every pair
(4,7),i=1,---,m; j=1,---,n, we apply binary search in order to compute
the integer [> 0 such that

2(2n — 6)'6 < |y — 2] < 2(2n — 6)'16

and include the edge (y;, 2;) into the edge set of the bipartite graph G if and
only if h > L.

Then, at the second substage of Stage 2, which we will cite as Substage
2.2 of the entire algorithm, we compute sy and s,, 1,3, observe that 0 < sq —
Sman—3 < m+n—3, and apply binary search in order to compute the minimum
k such that for some h, we have 0 < s, —sg1p < k. Clearly, £ > 1, and if £ = 1,
then, for the corresponding h, we have s, = s,,1, 50 that d(z) = dg,, (z) is a
maximum (duy)-ged of u(z)) and v(z), for du, = (4n—6)"5. We will cite such
an entire modification of Algorithm 4.3, for computing a maximum (uy,)-ged
of u(z)) and v(z), based on the binary search, as Algorithm 4.4. Its cost
(in terms of the number of arithmetic operations and comparisons involed) is
O(logn,n?) at Stage 1, O(log® n,n?) at Stage 2 (including Substages 2.1 and
2.2), and O(log® m, m) at Stage 3, where m < n.

Finally, we may replace computing the connected components of G by
computing a maximal matching M® in G®. The cardinality |M (h)\ of M®)
never decreases in the transition from G® to G(**1) (since all the components
of G™ turn into bipartite cliques in this transition). Furthermore, M "+ is a
maximum matching in G®+Y if |[M®)|= | M+ and then, a [(4n—6)""14]-ged
is computed immediately. Therefore, we may use |M®| as the binary search

RR n " 2969

18 Victor Y. Pan

parameter, instead of the number of connected components, s,. In this case,
we may apply the randomized algorithm of [II86] in order to decrease (by factor
log n, versus the case of Algorithm 4.4) our parallel and sequential bounds on
the time-complexity of Stage 2, assuming randomized CRCW PRAM model
in the case of parallel computing.

5. Computation of Extended GCDs

Let us next show the algorithms and complexity estimates for the com-
putation of the coeflicients of the cofactors f(x) and g(z) of (1.3)-(1.6). By
equating the coefficients of the largest m+n powers of z on both sides of (1.3),
we obtain a linear system of m + n equations, with an (m +n) x (m +n) Syl-
vester coefficient matrix S = S(u,v), having rank » = m + n — 2d, where n =
deg u(z), m = deg v(x), d = deg d(z), d(x) = ged (u(z),v(x)). To compute
the coefficients of f(z) and g(z) for given u(z) and v(x), we may first compute
r (and d), which enables us to obtain the r X r nonsingular subresultant sub-
matrix R of S. Then, it will remain to solve a nonsingular linear system of r
equations with the coefficient matrix R (compare [BP94|, Section 8 of Chapter
2, or [G&4)).

Of course, if the degree d of the ged is available, we may skip the first, most
costly, stage, of rank computation.

If, besides, the gcd itself is available, then we may also obtain a little simpler
linear system. Indeed, if we know d(z), we may compute the polynomials

q(z) = u(z)/d(z) and #(z) = v(z)/d(z)

and then shift from (1.3) to the polynomial equation

f(@)q(z) + g(a)t(z) = 1. (5.1)

(To compute g(z) and t(z), we may evaluate u(z), v(z), and d(z) at all 2F-th
roots of 1, k = 1+ |log, max(m —d,n —d)|, via FFT, then compute ¢(z) and
t(z) at these roots of 1 [via divisions|, and finally obtain g(z) and ¢(z) by means
of interpolation, performed via inverse FFT.) By equating the coefficients of
the powers of z on both sides of (5.1), we will arrive at a nonsingular Sylvester
linear system of r = m + n — 2d equations, which is slightly simpler than a
subresultant linear system.

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 19

The known algorithms enable us to solve any nonsingular Sylvester or su-
bresultant system of O(n) equations by using O(nlog® n) arithmetic operations
or at the parallel cost O(log? n,n?/logn) [P92a] or [BP94]. If all the input va-
lues are integers bounded from above by some fixed value A and if rounding-oft
a real value to the closest integer can be performed (by any processor) in unit
time, then the parallel cost bound O((logn)log(nlog A),nlogn) can be achie-
ved [P96al, by using computations with O(nlog(nA))-bit precision.

On the other hand, if the zeros of one of the input polynomials g(z)
and t(x) are available and pairwise distinct, then we may compute the co-
factors f(x) and g(x) at the cost O(log®nlog*n,n/log*n), where log*n =
max{h,log™ n > 0}, log™ n =loglog" Y n,h=1,... log*n,log® n = n.

Indeed, let, the coefficients of ¢(x) and t(x) be given and also let the zeros
21, .., 2m of t(x) be available and pairwise distinct. Then we may apply the
following algorithm for computing the coefficients of f(z) and g(z):

Algorithm 5.1. Successively evaluate:

1. q(z) fori=1,...,m,
2. f(z)=1/q(z) fori=1,...,m,
3. the coefficients of f(z),

4. faw?), q(aw?), t(aw?), i =0,..., H—1, where w = exp(2my/—1/H), L <
H =2" <20, ¢ =deg f(x), ais a fixed (large) constant such that
t(aw?) # 0 for all 3.

5. the values g(aw?) = (1 — f(aw')g(aw?))/t(aw?), i =0,..., H — 1,
6. the coefficients of g(x).

The known algorithms (see [BP94]) enable us to perform Stages 1-6 at
the claimed computational cost. (Note that Stage 1 amounts to multipoint
polynomial evaluation, Stage 3 is interpolation, Stages 4 and 6 are reduced to
applying forward and inverse FFTs on a set of H points.)

