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Theorem 23 - A upper bound r'; of the worst-case response time of a task using EDF is

. [PI D+T
Fi = Z T. Ebi'
D -T: <D, i

j j i

Proof. From last theorem, we have: r; Smax% %l+ % %Zj—ag . Thus
abSD T+, T;
Ua [0 S, eliminating the floor function, we have:
a+D;-D;
r(a) < + e g
I Djsg+Di%L Ti %bl
that leads to:
[ —D:+ T, O C. OO
r.(a) < maxJ E@Eb] + [ T—J—ltam.
(b, <7+, i Gsta+D, j oo
C,
As T—JsUsl wehave Da [0, L]
D;sa+D; |
=D +T
ri(a) < I < Z EPI T I =1 H
D,<a+D <D,

B.2 Sufficient Condition for fixed priority driven preemptive schedulers

Using fixed priority driven schedulers, the following feasibility SC establishes upper-bounds on the

worst-case response times. This result is established by first an overvaluation on Wi g and second by

eliminating the term function of .

Theorem 24 - Using static schedulers, an upper bound of he worst-case response time r'; of a
task T; of a general task set is found by:

=gy G d- ZT_JE (1)
i<i i<i

Furthermore, the general task set isfeasibleif: Ui O [1,n],r";, <D;.

Proof. { from the state of the art, aNSC for static priority driven scheduler is (see Section 3.2.2)}

OG,a) W= (@+C+Y 'QECJ<qT+D

I=<i J
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Theorem 22 - Using EDF, an upper bound of the worst-case response time of a task T; can be

found setting the absolute deadline of T, on every absolute deadlines of the tasks in the synchronous
busy period and is given by:

a+D;-D;
f;ggEDj > g {%J%@r%

<a+D; j
n o o 0
Where S = DSp, Sp:EDp+kTp—Di,kDD, M <k< M’ ] and L
isthe length of the synchronous processor busy period (see Annex A).

Proof. Let T, be a task released at time t. The higher priordykioad (see Section 3.1.3) aed up to
time t can be reformulated as
. —S. +D. —-D.
W (a t) = z min =S 1+ M Bbj.
D,<T+D, T; T
Wheres; = 0if j#i ands; = a—b@JTi else.
[
The worst-case response time of task is then gien by r,(a) = max(C,, L;(a)—a) where
L;(a) = W(a, L;(a)). Ot>0, we hae then:

a+D,-D, _
Wats Y %+{__?T_JF¥V

Hence, L;(a) < Z %L+ {%ngj As C; < DZD %L+ {Di;DJJEbJ—, we hae:
< i

D]£a+ Di J j_ i
O a+D;-D; C
r: < max + — ) [—a-.
i all[oL) DDj Sg+ D, %L \‘ Tj Bbl L
Let f,(a) = z %I.+ M Bbj —a. f,(a) is a step function whosele increase
D, <T+D, T

whena+ D; —D; = KkT; i.e such that the absolutes deadling;o{a + D;) coincide to the absolute
deadline of a task released in the synchronous sce(rﬁfi& ij) leading toa [J §;, 0j = 1...n.
Notice thatf;(a) is monotonously decreasing betweep successe values inS. Thus we only need
to figure f;(a) for times inS. Hence, an uppdsound of the arst-case response time of tagkis

. n a+D;,-D, C
then gven by max | — ") i —ar. 0

From the last formula, we can now give a polynomial time computation upper bound on the worst-case
response time of any tagk. This bound is not tight but can be calculated on line.



Theorem 21 - Ageneral task set sorted by increasing order of D'; = min(D;, T;) isfeasible

_ - +T - DJ'
using EDF if: Oi O[1,n] , Z H—L e <D,

t -D.
Proof. Let h;(t) be the processor demand for tagkf t > D; we hae — '( ) t%l V JEb

hi(t)

dT = 0 else.llt 2 D;, we have:

=i i JECiSmT%CiSmT%Ci-
In the same manner, we have:

ht) _ < hi() _ 1 t-D, 1< 4+T;-Dy
- Z’TZEZ%“iT—‘J%CJSz —

i=1 D =t

+T.-D
s Al

£ 0 T Ebi is a non decreasing function, its maximum value is obtainedt for Di- i.e.
i

hty .1 < PitT;=-Dy
TSE)—- g B TJ ]Ebj (19)

What's more,JJt = max(D;),

h(t) 1 +T,-D/ 1 ax(D)+T -D/'
0 eI sy IR TR,

As a NSC for the feasibility of a task set is to check tita& O, h(t) <t (see Theorem 6). Applying this to eq.
19 and eq. 20, a sufficient feasibility condition is to check fiat] [1, n] ,
,+T;-Dy'

z e <p, 0

D, <D
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Annexe B. RBlynomial sufficient conditions (SC)

Let us nowintroduce in preempte contat some possible polynomial sufficient, but not necessary,
feasibility conditions for general task sets. The main objective of this annex is to propose several
approaches that will enable us to avoid the cost of the pseudo-polynomial NSC when possible.

B.1 Sufficient Conditions for dynamic priority driven preemptive schedulers

Using EDF, the first SC is established, using classic overvaluatidr(tf and deriving an upper
bound on the authorized processor utilization (see TheorenTBO)second SC is established by an

: h . . : .
overvaluation of@ enabling us to check thiggression onxactly n worst-case points (see Theorem

21). A third and fourth SC will establish upgewunds on the wrst-case response times, based on the
synchronous pattern of aral only (and not those defined in Section 3.1.3). More precitedythird

SC uses wenvaluation onW;(a, t) that enables us tov@id the cost of the recuvs analysis (see

Theorem 22). Then, the fourth SC uses dnaeovervaluation that enables us to obtain a polynomial
computation time upper bound on therat-case response time of a task (see Theorem 22).

