A Time-Domain Derivation of Optimal and Suboptimal Kirchhoff Quantitative Migrations Via a Least-Squares Approach

Abstract : We develop in this paper a general methodology for the derivation of optimal and suboptimal quantitative migration formula from the data misfit function associated to a given forward modeling operator. By construction, these migrations take into account any feature and approximation which has been incorporated into the data misfit function, such as finite aperture, band limited source, surface boundary conditions, multishot data, etc...\\ \indent This methodology is then applied to the case where the forward modelling is made via the Born plus rays approximation and the reflectivity of the earth is represented by an array of diffracting points. This leads to the construction of efficient suboptimal quantitative Kirchhoff migration formula which provide a good restitution of amplitudes under a wide variety of circumstances (finite aperture, band limited source, etc...) and for a wide range of propagators (slowness background).
Type de document :
Rapport
[Research Report] RR-2967, INRIA. 1996
Liste complète des métadonnées

https://hal.inria.fr/inria-00073731
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:37:36
Dernière modification le : samedi 17 septembre 2016 - 01:26:51
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:56:25

Fichiers

Identifiants

  • HAL Id : inria-00073731, version 1

Collections

Citation

Guy Chavent, René-Edouard Plessix. A Time-Domain Derivation of Optimal and Suboptimal Kirchhoff Quantitative Migrations Via a Least-Squares Approach. [Research Report] RR-2967, INRIA. 1996. 〈inria-00073731〉

Partager

Métriques

Consultations de la notice

128

Téléchargements de fichiers

123