If, say, the zeros 21, ..., zy,—q of t(z) are available but some of them are mul-
tiple (with multiplicities ranging from 1 to £), then, for each j,1 < j < m —d,
we may successively, £ — 1 times, differentiate both sides of (5.1) and obtain a

RR n " 2969

20 Victor Y. Pan

triangular linear system of ¢ equations in the values at x = z; of f(z) and its
derivatives f(z) of orders ranging from 1 to £—1 (with the coefficients of the
k-th equations of the form hy;q®(2;),i=0,1,...,¢—1, for some fixed integers
hi). As soon as we obtain the values of all) (x) for z equal to the respective
zeros of t(z) (this takes O(nf) arithmetic operations), we may extend Algo-
rithm 5.1 without changing its overall complexity estimates, since at Stages 1
and 3, we will arrive at the problems of computing a modular representation
of a polynomial and of Hermite interpolation, respectively, which extend the
problems of multipoint polynomial evaluation and interpolation and have the
same overall asymptotic estimates for the complexity of their solution (see the
solution of Problems 1.4.1 and 1.4.2b in [BP94], Chapter 1).

Finally, we will consider the extension of Algorithms 3.1 and 4.1-4.3 to
computing the extended gcds under a model of approximate computing. Under
such a model, the extended algorithms compute a d-ged or a (ud)-ged of u(x)
and v(xz), respectively. The input to these algorithms includes approximations
to the zeros of u(z) and v(z), among which we select approximations to the
zeros of ¢(z) and t(z), respectively, as a by-product of computing d(z). Let,
for notational convenience, the latter approximations to the zeros be denoted

U1,---, Uk, and Zq,...,Z,, respectively, s < k. We may easily compute the
k s

coefficients of the two polynomials G(z) = [[(z — %), ¢(z) = [[(z — Z;) and
i=1 Jj=1

then apply the algorithms of this section to compute the polynomials f (x) and

g(w) satisfying the equation f(z)§(w) + g(x)Z(x) = 1. This equation has the

same form as (5.1). To see its relation to (1.3), multiply its both sides by d(x)

and obtain that

where
i(z) = 4(z)d(z) ,
() = i(z)d() ,
d(z) = ged (a(x), 5())

Due to Lemma 3.1, we have

|a(z) —u(z) [[<|| ulz) | (1+0)" = 1),

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 21

| 0(z) = v(@) [[<]| v(z) | (1 —6)"—1)

provided that d(z) is a d-ged of u(z) and v(z).

6. Padé Approximation and Structured Matrix Computations for
Computing the GCDs.

In this section, we will recall a distinct approach to computing polynomial
gcds, and in the next section, we will comment on its extension to approxima-
ting the geds. We will start with the following basic algorithm.

Algorithm 6.1.

Input: coefficients of two nonconstant polynomials u(z) and v(x), of de-
grees m and n, respectively.

Output: d(z) = ged(u(z), v(x)).

Computation:

1. Compute two nonzero polynomials w(z) and z(z) of the minimum de-
grees satisfying the polynomial equation

w(z)v(z) = u(z)z(z) . (6.1)

2. Compute and output d(z) = u(x)/w(x).

Correctness of the algorithm is immediately verified.

Let us comment on the computational cost of its performance.

Stage 2 is the division of two polynomials with no remainder, which can be
reduced to performing 2¢ concurrent divisions of pairs of scalars and O((m +
n)/d) FFTs at 2°th roots of 1, for £ = [log,(1+d)], d = deg d(x). The overall
cost of performing these operations is bounded by O(log(m + n), m + n) and
is dominated by the cost of performing Stage 1, which, of course, may depend
on the implementation of this stage (see Subalgorithm 6.2).

Hereafter, let us assume, with no loss of generality, that

degv(z) =n =degv(z) +1 (6.2)

and consider the two reverse polynomials U (z) = 2" 'u(1/z), V(z) = z™v(1/z).
Then V(0) # 0, and we may define the analytic function

h(y) = gg; = Z.oohix_l_i = ihiy”l , y=1/z . (6.3)

RR n 2969

22 Victor Y. Pan

Remark 6.1 We could have alternatively associated the pair of u(z) and
v(z) with the analytic function or formal power series g(z) = u(z)/v(z) =
>0 gzt if v(0) # 0. If u(z) = z"i(x), v(z) = z°0(x), rs > 0, we could have
written g(x) = 4(x)/0(x); this would not have preserved (6.2) unless r = s.
Alternatively, we could have shifted the variable x so as to define an analytic

function f(z) = Z((;”:j)) = Y, fiz" for some scalar s, such that v(s) # 0.
Then, in the subsequent presentation, we could have replaced h(y) by g(x) or
by f(z).

We will use the following definition [Gr72|, [BGYS80|, |BP94].

Definition 6.1. For an analytic function (or even for any formal power
series) a(r) = Y2, a;x" and for two nonnegative integers k and ¢, a pair of
polynomials ¢(z) and t(z) is a (k, £) Padé approzimation of a(x) if deg q(x) < k,
degt(z) < ¥, and q(z) — a(z)t(z) = 0 mod z¥+1, N =k + £.

Proposition 6.1 [Gr72|. The pair of polynomials q(z) and t(z) of Defini-
tion 6.1 is defined uniquely, up to its scaling by common factors or common
divisors.

Now, we may perform Stage 1 of Algorithm 6.1 by applying the following
subalgorithm.