Theorem 20 - Ageneral task set (with D', = min(D;, T;) 0i O[1, n] ) isfeasible, using
EDF, if:

1 |
- min(Di)iZl%l_?i%bi (18)

Proof. from the state of the art, a NSC ist = 0 h(t) = Z %[ + r ;_Di JEbI <t

As i O[1,n], D', <T,, eliminating the floor function and by the definitionuhf

d+T -D’,

w0 sy R 5 F s 5 -2

D;<t i<t i=1

Therefore a sufficient feasibility condition is to check thit>0, t (U + z %l——%b, <t ie
i=1

U<l-- z %L Eb As it is sufficient to check the feasibility on the absolute deadlines and as
| =1
" D',
1— - Z %I.— — is an increasing function by t, a least upper bound on the processor utilization
| =1
is obtained at = min(D;) . Hence a feasibility condition is to check that

1 ) '
Usl————min(Di)izlgL_fEbi- 0
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Note that the algorithm is also valid when preemption is not allowed. In this case, however, the
equation for the computation &f,(a) is slightly different, since we must take into account the effect

of non-preemption, namely, possible priority inversions. In particular, the equation becomes:

_ . Li(@) a+D;-D,
L@ = B+DkS§+Dim|n§T_kw, { J +%L { JEb
K#i

B = mXDJ>a+D|{CJ_l}

and

If our goal is only to check the feasibility of the task set (and not to do a full worst-case response times
analysis), the value df; computed by the previous algorithm might be unnecessarily large. This is
because when checking the feasibility, by Lemma 1 we can focus our attention only on synchronous
deadline busy periods( = 0, i ). Unfortunately, in this way we loose the property shown in Lemma

10, since we cannot apply the same “swapping” argument. For any;tatsie new valud_is is then
computed in the following way:

a=|_(L_Di)/Ti_|Ti;

whileL;(a) <a
a=[(Li@-D)/T;]T;;

end while

I-iS = Li(@);

Other details of the “higher priority” busy period length computations, either for static or for dynamic
priority models, are given in the specific sections, where the differences between the preemptive and
the non-preemptive models (actually very few) are also remarked.



Lenmma 11 - [i, Ly(a) isnon-decreasingin a.

Proof. By definition, L;(a) isthe smallest solution of Equation (17), hence for any t <L, (&)

t<W(at)+ ET"L+ {%J%b,

Given a' = a, wethusthat [Jt <L, (a)

t<W(a t) + %+L%J5biswi(a',t)+ %“-FIT'-

p

since W;(a, t) isnon-decreasingin a. It followsthat L;(a') > L;(a).

By using the results of Lemma 8, Lemma 10 and Lemma 11, we can compute the values of L; in the

following way. Let E = D?: l{mTi +D;,m=0} = {ee, ...}, let L be the length of the

synchronous busy period, and assume that D; < D, , 4, Ui . The agorithm for the computation of L;

starts by placing an instance of T; in such away to have its deadline at the largest €, smaller than or

equal to L, , ; —C, + D; (it is easy to see that these are the scenarios which give the longest deadline

busy periods for T;). If the resulting deadline-€, busy period includes this last instance of T; we have

found L;, otherwise the computation is done again by choosing a new suitable deadline €., this time

according to the value of L;(e, —D;) . Note that the algorithm always stops. The pseudo-code follows:

I-n+1 = L;
for i=n downto 1
letk besuchthat g <L;,,—C; +D;<e,;

a= ek— DI X
whileL;(a) <a
letk besuchthat g, < L;(@)—C; +D; <€, 4;

a= ek—DI,
end while
L, = L,(a);

end for



t = W(a, t)+%+{%ﬁci' (17)

With L; we denote the length of the longest such deadline busy period far, tasle have then

L = max< @i L@}

In order to speed up the computationLof we can utilize two nice properties shown in the following
lemma.

Lemma 10 -  D;<D;0 LsL,

Proof. By definition of L;, [d = s, + mT, + D, for whichL; = L{(d-D)):

. - — U
L, = min h 1+ d—Dx [Cr+ (Mm+1)C,
DZd Ty - T JO
K#i
. ] — 0 . : -D. |O
= Z ming i L1+ d—Dy [C + (M+1)C; + min Li 1+ d-D; C;.
DZd Ty L Tk JO T Ty 0
K#i
K# |

SinceD; < Dj , the IastTJ- ‘s instance with deadline before orchthas release time smaller thhp,1

then
L d-D, |O d-D;
L, = Z mlngflw,1+{ T kJEpk+(m+1)Ci+%1+{ Tj JJEbj,

k

If we consider now the scenario in whithis released synchronously (i.s;,becomeg) andrj has
start times; = (d- Dj) - |_(d - DJ-)/TJ- JTJ- , S0 that there is an instance with deadtiheve have
. L d-D, |U d-D,
L < minf] —. |, 1+ KIfC, + 5L+ ] .
=2 QTW \;TKJDK%\;TJ' JEbJ

Dksd k
k#j

The right quantity of the inequality is smaller than or equal to the new deabllinesy period, which
in turn is by definition smaller than or equall.t?. The thesis follows. O

1. We assumeDj < d. If this is not true, the thesiswially holds.



have an absolute deadline smaller than or equel onsequently, the number Bf's instances to be

mn] L] 1+ d-Db E
T T |0

which gives a sort of “higher priority workload.”

taken into account is

Also, in this case we are not merely interested in any deadlibesy period, but only on those which
include the last instance. More precisely, given ‘a instance released at tingg hence with deadline

d = a+D; (see figure 8), we are interested in deadlihéusy periods that starts at= 0 and

includes this instance (i.e., when its length is bigger ﬂn]a)n It is not difficult to see that the longest
busy periods are obtained in scenarios in which all tasks; kare released synchronously (see Lemma
3).