Subalgorithm 6.2.

a) Compute the first N+1 = 2n coefficients hq, . . ., hy of the Taylor expansion
(6.3) of the analytic function h(y) [cf. (6.2)].

b) Compute the (n—1—r,n—r) Padé approximation W (y), Z(y) of the analy-
tic function h(y) of (6.3), where 7 is the maximum integer for which (6.1)
holds, provided that w(z) = 2" '""W(1/x) and z(z) = 2" "Z(1/x).

c¢) Output the two polynomials w(z) and z(z).

Correctness of this subalgorithm immediately follows from Definition 6.1
and Proposition 6.1.

The computational cost of performing Stage b) dominates the cost of the
entire computation.

Indeed, Stage a) is essentially reduced to computing the reciprocal of
V(z) modulo zV*! and to multiplication modulo V! of two polynomials
and, therefore, can be performed at the cost O((logn)log* n,n/log" n), where

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 23

log* n = max{i, log®n > 0}, log® n =loglog® ™V n,i=1,2,..;log¥n=n
|BP93|.

Stage c) is the cost-free reversion of the order of the coefficients of the two
polynomials W (y) and Z(y).

Stage b) can be performed at the cost O(nlog®n,1) by means of applying
a fast version of Euclidean algorithm [BGY88|. Alternatively, this stage can
be reduced essentially to computation of the rank r of the n x n Hankel matrix
H = (h;;) = H(u,v), associated with the expansion (6.3) and such that h; ; =
hitj, 1,7 =0,1,...,n—1, and to solving a Hankel linear system of r equations
with the coefficients forming the r x r leading principal submatrix H, of H (cf.
Algorithm 2.5.1 of [BP94]). These two computations can be performed with
O(nlog || H||)-bit precision at arithmetic cost O((logn) log(nlog||H||),nlogn),
provided that the matrix H is filled with integers and rounding-off a rational
number to the closest integer is allowed as a unit cost operation (|[BP94|, section
9 of chapter 4, and [P,b]); the arithmetic cost increases to O(log®n,n?/logn)
if H is filled with real or complex numbers [P92a|. Here and hereafter, we use
the following definition.

Definition 6.2. ||A4|| = ||A]s = max;Y;|a;;| denotes the I-norm of a
matrix A = (a;;), and ||A||2 denotes the 2-norm of A |and it is known that
for an n x n matrix A, we have ||A||/v/n < ||4]l2 < Vnl|4]|] (cf. |[GL89] or
[BP94], pp. 90-91).

For practical numerical computation, one should take into account the re-
quirement of numerical stability in these computations. For this reason, it is
preferable to replace the solution of the Hankel linear system with the coeffi-
cient matrix H, by the solution of the linear system whose coefficient matrix
is the r x r leading principal submatrix (JB(u,v)J), of the matrix JB(u,v)J,
where B(u,v) = B(u,1)H(u,v)B(u,1) is the Bezout matrix associated with
the polynomials u(z) and v(x), where

Uy . . . Up
B(u,1) =

Up, 0]

RR n " 2969

24 Victor Y. Pan

and where J is the reversion matrix, Ji = (w,,...,w;)” for any vector
(wyy . w,)T,
(0] 1
J = L JP=1
1 (0]

(cf. |BP94|, Algorithm 2.9.1).

The asymptotic (arithmetic) cost of the solution of this system is the same
as for the original Hankel system |and, in fact, the inversion of the matrix
B(u, 1) is a simple operation, essentially equivalent to computing the reciprocal
polynomial (1/u(z)) mod z"*!|, but the numerical stability of the solution
algorithm is improved versus the Hankel case (see Remark 2.9.4 in [BP94)).

Remark 6.2. Computation of any fixed intermediate entry of the exten-
ded Euclidean algorithm for two polynomials u(z) and v(z) is equivalent to the
computation of a (k,¢) Padé approximation of the associated analytic func-
tion (6.3) [Gr72], [BGY80|, [BP94]; the algorithms of this section and their
extension in the next section apply.

7. Approximating the GCDs via the Padé Approximation Ap-
proach.

Suppose that we have fixed a class C' of polynomial pairs u*(z) and v*(z)
approximating a given pair u(z) and v(z) of polynomials and that in this
class we seek a pair maximizing the degree of gcd(u*(x)v*(z)). Let u* (z) and
v (z) denote such a pair, let d*(z) denote such a ged, and let d* denote its
degree. (We may define the class C' by (1.1) and (1.2) for a fixed b or by
the assumptions of Lemma 3.1 for a fixed §.) Let us assume, with no loss
of generality, that degu*(x) = n — 1, degv*(z) = n [cf. (6.2)] and associate
the analytic function h*(y) = % =YX hiy'™, y =1/, to every pair
u*(z) and v*(x) [cf. (6.3)]. Let H* = H(u*,v*) denote the n x n Hankel matrix
(hf;, 4,7=0,1,...,n—1), where h}; = h}, . for all i and j. Then

deg ged (u*(z),v"(x)) =n —rank H* | (7.1)

and our problem is reduced to the following one:

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 25

Problem 7.1. For a class C' of polynomial pairs defined above, compute
a pair of polynomials (u%(z),v}(x)) € C and a nonnegative integer r* such
that r* = rank H(u%,v%) is the minimum value of rank H* over all Hankel
matrices H* = H(u*,v*) associated with the pairs (u*(z),v*(z)) € C.

The only effective solution algorithm that we know reduces Problem 7.1
to computing an approximate ged of u(x) and v(z) (see Algorithm 8.1 in the
next section), but here is an algorithm that computes a lower bound r_ on r*
and, consequently, an upper bound d, =n —r_ on d* =n — r*.

Algorithm 7.1.

Input: a pair of polynomials u(z) and v(z) of degrees n — 1 and n, res-
pectively, and a class C of polynomial pairs u*(z), v*(z) of degrees n — 1 and
n, respectively.

Output: alower bound r_ on the minimum rank r* of the Hankel matrices
H* = H(u*,v*), for (u*(z),v*(z)) € C.

Computation:

1. Estimate an upper bound € on the pertubation norm ||H* — H|| over all
Hankel matrices H* = H(u*,v*) associated with pairs of polynomials
(u*(z),v*(z)) € C that approximate the polynomials u(x) and v(x).

2. Compute the number s, of the singular values of the matrix H that
exceed €. Output r_ = s,.

Correctness of this algorithm follows from Corollary 8.3.2 of |GL89|, ac-
cording to which r_ = s, is exactly the minimum rank of all the matrices A
lying in the e-neighborhood of H. (This minimum, however, does not have
to be attained at the Hankel matrices approximating H, so that r_ does not
generally give us the solution value r* for Problem 7.1.)

Computational cost of Stage 1 may grow as we require tighter upper bounds
€. A reduction of Stage 1 to polynomial division leads to computing a reaso-
nably good bound € at the cost O((logn)log™ n,n/log*n) [BP93|.

To perform Stage 2, we may apply the following subalgorithm, where we
write H to denote the Hermitian transpose of a a Hankel matrix H, so that
each entry (4,7) of H¥ is the complex conjugate of the entry (j,) of H, and
HY = H if H is a real Hankel matrix.

Subalgorithm 7.2 (cf. Remark 7.2 at the end of this section).

RR n " 2969

26 Victor Y. Pan

a) Reduce the matrix H H to the real symmetric tridiagonal form 7" by means
of a similarity transformation (cf. [BP94|, Algorithm 2.3.1).

b) Compute the values cx(€) of the characteristic polynomials c¢(A) = det(Al,—
(HEH),) = det(\y — Ty) for A = € and for k = 0,1,...,n, where I
is the k£ x k identity matrix and W) denotes the k x k leading principal
submatrix of a matrix W for W = H?H and W =T.

¢) Compute and output s, = n — SC,, SC, denoting the number of the sign
changes in the sequence {cx(€¢), k=0,1,...,n}.

To show correctness of this subalgorithm, recall that its Stage c) outputs
the number of the eigenvalues of the matrix H” H that exceed € (see Theorem
8.4.1 of |GL8&9|). On the other hand, the nonzero eigenvalues of H” H are the
singular values of H, and therefore, correctness of Subalgorithm 7.2 follows
from Corollary 8.3.2 of [GL&9].

Let us comment on the computational cost of performing Subalgorithm 7.2.

Stage a) can be performed at the cost O(log?n,n?/logn) since the most
costly stage of Algorithm 2.3.1 of [BP94| has this cost bound for a Hankel
input matrix H, because the matrix H?H is a Toeplitz-like matrix whose
displacement rank is at most 4 (cf. the definitions in section 11 of chapter
2 of [BP94]). To compute the sequence of the values cx(e), k = 0,1,...,n,
at Stage b), we apply three-term recurrence relations for these values, in the
matrix form (cf. |[BP91|, Appendix C), and this enables us to reduce the com-
putation to the prefix product computation. By using the prefix sum/prefix
product algorithm ([KR90] or [BP94|, Algorithm 4.2.1), we reach the cost
bounds O(logn,n/logn), which also dominate the cost of performing Stage
c). The overall cost of performing Subalgorithm 7.2 is, therefore, dominated
by the cost bound O(log?n,n?/logn) of performing its Stage a).

Now, suppose that Algorithm 7.1 (with its Stage 2 performed by means
of Subalgorithm 7.2) has output a value r_. In this case we may compute an
upper bound d;y = n —r_ on d* = n — r*. Suppose that we also know some
lower bound d_ on d*. (Clearly, d* > 0, but we may obtain a better lower
bound by applying, say, a numerical version of the Euclidean algorithm, cf.
|[EGL96|.) Then, we may apply our algorithms of Sections 5 or 6 (or any black
box algorithm) in order to approximate (for every d in the range from d_ to

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 27

d.) a common divisor of a degree at most d for the polynomials u(z) and v(z).
In the case where r_ = r* and d = d, = d*, our algorithms of Sections 5
and 6 output a pair of polynomials (u*(x),v*(x)) € C and their ged, d*(z), of
degree d*. The latter computation is reduced to solving a resultant, Hankel,
or Bezout linear system, which is nonsingular if »_ = r* and whose solution
can be obtained at the cost O(nlog®n,1) or, alternatively, O(log” n,n?/logn)
(cf. |[BP94]). If d < d*, then our algorithms output a common divisor of u(x)
and v(z) having a degree at most d. If d > d*, we may allow our algorithms to
fail or to output a wrong answer, since this will be detected at the subsequent
certification stage. Due to such a certification, we may apply binary search
so as to compute and to test only [log,(d; — d_)] + 2 common divisors of
u(z) and v(z), rather than d, — d_ + 1 divisors. An effective certification
algorithm can be based on the approximation of the zeros of the available
approximate common divisor and on the techniques proposed in Remark 3.3.
This computation is much simpler than the approximation of all the zeros of
u(z) and v(z) if d; is much less than m, which is most frequently the case in
the computer algebra applications.

Remark 7.1. Instead of Hankel matrices H and H*, one may similarly
associate with u(z), v(z) and with u*(x), v*(z) the Sylvester matrices S =
S(u,v) and S* = S(u*,v*) and compute a lower bound on rank S* and an
upper bound on d* = n — rank S* by counting the number of singular values
of S that exceed a fixed value e. The paper [CGTW95| has proposed a more
complicated and more costly approach, based on computation of the entire
Singular Value Decomposition of S. Furthermore, unlike the computation of
the SVD, which involves irrational values even where the input is rational or
integer, Algorithm 7.1 with Subalgoritm 7.2 only involve rational arithmetic
computations (which can be performed with no roundoff errors) and a few
comparisons.