Let L;(a) denotes the length of such deadlthésusy period that ends on the completion time of the
T;'s instance released at tinee(with d = a + D, ), while all other tasks are considered to be released

synchronouslysﬁj = 0, Oj #1). The deadline busy periods in which we are interested are only those

for which
Li(a) >a.
' I J
0 a d=a+ Di
- >
Li(@
[ ] deadlined busy period Figure 8

L;(a) is then computed by means of the iterative computation

%) = 0, L™ @) = Wi(a, L{™@) +(1+[a/T; |)C;,

where

W(a, t) = z mingl],1+{wJECj.
a+D;

T j 0

The computation is halted when two consecutive values are found equal. Note that in this way we find
the smallest solution of the equation

1. Note that if the deadlin€} busy period is shorter tham, then it is not interesting neither for the feasi-
bility checking (according to Lemma 1 the deadltheannot be missed), nor for the computation of
the worst-case response timeqf (see Section 3.1.3).
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A.2 “Higher Priority” Busy P eriods

So far, the concept of busy period has been introduced as such, that is, as a period in which the
processor is not idle. More generally, it is possible to specialize the concept by making it relative to a
given level of priority. The ideaisto consider processor busy periodsin which only task instances with
priority, either static or dynamic, at least at a given level are executed. This form of busy period is
scheduling algorithm dependent, and in particular it is useful for the computation of tasks worst-case
response times.

In the case of fixed priority systems, we talk of level-i busy periods [LEH90]:

DEFI NI TION 3 - A level-i busy period is a processor busy period in which only instances of
tasks with priority greater than or equal to that of T; execute.

For the computation of worst-case response times it is necessary to compute the length of suitable
level-i busy periods. The approach is very similar to that seen for the computation of the synchronous
busy period length. In this case, though, only the workload of the tasks with priority greater than or

equal to that of T; istaken into account.

The length of the longest level-i busy period is denoted by L; , and can be easily computed by finding
the smallest solution of the equation

L.

W= s T
joheo{iy] T

for the preemptive case, and

L.
j Ohp() O {i} j

for the non-preemptive case, respectively. Note that in the latter case, the first term on the right-hand
size takes into account the effect of non-preemption, that is, the non-preemptable execution of alower
priority task instance can delay the executions of higher priority task instances as much as

maX; 1 n){ C; — 1} . Asusual the equations can be solved by means of iterative computations.

Similarly, for dynamic priority systems, and in particular for deadline scheduled ones, we talk of
deadline busy periods:

DEFINITION 4 - A deadline-d busy period is a processor busy period in which only task
instances with absolute deadline smaller than or equal to d execute.

Again, the approach for the computation of deadline-d busy period lengthsis as usual. We only need to
be careful in taking into account the right number of instances for each task, which requires slightly

more changes. In fact, in this case given an interval of time [0, t), the number of instances of T,
released within t is [ t/T; |, however only 1+ | (d—D;)/T, |, provided that D; < d, O otherwise,
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then recursively applied to W(t), W(W(t)), ..., until we find a value equal to the previous one.
Formally, L isthe fixed point of the following iterative computation:

H 0) _
o L _zici

0 (15)
%_(m"' 1) — W(L(m)) -

)

The computation is halted when two consecutive values L(m) and L(m * are found equal. L isthen

assigned the value L(m) . Note that in this way we find the smallest solution of the equation

L = W(L). (16)
The convergence of Equation (15) is proved in the following lemma.
Lenmma 9 - |If Zi C,/T; <1, Equation (15) corerges in a finite number of steps.

Pr oof.

C, e Ple . o< G
Zi_l—_—isl 0 WP) = Z{ﬂci = PziﬁsP.

It follows that L < P. Furthermore, the workload function W(t) is a non-decreasing step-function,

hence L™ is non-decreasing in m. Finally, at each step L™ is either increased by at least C,;p, OF
remains unchanged. Thus the final value is reached in afinite number of steps. 0

If we have the further hypothesis that Zi C,/T; <c, where C is a constant smaller than 1, then the

complexity of L ‘s computation becomes pseudo-polynomia [SPU96]. To show this, we just need few
algebraic manipulations:

L = Z{Hciszigu%gci = ziCi+in%sziCi+cL.

Hence

M
1o

Each step of the iterative formula Equation (15) takes O(n) time, thus the whole computation takes
O(n(y,C)/ Cyip) time:?

1. Note that finding afull polynomial time algorithm for the computation of L would imply afull polynomial
time procedure for the feasibility assessment of a general task set (see section 3.1.2), which is till an open
question [BHR9Q].



Annexe A. Busy Rriods, Definitions and Ppperties

The notion of processor busy period is very simple, but at the same time also very powerful, since the
properties (feasibility and worst-case response times) of fixed and dynamic priority non-idling
schedulers can be exactly characterized by using this concept. More precisely, we first focus on the
notion of processor busy period that does not depend on the scheduling algorithm, and then on the
notion of “higher priority” busy period, that is scheduling algorithm dependent.