Remark 7.2. In the most interesting case where H is a real Hankel matrix,
we may obtain a substantial further simplification. Namely, we may replace
the matrix H¥H by H throughout Subalgorithm 7.2, compute the values
ck(—e*v/2) and ci(—ev/2), k = 0,1,...,n, at Stage b), for any €* slightly
exceeding ¢, and then compute s, = n — C, 5 + C_.. 5 at Stage c), where
C, (for o = €y/2 and for @ = —¢*\/2) denotes the number of sign changes in
the sequence {cy(c)}. Due to Theorem 8.4.1 of [GL89], C..5 — C_.. 5 is the

RR n " 2969

28 Victor Y. Pan

number of the eigenvalues of H in the real line interval from —eV/2 to €2,
and this number is not less than n — rank H, due to Theorem 8.1.8 of |[GL89].

8. Computing the Hankel Numerical Rank of a Hankel Matrix

Let us next revisit Problem 7.1 and solve it by applying the following
algorithm, which reverses our approach of section 7.

Algorithm 8.1.

Input and output as for Problem 7.1.

Computations.

1. Compute an approximate ged, d*(z), of u(z) and v(z) having the maxi-
mum degree d* over all polynomial pairs (u*(x),v*(z)) € C. Output the
associated pair (v’ (), v’ (z)) € C such that d*(z) = ged(u’.(z), v} (x)).

2. Output r* =n — d*.

Correctness of this algorithm immediately follows from the definition of
class C' and from (7.1).

For the class C defined according to the assumptions of Lemma 3.1, the
computational cost of performing Algorithm 8.1 has been estimated in Sections
3 and 4.

Let us now state a related problem, having independent interest too.

Problem 8.1. Given a positive € and an n X n Hankel matrix H, compute
an n X n Hankel matrix H* satisfying

|H" — H|| <e (8.1)

and having the minimum rank r.(H), which we will call Hankel e-rank of H
or Hankel numerical rank of H.

By applying Subalgorithm 7.2 (or the algorithm of Remark 7.2), we obtain
a lower bound . on 7.(H). To compute an upper bound, 7", we first compute
a pair of polynomials u(z), v(x) associated with the matrix H and then apply
Algorithm 8.1 to the class C of sufficiently tight approximations (u*(z), v*(x))
to the pair (u(z),v(z)). Suppose that the class C' is defined according to (1.1)
and (1.2) or according to the assumptions of Lemma 3.1. Then, clearly, for
sufficiently large b or sufficiently small positive §, we shall arrive at some up-

per bounds 7, or ry on r}(H). By repeating the computation for dynamically

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 29

decreasing b or increasing §, we may obtain tighter upper bounds on 7 (H).
For a large class of Hankel matrices H, such a process gives us sharp bounds
ri =r> =rF(H) or rf =r- = r*(H). Generally, however, we may end up
with a gap between 7, or r7 and r_, so that the proposed approach gene-
rally remains heuristic, although we may also try our luck for various €, thus
increasing the chances for obtaining a solution to Problem 8.1.

Finally, let us examine the computation of the associated polynomial pair
u(z), v(z). If the matrix H is nonsingular, then the associated pair u(x), v(x)
is unique and can be computed at the cost O(nlog®n, 1) or, alternatively, at
the cost O(log®n,n?/logn) (cf. [BP94], Proposition 2.9.1, Algorithm 2.11.2,
and Theorem 2.13.1).

Formally, we may ensure nonsingularity with a high probability if we shift
from the input matrix H to a nearby matrix H(®) = H + oH,, where Hy is a
fixed Hankel matrix, ||Hy|| = 1, say, Hy = J, and o is a random value chosen
from a sufficiently large set S. (Note that det H(°) is a polynomial in o of
a degree at most n and recall Corollary 1.5.1 of [BP94].) We may require
that S consist of values o having small magnitudes |o| relative to €; then, the
transition from H to H() would little affect the solution of Problem 8.1.

Let us conclude this section by showing that the pairs of polynomials
Uy (1), v,(z) associated with H(®) converge to the pair u(z), v(z) associated
with H as 0 —» 0, even if H is a singular matrix.

Indeed, let us normalize the Padé approximation associated with H(%),
so as to have || u,(z) ||= 1, instead of having the polynomial u,(z) monic.
Furthermore, the set of the coefficient vectors of all polynomials u,, (x) for any
sequence {0y, 01, ...} is compact, and the sequence of the associated coefficient
vectors # (“%) has a subsequence converging to some vector @. Furthermore,
the associated subsequence of the coefficient vectors @ (?#) of the polynomials
Vs, () also converges to some vector 7. |Alternatively, we could have required
that ||us(x)|| + ||vs(x)|| = 1, to ensure compactness of the set of the pairs of
the coefficient vectors (@ (7, 7 (©)),]

The ratios of the associated polynomials satisfy the equations u,, (1/x)/(zv,,
(1/2)) = Yo, 1) /v, (y) = £225" by mod >+ for y = 1/z and for all k
[compare (6.3)], and therefore, the polynomials u(z) and v(z) associated with

RR n " 2969

30 Victor Y. Pan

@ and v satisfy the equation:

2n—1

yu(y)/v(y) = u(l/z)/(zv(1/z)) = 3 hyy’"" mod 2™

=0

that is, the pair of the polynomials u(y), v(y) is an (n — 1,n) Padé approxi-
mation of the latter power series associated with the matrix H. Such an
approximation is unique |Gr72| (up to dividing u(y) and v(y) by their ged)
assuming that u(z) and v(z) are relatively prime. Due to this uniqueness,
the sequence @ (°%) itself (rather than its subsequence) converges to i, and
consequently, 7' (“*) converges to 7.

Remark 8.1. The algorithms of this section can be immediately extended
to computation of the Toeplitz e-rank or numerical Toeplitz rank of a square
Toeplitz matrix T since JT is a Hankel matrix and since rank T = rank
(JT). They can be also extended to the computation of the Sylvester e-rank
or numerical Sylvester rank of a square Sylvester matrix S = S(u,v). In
the case of a Sylvester input matrix, the coefficients of the associated pair of
polynomials u(x) and v(z) are explicitly given by two columns of the matrix
S, which a little simplifies the computation of the numerical Sylvester rank
and the analysis of the complexity of this computation, versus the Hankel and
Toeplitz cases. One may easily obtain a similar extension to computation of
the Bezout e-rank or Bezout numerical rank of a square Bezout matrix.

9. Summary and Concluding Remarks

We have started with recalling the known definitions and algorithms for ap-
proximate polynomial geds from [Sc85], [KM94|, [CGTW95|, and [HS,al, with
demonstrating a certain major deficiency of these definitions (see our Example
1.1), and with discussing some problems with these algorithms. Then we gave
a new, more restrictive definition, which avoided such a deficiency, and we
presented two algorithms for the computation of approximate gcds under such
a more restrictive definition. In spite of an additional restriction imposed on
the approximate gcds, our algorithms do not require to increase (versus the
previous record bound) the overall bit-complexity of the computations (even
if we include the computational cost of performing the auxiliary stage of ap-
proximating the zeros of the input polynomials); moreover, we achieve some

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 31

substantial advantages (versus the known algorithms) in overcoming the heu-
ristic character of most of the proposed approaches and substantially improving
their numerical stability and computational cost estimates; in particular, un-
like all the previously known algorithms, the new algorithms can be performed
in RNC or NC, that is, they can be accelerated so as to run in polylogarithmic
parallel time by using n°®" processors.

In Section 5, we have shown how one can compute two approximate cofac-
tors of the gecd. The computation involves operations with Sylvester matrices.
The major practical advantage, versus the previous approach, is in avoiding
the computation of the ranks of such matrices. Theoretically, we have also
achieved parallel acceleration, so as to perform this computation in NC.

In Section 6, we have showed how to compute polynomial gcds based on
computing Padé approximation, and in Section 7, we have extended this study
to approximate gcds. We have reduced the solution to computing the number
of those singular values or eigenvalues of a Hankel (or Sylvester) matrix that
lie in a fixed small interval about 0 and to the solution of a Bezout nonsin-
gular linear system, and this has substantially improved the SVD approach of
|[CGTWO5], in terms of both its computational cost (since, unlike [CGTW95|,
we avoid computing the SVD and also exploit the symmetry of the Hankel and
Bezout matrices, involved in our computations) and numerical stability (due
to using Bezout matrices instead of Sylvester matrices). Furthermore, unlike
the SVD computation, involving irrational values even for a rational or inte-
ger input, our modification enables us to perform the computations by using
rational arithmetic (with no roundoff errors) and a few comparisons. The lat-
ter improvements of the approach of [CGTW95] have been obtained, in our
Section 7, assuming the same customary definition of approximate gcd that
was used in [CGTW95|. This has facilitated the comparison with [CGTW95]
but has also implied that, unlike the approach of our Sections 3 and 4 and
like one of [CGTW95], the solutions proposed in Section 7 are generally heu-
ristic because they give us an upper bound d; on the maximum degree d* of
an approximate ged, but do not necessarily give us the degree itself. Unlike
[CGTW95], however, we extend our computations to obtaining an approxi-
mate ged of degree d*, by applying our techniques of Sections 3 and 4. In this
case, the computations are simplified, versus ones of Sections 3 and 4, since we

RR n " 2969

32 Victor Y. Pan

only need to approximate the zeros of the candidate approximate gcd, whose
degree can be much smaller than m.

Finally, in Section 8, we have shown a partly heuristic extension of the pre-
sented approach, where approximating the gcd is a basic step of computing the
Hankel numerical rank of a square Hankel matrix, which in turn is the crucial
step of computing Padé approximations and of Berlekamp-Massey computa-
tions. These or similar algorithms apply to computing Bezout, Toeplitz, and
Sylvester numerical ranks.

There are various natural directions for further study.

For example, one may relate approximating polynomial zeros to their ma-
gnitudes, so as to approximate (within a fixed error bound ¢) the zeros z for
which |z¢| < 1 and to approximate within ¢ the reciprocals 1/z of all other
zeros. As another example, one may revisit the algorithms of [P95], [P96],
used at a preconditioning stage of the algorithms of sections 3-5 and 8 and try
to simplify them in the case where the objective is the application to approxi-
mating geds, rather than to approximating polynomial zeros. For instance,
if an algorithm of [P95], [P96] splits a polynomial u(z) into two factors one
of which is relatively prime with v(z), then we may immediately discard this
factor, instead of proceeding with approximating its zeros, as the algorithms
of [P95], [P96] would normally do. Furthermore, if, say, u(z) is the worst case
polynomial for algorithms of [P95], [P96] (say, if the zeros of u(z) form various
clusters), whereas v(z) is an easy case polynomial, then one may replace u(x)
by u(z) + av(x) for some scalar a and apply the algorithms of [P95], [P96] to
the polynomials u(x) + av(z) and v(z), rather than to u(x) and v(x).

Another major subject of further study could be the determination of condi-
tions on € and on the matrices H under which the lower and upper bounds r_
and 7 on r.(H) of Section 8 meet each other. And, of course, a major further
step should be numerical tests, in particular, for our algorithms of Section 8
and for comparision of our approach of Sections 2-5 with ones of Section 7 and
with the cited alternative ways to the solution, from [Sc85], [NS91|, [KM94],
[HS,a], and [CGTW95].