A.1 Processor Busy Priods

DEFI NI TION 1 - A processor busy period is an interval of time in which the processor is kept
continually busy by the execution of pending instances.

Note that in the definition nothing is said about what delimits the interval at its sides. However, unless
otherwise stated we will usually intend atime interval delimited by two distinct processor idle periods,
i.e., any periods such that no outstanding computation exists.!

Among all processor busy periods, we find particularly interesting the “first” one obtained by releasing
all tasks synchronously fromtimet = 0.

DEFI NI TION 2 - Givenageneral task set, we call synchronous busy period the processor busy
period beginning at time t = O and delimited by the first processor idle period, when all tasks are
concretely released fromtimet = O on at their maximum rate.

The importance of the synchronous busy period is that, not surprisingly enough, it is the most
demanding one for most of the non-idling scheduling algorithms. Also, we can easily prove that is the
largest possible busy period.

Lemma 8 - Givenageneral task set, let L bethe length of its synchronous busy period. If L' isthe
length of a processor busy period in the schedule of any derived concrete task set, then

L'<L.

Proof. The given processor busy period must be preceded by an idle time, and its beginning must
coincide with the release timet of atask instance. If all instances of any task released after t are shifted
left as much as possible, possibly up to t, we obtain a synchronous busy period starting at t. Since the

workload betweentand t + L' cannot decrease with the shift-left argument, the length of the new busy
period cannot diminish. Hence, L'< L. O

Note that the property established by the previous lemma does not depend on the scheduling algorithm
assumed, either static or dynamic, preemptive or non-preemptive. The only assumption is that the
algorithm is non-idling.

Thelength L of the synchronous busy period can be computed by means of a simple procedure. Given
any interval [0, t[, the idea is to compare the generated workload W(t) with the length t of the
interval: if W(t) isgreater than t then the duration of the busy period isat least W(t) . The argument is

1. Note that a processor idle period can have zero duration, when a new task instance is released at the end of a
busy period.
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7. Conclusion

In this paper, we have focused on the scheduling of general task sets (i.e., non-concrete periodic or
sporadic task set such &8 [1[1, n], T; andD; are not related) as a central figure for the description

of possible processor loads, in several contexts. Although a lot of results were already known, some
new results have been established either in preemptive or in non preemptive context. Our hope is that,
given a real-time problem, this work might be helpful to pick a solution from the plethora of results
available. In particular, the optimality of preemptive/non-preemptive, fixed/dynamic priority driven
scheduling algorithms, the respective feasibility conditions and worst-case response times have been
examined (see Section 6 for a synopt#)me classic extensions such as jitter and resource sharing
have also been considered.

Although this work is not oriented toward a comparison of these results, it appears that preemptive and
non-preemptive scheduling are closely related. Indeed, the optimal scheduling algorithms are similar in
both cases. The main differences, owning to the absence of preemption, are first that a task instance
with lower priority can possibly cause a priority inversion before a higher priority busy period; and
second that when estimating the response time of a task instance, the attention must be on the higher
priority busy period preceding the execution start time of the instance, and not on the higher priority
busy period preceding its completion time. These differences slightly change the feasibility conditions
and the worst-case response time expressions but the whole analysis is very similar.

Moreover, fixed and dynamic scheduling differ, as already known, in many aspects such as
implementability, efficiency, complexity, etc.. This is not surprising given that the optimality property

of EDF is more general than with any fixed priority scheduler (the interested reader is referred to
[HLR96] for a formal comparison of the efficiency and the complexity of fixed/dynamic priority driven
scheduling in preemptive context). However, the analysis can be unified by using the concepts of
processor busy period, that are scheduler independent, as well as higher priority busy period, that are
scheduler dependent. Indeed, it appears that these concepts are general and very useful for the
identification of the worst possible density of arrival and worst-case response times. In particular, we
have introduced the concept of deadlihkusy period for dynamic priority driven scheduling that we
conjecture as an interesting parallel of the levielisy period already used in fixed priority driven
scheduling. The main differences we detect are:

 first that the impact of the priorityvarsions caused by the absence of preemption disappear
swiftly using EDF (aftemax{ D;} in ary deadlined busy period) when it persists throughout

the level-i busy period in the fied priority case. This remark is iavbur of EDF when preemp-
tion is not alleved, and is not surprising sinceygpriority inversion, using EDFefers to an
absolute deadline (and not adlikpriority level) that is dynamically managed.

* second that gngeneral task set which is feasible by EDF in non-preemptintat is neces-
sarily feasible with EDF in preempé contet. This property doeshhold when fixed priority
assignment are considered (e.g., in Section 4.3.2. a task set that is feasible in nonvereempti
contet but not feasible in preemp# contat is given).
Hence cowersely to EDF priority assignment, thereo olvious relationship between the fea-
sibility of a fixed priority assignment in preemyiand non-preempe contets,

The main question which still remains open is whether there exists a fully polynomial solution to the
feasibility problem for general task sets. Even if notions like processor demand, deadline busy period
and levelt busy period have been helpful for the improvements of the known solutions, both in the
dynamic and in the fixed priorities models the state of the art is represented by pseudo-polynomial
algorithms. Whether the problem is NP-hard is also not known at present [BHR90].
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where w; o = (q+1)C; +B; + Z {V"i,q_J’ﬂcj (12)
iofeiy| T

Furthermore, the general task set isfeasibleif: 0i O [1,n] ,r, < D;.

5.2.2 Non-preemptive case

Asfor the non-preemptive dynamic case, resource sharing is quite simple to manage in non-preemptive
fixed priority context since, owing to the absence of preemption, thereis still no need of any particular
protocol like the priority ceiling. The only possible priority inversions are then caused by the absence of
preemption (see Theorem 15). On the other hand, the worst patterns of arrival, considering release jitter
in non-preemptive context, are also similar to those identify in preemptive context, i.e., when tasks
experience their shortest inter-rel ease times at the beginning of the schedule. Therefore, to deal with the
context of this section, Equation (11) and Equation (12) only have to be replaced by:

r

= maxq(w; ¢+ C; +J;—qT)) (13)
W, +J;
where w; o = qC; + _DZ(_)%H {%J%b] +max iy { Ck—1}- (14)
j 'hp(Gi j

Note that a similar approach has been described in [TBW95] for the analysis of real-time networks in
which packetized messages have access to the physical medium according to their fixed priorities.

6. Synthesis

As stated in Section 2.3, the goal of this paper was to fill in Table 1 for general task sets (i.e., to put
together optimality properties, feasibility condition & worst-case response times in non-idling,
preemptive/non-preemptive, fixed/dynamic priority driven contexts). To that end, we can now
summarize the foregoing in Table 2 where white cells denote existing results when grey cells denote an
extension of existing results or new results.

TABLE 2. Resultsfor general task sets

Preemptive scheduling Non-preemptive scheduling
Dynamic priorities Fixed priorities Dynamic priorities Fixed priorities
Section 3.1 Section 3.2 Section 4.2 Section 4.3

Optimality Theorem 1 Theorem 7 Theorem 11 Section 4.3.2
Feasihility Theorem 6 Theorem 10 Theorem 14 Theorem 15
conditions

Worst-case Section 3.1.3 Theorem 10 Section 4.2.3 Theorem 15

Response times
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As done in Section 3.1 the efficiency of the feasibility analysis and the worst-case response time
computation can be improved by using the concept of deadline busy period.

5.1.2 Non-preemptive case

The feasibility analysis of ageneral task set in non-preemptive context (see Theorem 14) or in presence
of blocking factor (see Theorem 18) are quite similar. Thisis not surprising since both refer to priority
inversions w.r.t. absolute deadlines. It is also interesting to notice that resource sharing is quite simple
to manage in non-preemptive context since, owing to the absence of preemption, thereisno need of any
particular protocol. The only possible priority inversions are caused by the absence of preemption. On
the other hand, the worst patterns of arrival, when release jitter is considered, are similar to those
identified in preemptive context, i.e., when tasks experience their shortest inter-release times at the
beginning of the schedule. Therefore, to deal with the context of this section, Equation (10) in Theorem
18 only has to be replaced by:

t+J.—D,
at<L, + |1 "
Diszt+~]igl- \; T

JEbi + maXDi—Ji>t{ Ci -1} <t

with the convention that maxp, _ 5 »{ C;—1} = 0 if [1* D;=J; >t.

5.2 Fixed priority driven schedulers
5.2.1 Preemptive case

Taking into account shared resources and release jitter in presence of fixed priority driven scheduling
leads to the same reasoning than in presence of dynamic priority driven scheduling.

First, when T, = D;, Ui 0O[1,n] Sha Rakumar and Lehoczky [SRL90] have extended the
sufficient condition of [LL 73] (see Theorem 8) for the Priority Ceiling Protocol:

1/i

B. ,
— —-1),1<i<n
i

- S + = <i(2
PRALE
] = 1 J
where B, denotes the longest blocking time of T; alower priority task (see Section 5.1.1).

The same enhancement can also be applied to the Lehoczky’'s busy period analysis. Moreover
[TBW94], in presence of general task sets, extends this analysis further by considering the notion of

releasejitter (J; for T;). Their analysisis an extension of Theorem 10 that resultsin the following final
condition:

Theorem 19 - ([TBW94]) The worst-case responsetime I'; of atask T; of a general task set in
presence of shared resources and release jittersis found in a scenario in which all tasks are at their
maximum rate and released synchronously at a critical instant t=0. r; is computed by the following

recursive equation (where hp(i) denotes the set of tasks of higher priority than task T;):

r

= maxq(w; 4+ J;—qT;) (11)



5. Shared resources and release jitter

The above analyses assume that all tasks do not share resources. In rea operating systems, however,
this needs not be the case. We must therefore extend the analysis to deal with priority inversion
problems when dealing with dependencies. Furthermore, and for reasons such as tick scheduling or
distributed context (e.g. the holistic approach introduced by [TIN95] for fixed priority scheduling,
extended for dynamic priority scheduling in [SPU96-2]), tasks may be allowed to have a release jitter.
In this section, we give some hints on how the analysis described previously must be modified in order
to extend the model accordingly. The interested reader may refer to the given references.

5.1 Dynamic priority driven schedulers
5.1.1 Preemptive case

If the tasks are allowed to share resources, the analysis must take into account additional terms, namely
blocking factors, owning to inevitable priority inversions. Note that:

* the maximum duration of such inversions can be bounded if shared resources are accessed by
locking and unlocking semaphores according to a protocol like the priority ceiling [CL90],

[SRL9Q] or the stack resource policy [BAK91]. In particular, for each task T; itispossible to
compute the worst-case blocking time B; , the maximum time a task T; may be blocked by
lower priority tasks when accessing a shared resource.