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 33

REFERENCES

AS88 W. Auzinger, H.J. Stetter, An Elimination Algorithm for the Compu-
tation of All Zeros of a System of Multivariate Polynomial Equations,
In Proc. Conf. in Numerical Analysis, ISNM, vol. 86, pp. 11-30, Bir-
khaeuser, 1988.

Be68 E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York,
1968.

BGYS80 R.B. Brent, F.G. Gustavson, D.Y.Y. Yun, Fast Solution of Toeplitz
Systems of Equations and Computation of Padé Approximations, J. of
Algorithms, 1, 259-295, 1980.

BP86 D. Bini, V.Y. Pan, Polynomial Division and Its Computational Com-
plexity, J. of Complexity, 2, 179-203, 1986.

BP91 D. Bini, V. Y. Pan, Parallel Complexity of Tridiagonal Symmetric Ei-
genvalue Problem, Proc. 2nd Ann. ACM-SIAM Symposium on Discrete
Algorithms, 384-393, ACM Press, New York, and SIAM Publications,
Philadelphia, Pennsylvania, 1991.

BP93 D. Bini, V. Y. Pan, Improved Parallel Polynomial Division, STAM J.
of Computing, 22, 3, 617627, 1993.

BP94 D. Bini, V.Y. Pan, Polynomzial and Matriz Computations, vol. 1: Fun-
damental Algorithms, Birkhaeuser, Boston, Massachusetts, 1994.

C88 J.F. Canny, The Complexity of Robot Motion Planning, ACM Doctoral
Dissertation Series, MIT Press, Cambridge, Massachusetts, 1988.

C90 J.F. Canny, Generalized Characteristic Polynomials, J. of Symbolic Com-
putation, pp. 241-250, 1990.

CW90 D. Coppersmith, S. Winograd, Matrix Multiplication via Arithmetic
Progressions, J. of Symbolic Computation, 9, 3, pp. 251-280, 1990.

RR n "~ 2969

34 Victor Y. Pan

CGTW95 R.M. Corless, P.M. Gianni, B.M. Trager, S.M. Watt, The Singular
Value Decomposition for Polynomial Systems, Proc. Intern. Symp. on
Symbolic and Algebraic Comp. (ISSAC ’95), pp. 195-207, ACM Press,
New York, 1995.

EGL96 1. Z. Emiris, A. Galligo, H. Lombardi, Certified Approximate Poly-
nomial GCDs, to appear in Proc. of MEGA’96.

G84 J. von zur Gathen, Parallel Algorithms for Algebraic Problems, STAM
J. on Computing, 13, 4, pp. 802-824, 1984.

G95 A. Galligo, On Some Difficulties of Approximating Polynomial GCD,
Lecture at AMS-SIAM Conference: Mathematics of Numerical Analysis:
Real Number Algorithms, Park City, Utah, July-August 1995.

GL89 G.H. Golub, C.F. Van Loan, Matriz Computations, Johns Hopkins
Univ. Press, Baltimore, Maryland, 1989.

GP88 Z. Galil, V. Pan, Improved Processor Bounds for Combinatorial Pro-
blems in RNC, Combinatorica, 8, 2, pp. 189-200, 1988.

Gr72 W.B. Gragg, The Padé Table and Its Relation to Certain Algorithms
of Numerical Analysis, SIAM Review, 14, 1, 1-62, 1972.

H90 C.M. Hoffman, Algebraic and Numeric Techniques for Offsets and Blends,
In Computations of Curves and Surfaces (W. Dahmen, M. Gasca, and
C.M. Micchelli editors), pp. 499-528, Kluwer Academic Publishers, 1990.

HK73 J.E. Hopcroft, R.M. Karp, An n%/? Algorithm for Maximum Matching
in Bipartite Graphs, SIAM J. on Computing, 2, pp. 225-231, 1973.

HS,a V. Hribernig, H.J. Stetter, Detection and Validation of Clusters of Po-
lynomial Zeros, to appear in J. Symb. Comp., 1995.

I186 A. Israeli, A. Itai, A Fast and Simple Randomized Parallel Algorithm for
Maximal Matching, Information Proc. Letters, 22, 77-80, 1986.

IS86 A. Israeli, Y. Shiloach, An Improved Parallel Algorithm for Maximal
Matching, Information Proc. Letters, 22, 57-60, 1986.

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 35

J92 J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, Rea-
ding, Massachusetts, 1992.

KL96 N. Karmarkar, Y. N. Lakshman, Approximate Polynomial Greatest
Common Divisor and Nearest Singular Polynomials, Proc. Ann. ACM-
SIGZAM Intern.Symp. on Symb. and Algebraic Comp., 1996, to appear.

KM94 N. Karcanias, M. Mitrouli, A Matrix Pencil Based Numerical Method
for the Computation of GCD of Polynomials, IEEE Trans. on Automatic
Control, 39, 5, 977-981, 1994.

KM95 S. Krishnan, D. Manocha, Numeric-Symbolic Algorithms for Evalua-
ting One-Dimensional Algebraic Sets, Proc. Intern. Symp. on Symbolic
and Algebraic Computing (ISSAC ’95), ACM Press, New York, 1995.

KR90 R.M. Karp, V. Ramachandran, A Survey of Parallel Algorithms for
Shared Memory Machines, Handbook for Theoretical Computer Science
(J. van Leeuwen editor), pp. 869-941, North-Holland, Amsterdam, 1990.

L81 D. Lazard, Resolution des Systems d’Equations Algebrique, Theoretical
Computer Science, 15, 77-110, 1981.