* thelength L of the processor busy periods is unaffected by the presence of blocking instead.

Priority inversions may only cause the schedule to deviate from its ordinary EDF
characteristic. The required modifications on the analysis are only few. The instance being
checked, or another one which precedesit in the schedule, may experience a blocking that has
to be include as an additional term.

On the other hand, if atask T; is delayed for a maximum time J; (its release jitter) before being
actually released, then two consecutive instances of T, may be separated by the interval T, —J; .

[SPU96] examinesthe feasibility of ageneral task setsin presence of shared resources and releasejitter.

Theorem 18 - ([SPU96]) a general task set in presence of shared resources and release jittersis
feasible (assuming that tasks are ordered by increasing value of D;-J;), using EDF, if:

Ot<L, S B+ {HJ JEb+Bk(t)st . (10)
D, £T+;

where L is the size of the synchronous processor busy period (see annex A) and
k(t) = max{k|(D,—-J,<t)}.

The proof generalizes Theorem 6 showing that the worst processor busy period is still the synchronous
processor busy period and that the worst pattern of arrival, considering release jitter, is when tasks
experience their shortest inter-release times at the beginning of the schedule. Considering shared
resources, it is shown that the worst pattern of arrival arises with the blocking factors of the task with

the largest D) —J, value among those included in the sum. Similarly, [SPU96] develops the same
arguments for the computation of the worst-case response time.
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Suppose now that T, isfeasible at priority i but has a priority dDT(ri) <i.By Lemma7, changing the

priority (DT(Ti) of T; to i cannot increase the response times of the other tasks, and by hypothesis T;

is feasible at priority i. Hence T is still feasible when tasks in sb are assigned priorities
i+, ..,n. 0

From the above theorem, we can derive an optimal priority assignment based on the approach described
in [AUD91], which isthus also valid in non-preemptive context.

Let T = {14, ..., T,} beageneral task set. In order to determine an optimal priority assignment for

those tasks, we proceed in the following way. We check if at least one task is feasible (according to
Theorem 15) if assigned priority n. Two cases are possible:

* notask isfeasible, then clearly no feasible priority assignment existsfor T.

e atleast onetask isfeasible. If several tasks are feasible, we can choose one at random. Indeed,

by Theorem 17, if afeasible priority assignment exists then one will exist with priority nfor
the selected task.

We then repeat the steps to priority n—1, ..., 1, unless the task set is found unschedulable in the
meanwhile. The pseudo-code of the algorithm follows.

T={1y ..., 7.}
begin
forj = ndownto 1
unassi gned = TRUE;
for all tasks 1 in 1

if 1. is feasible at priority j then
assign 1, to priority j;

T =1-{1};
unassi gned = FALSE;
end if
if unassi gned= TRUE t hen
exit; /* no priority assignnent exists for T
end if
end for

end for
end

Clearly, as for the preemptive case [AUD91], the time complexity of this procedureis O( n2) .
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m General task sets (i O [1,n], T; and D; are not related)

An optimal priority assignment for general task sets scheduled in preemptive systems has been
described in [AUD91]. We want to prove that the strategy is optimal also in non-preemptive systems.
In order to do this, we first need to show that decreasing the priority of atask is harmless for the other
tasks.

Lemma 7 - Decreasing the priority of a task can only decrease or leave unchanged the response
times of the other tasks.

Proof. Let T = {14, ..., T,,} beasetof n genera taskswith increasing priorities. Let T, be the task
whose priority is to be decreased, and let T' = (Tq, ..., T s Tgs s oo Ty Tio T v --o0 Tpy) be
the new priority ordering. In T' we can distinguish three subsetss A = {14, ..., T _1},
B={t,ip 0Ty, adC = {T,,q....T5}.

The worst-case response times of the tasksin A and C are not affected by the new priority ordering.

Indeed, their priorities do not change, while the new priority of task T, produces the same worst-case
scenario (see Theorem 15). Thus the response times of those tasks are unchanged.

The tasks of subset B see their priorities to decrease by 1 (having more priority) thus possibly
decreasing their worst-case response times (obvious from the formula of Theorem 15). O

The following theorem isinspired from [AUD91], whereit is proven in a preemptive context. Let T be

atask set of n genera tasks, T = {1y, ..., T,}, and let CDT() be a particular priority assignment

function, such that for any task 7;, i = 1...n, CDT(Ii) isthe priority of thetask T; in T.

Theorem 17 - Letsb = {T;,...,T,} beasubsetof T. Suppose that tasksin sb are feasible

when Ok = i...n, task T, isassigned priority K. If there exists a priority assignment function CDT()

that enables T to be feasible then there exists a priority assignment function that assigns the tasks in
sb priority i, 1+ 1, ..., n suchthat T istill feasible.

Proof. We prove the theorem by induction. Suppose T, be feasible at priority n. Suppose that a
feasible priority ordering <DT( ) existsthat assigns T, priority m<n. By Lemma 7, if the priority of
T,, ischanged from m to n the response times of the other tasks is not worsened. As T,, isfeasible at
priority level n, the resulting priority ordering is till feasible.

Suppose the property true for tasks T, , 4, ..., T,,: those tasks reassigned priority i +1, ..., n still

enable T to befeasible. Let dJT( ) to be updated according to the new priority assignment.
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Theorem 16 - DM isan optimal priority assignement for periodic or sporadic task sets with
D,<T,, 0i,if Di<Dj O Cist.

Proof. We will show that whenever a valid schedule exists, a valid DM schedule exists, too. In that
purpose, let T = {14, ..., T,} beasetof n taskswith agiven feasible priority assignment. Let T; and
T, be two tasks of adjacent priorities, with T; the highest priority one (i.e., hp(i) = hp()) O{j}).
Assumethat D, < Dj . By hypothesiswe also have C, < Cj .

As the task set is schedulable, the worst case response time of each task is less than or equal to its
relative deadline. Furthermore, as Ui, D; < T; , the worst-case response time of any task isfound in its

first instance (Q = O in Theorem 15). Thus we have:

rjp = w;+Cj,withw; = kahp(j)(1+LWj/TkJ)Ck+ maX o py{ Ck— 1} and

r

= w; +C,,withw; = zkmhp(i)(l+|_wi/TkJ)Ck+makalp(i){Ck—l}.
Notethat w; <w; +C;<D;<D;<T;, 01+ | w;/T;]| = 1.

Let us swap the prioritiesof T; and T j»Soasto have a deadline monotonic ordering between the two
tasks. Since the priority of T; has raised, its new worst-case response time cannot increase, that is, the
schedule remains valid for T;. Vice versa, the priority of T j has lowered, so its worst-case response

time may increase. The new vaue is rj' = Wj' + Cj , With Wj' equal to the smallest solution of the

equation w = Z (1+| W/ Ty )Cy + maxy oy Cx— 1}, with hp'(j) = hp(j) O {i} . 1f
kOhp(j)

we evaluate the right term of the equationinw = w; —C; + C;, we have

w, —C; +C,
Z %*H{'_T_J____'JBchakap.(j){ck—l} <
k Ofm(i) k

W
g i+ 'T"JECNmakalp(J)—{i}{Ck—l} =

kOhp()) O {i} L'k

W.
DZ %*F—' EkafCimeanmp(i){Ck—l} =
k ) K

W.
DZ %H .T_-' Ebk+cj+maka|p(i){ck—1} +Ci-C; =
k ) k.

W.
DZ A+ | 2+ max ) {C— 1} + C—C; = w, + C;—C;.
k CARD() Tk

It follows that wi'sw; +C;—C;, hence r;" = w;'+C;<sw; +C;<D;<D;, that is, aso T

remains feasible with the new priority assignment. Since the worst-case response times of al other
tasks are not affected by the “priority swap”, the new priority assignment is globally feasible. A
deadline monotonic feasible priority assignment can be finally achieved with afinite number of similar
steps. a
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4.3.2 Optimality

Contrary to the preemptive case, when preemption is not allowed DM is no longer an optimal priority
assignment in this case. However, we first show that the optimality remains if slightly stronger
conditions are imposed.

To prove that DM is no longer optimal, we only need to give acounter example. Let T = {1, T, T3}
be a periodic task set with T1,(C;=3,T,=5 D;=5), 1,(C,=2,T,=10,D,=6), and
T5(C5=1, T5=10, D3=7). Assume the priorities are assigned according to DM (i.e.,, T;, T, and T,
have decreasing priorities).

In a synchronous scenario, the first occurrence of task T isnot executed by time Dy = 7 (see Figure
7). Its response time (see Theorem 15) is r5 = 2C; + C, + C5> D3, hence the deadline is missed.
The schedule is not valid. Yet, it is easy to see that by assigning priorities in decreasing order to T, ,

T, and T,, respectively, the schedule becomes valid, and the task set feasible. Indeed, we have:

T 1\ | ? $ |
0 5 10

Ty T [RXXKKXX] i T
0 6

T3 T | | | | | | i | T
0

Task T3 missesits deadline 7

Figure 7: T isnot feasible with DM’s priority assignment

Remark: the schedule produced by the preemptive DM with the same synchronous pattern would have
led smilarly to a deadline miss for task T5. Since DM is optimal in preemptive context when

Oi = 1...n, D; < T,, wemay conclude that T is not feasible when preemption is alowed. Thus we

have found atask set that isfeasiblein non-preemptive context with afixed priority assignment, but not
feasible in preemptive context.

Let us show now that the optimality of DM is kept when deadline and execution time orders are similar.
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The result of the previous lemma lets us extend the approach developed by [AUD91] and [LEH90], to
figure out the worst-case response times of a task T; in the non-preemptive context. Unless stated
otherwise, we will only examine scenarios as described in Lemma 6.

Theorem 15 - Givenageneral taskset T = {1y, ..., T,} witharbitrary fixed priorities, the
worst-case response time of any task T; isgiven by

= maXg-q . ofW q*+Ci—aT;},

where

W
Wi g = 9C; + DZ %LJ’ {—'ﬂngj + max iy { Ck— 1}, )
j () T

and Q = |_Li/TiJ, where L; is the length of the longest level-i busy period in non-preemptive
context (see Annex A.2).

Proof. Given atask T;, consider its instance released at time qT; . W, , is the smallest time such that
theworkload in theinterval [0, w; ] dueto all task instances which precede the execution of the T; 's
instance considered is maximum and equal to wW; q: i.e no other task instance can delay the (g + 1) -th
instance of T; at time w; . In Equation (9), qC; stands for the duration of the g instances of T;

released before qT; . zj 0 hi(i (1+|w; T J)Cj stands for the maximum workload of tasks with
higher priority than T; in the interval [0, w; 4] and max ;ni{ Cx—1} is the maximum delay
resulting from tasks with lower priority than T; (worst-case according to Lemma 6). Once it has gained
the processor at time W; ., the (g + 1) -th instance of T; completes its execution by time w; , + C;.