Le92 F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, California,
1992.

M94 D. Manocha, Computing Selected Solutions of Polynomial Equations,
Proc. Intern. Symp. on Symbolic and Algebraic Computing (ISSAC
’94), pp. 1-8, ACM Press, New York, 1994.

M94a D. Manocha, Solving Systems of Polynomial Equations, IEEE Trans.
on Computer Graphics and Applications, pp. 46-55, March 1994.

MC93 D. Manocha, J.F. Canny, Multipolynomial Resultant Algorithms, J.
of Symbolic Computation, 15, pp. 99-122, 1993.

MD92 D. Manocha, J. Demmel, Algorithms for Intersecting Parametric and
Algebraic Curves, Graphic Interface ’92, pp. 232-241, 1992.

RR n " 2969

36 Victor Y. Pan

MD94 D. Manocha, J. Demmel, Algorithms for Intersection Parametric and
Algebraic Curves I: Simple Intersections, ACM Trans. Graphics, 13, 1,
pp- 73-10, 1994.

MD95 D. Manocha, J. Demmel, Algorithms for Intersecting Parametric and
Algebraic Curves II: Multiple Intersections, Graphical Models and Image
Processing, 57, 2, pp. 81-100, 1995.

MS95 H. Moller, H.J. Stetter, Multivariate Polynomial Equations with Mul-
tiple Zeros Solved by Matrix Eigenproblems, to appear in Numerische
Mathematik, 1995.

NS91 M.-T. Noda, T. Sasaki, Approximate GCD and Its Application to Ill-
Conditioned Algebraic Equations, J. Computational and Applied Mathe-
matics, 38, pp. 335-351, 1991.

P87 V.Y. Pan, Complexity of Parallel Matrix Computations, Theoretical Com-
puter Science, 54, pp. 65-85, 1987.

P92 V.Y. Pan, Complexity of Computations with Matrices and Polynomials,
SIAM Review, 34, 2, pp. 225-262, 1992.

P92a V. Y. Pan, Parametrization of Newton’s Iteration for Computations
with Structured Matrices and Applications, Computers & Mathematics
(with Applications), 24, 3, 61-75, 1992.

P94 V.Y. Pan, Algebraic Improvement of Numerical Algorithms: Interpola-
tion and Economization of Taylor Series, Mathematical and Computer
Modelling, 20, 1, pp. 23-26, 1994.

P95 V.Y. Pan, An Algebraic Approach to Approximate Evaluation of a Poly-
nomial on a Set of Real Points, Advances in Computational Mathematics,
3, pp. 41-58, 1995.

P95a V.Y. Pan, Optimal (up to Polylog Factors) Sequential and Parallel Algo-
rithms for Approximating Complex Polynomial Zeros, Proc. 27th Ann.
ACM Symposium on Theory of Computing, pp. 741-750, ACM Press,
New York, 1995.

INRIA

NUMERICAL COMPUTATION OF A POLYNOMIAL GCD 37

P96 V.Y. Pan, Optimal and Nearly Optimal Algorithms for Approximating
Polynomial Zeros, Computers and Mathematics (with Applications), 31,
12, pp. 97-138, 1996.

P96a V.Y. Pan, Effective Parallel Computations with Toeplitz and Toeplitz-
like Matrices, to appear in Proc. of the AMS-SIAM Workshop on Mathe-
matics of Numerical Analysis: Real Number Algorithms, Park City, Utah,
July-August 1995 (M. Shub, S. Smale, J. Renegar editors), Lectures in
Applied Math., 32, pp.593-643, Amer. Math. Soc. Press, Providence,
R.I., 1996.

P96b V. Y. Pan, On Approximating Complex Polynomial Zeros: Modified
Quadtree (Weyl’s) Construction and Improved Newton’s Iteration, Techn.
Report 2894, INRIA, Sophia-Antipolis, France, May 1996.

Par80 B. N. Parlett, The Symmetric Figenvalue Problem, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1980.

PRT92 V.Y. Pan, J.H. Reif, S.T. Tate, The Power of Combining the Tech-
niques of Algebraic and Numerical Computing: Improved Approximate
Multipoint Polynomial Evaluation and Improved Multipole Algorithms,
Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science, pp.
703-713, IEEE Computer Society Press, 1992.

PSLT93 V.Y. Pan, A. Sadikou, E. Landowne, O. Tiga, A New Approach
to Fast Polynomial Interpolation and Multipoint Evaluation, Computers
and Mathematics (with Applications), 25, 9, pp. 25-30, 1993.

PZDH,a V.Y. Pan, A. Zheng, X. Huang, Y. Yu., Fast Multipoint Polynomial
Evaluation and Interpolation via Computation with Structured Matrices,
Annals of Numerical Math., to appear in Sept. 1996.

Q94 M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill,
New York, 1994.

R94 K. Roach, Symbolic-Numeric Nonlinear Equation Solving, Intern. Symp.
on Symbolic and Algebraic Computation (ISSAC’ 94), pp. 278-282,
ACM Press, New York, 1995.

RR n " 2969

38 Victor Y. Pan

Sc85 A. Schénhage, Quasi-GCD Computations, J. of Complexity, 1, pp. 118-
137, 1985.

S93 H.J. Stetter, Multivariate Polynomial Equations as Matrix FEigenpro-
blems, WSSIA 2, World Scientific, pp. 355-371, 1993.

S93a H.J. Stetter, Verification in Computer Algebra Systems, in Validation
Numerica (R. Albrecht, G. Alefeld, H.J. Stetter editors), Computing
Suppl., 9, pp. 247-263, 1993.

INRIA

/¢

Unité de recherche INRIA Lorraine, Technopole de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 655, avenue de |’ Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocguencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