1,q’
Its response time is therefore w;  + C; —qT;..

L; isthe maximum length of any level-i busy period (see Section A.2). Thus, according to Lemma 6,
we do not need to examine instances released after L, , that is, the last one to be considered is that
released a time |L;/T,|T;. The worst-case response time of T; is findly

r = maxq:O__”Q{Wi'q+Ci—qTi}. a

Note that, similarly to preemptive case, the computation of worst-case response times has a pseudo-
polynomial time complexity, since L; is upper bounded by L, whose length is pseudo polynomial

whenever U < ¢, with ¢ apositive constant smaller than 1 (see Annex A).
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times. In order to achieve this goal, we first show that the notion of level-i busy period, introduced by

[LEH9Q], is also useful in the non-preemptive context. As for the dynamic case, the main differences
with the preemptive context are:

* Owing to the absence of preemption, atask instance with later absolute deadline can possibly
cause a priority inversion, which must be accounted for.

¢ Always owing to the non-preemptability of any task instance execution, our attention will be
on the busy period preceding the execution start time of the instance, and not on the busy pe-
riod preceding its completion time, as is the case in the preemptive model.

LetT = {14, ..., T,} beageneral task set with arbitrary fixed priorities.

Lemma 6 - The worst-case response time of T; is found in a level-i busy period obtained by
releasing all tasks T; with jOhp(i) O {i} synchronously fromtime t = O, and by releasing the
longest task T, with K I Ip(i) , if any, at time t = —1.

Proof. Consider the schedule produced by the non-preemptive highest priority first algorithm for a
given scenario (seefigure 6). Let t, bethe completion time of one of the T; ‘sinstances. Let t; bethe
last time before t, such that there are no pending instances before t; with priority higher or equal to
that of T;. By definition, there is no idle time in [t;, t,], and the only tasks that have instances
executed in [ty, t,] arethosewithindexesin hp(i) O {i} . Inaddition, the instance of alower priority
task, if any, may execute at t; owing to the non-preemptability of executions (note that in this case the
lower priority instance must have been released before t4 ). The interval between the completion time

of thisinstance (t, , if thereisno such instance) and t,, isalevel-i busy period.

The response time of the T; ‘s instance considered can be possibly worsened in the following ways. If

al instances of T; in [t;,t,] are actualy released from t; at their maximum rate, each execution
finishes at the same time, but has possibly a larger response time. Similarly, if al tasks with higher
priority than T; are released synchronously from t,, the number of higher priority instances cannot

decrease, thus giving a possibly longer response time for T; ‘sinstances. Finally, if T, isthe task with
the maximum execution time among all tasks with lower priority than T; (kK O Ip(i) ), by releasing an
instance of T, at time t; — 1, the effect of non-preemption is maximized, thus possibly worsening the

response time of T, ‘sinstances. By substituting t; with O and t, with t, —t; we have the thesis.0

ITJ,iDhIO(i)D{i}
|

t t

[ Level-i busy period Figure 6
I Tesk Ty, G = max; Ip(i){ Cj}
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4.3 Fixed priority driven schedulers

This chapter first concentrates on feasibility conditions and worst-case response times computation for
general task sets. Some existing results in continuous scheduling are adapted to the context of discrete
scheduling. Optimality in fixed priority driven schedulersis then studied. We will notably show that the
optimal priority assignment algorithm proposed by [AUD91] in preemptive scheduling is still valid
when extended to the non-preemptive context.

4.3.1 Feasibility Condition and Wor st-Case Response times

Contrary to the preemptive context, less results are known about fixed priorities non-preemptive
scheduling. In the context of continuous scheduling, where tasks parameters and time are allowed to be
non integer, one can derive from [THW94] and [TBW95] the following condition for the feasibility of
atask set with arbitrary priorities:

LetT = {14, ..., T,} beageneral task set with arbitrary priorities assigned by some agorithm. Asin
the preemptive context, the feasibility condition is based on the computation of the worst-case response
time of each task T;, and by comparing its value with the relative deadline D, . The non-preemptability

of the schedule is taken into account by considering a blocking factor B; = max; Ip(i){ Cj} , Where
Ip(i) is the subset of indexes that identify the tasks with lower priority than T;. The worst-case

responsetime r; of T, can thus be figured out by means of the following recursive equation:

= m X{Wj q+Ci—qT;} where W g = qC; + Z [—J’Yfﬂc +B,
=07 iofeml T
Q isthe smallest value such that w; ot C,<s(Q+1)T;, < isthe resolution with which time is

measured, and hp(i) isthe subset of indexes that identify the tasks with higher priority than T;..

Although continuous scheduling is more general than discrete scheduling, [BHR90] argue in favor of
discrete scheduling, showing first that it is reasonable to restrict task parameters to be integer, as any
scheduler is limited to scheduling in multiples of some discrete time unit, and as task parameters are
expressed in that time unit. Second, they show that once the input has been restricted to be integer, a
valid continuous schedule exists if and only if a valid discrete schedule exists, i.e we can consider
without loss of generality that tasks are scheduled at integer times.

If we limit our attention to discrete contexts, the previous feasibility condition is still sufficient but no
longer necessary. For example, let the task set

T={1(C,=2T,=5D;=3),1,C,=2,T, =10,D, = 10)}

be scheduled according to DM. The worst-case response times computed by using the previous formula
with Y, = 1 inour contextarer; = 4 andr, = 4. Thetask set is declared unfeasible, although
it is easy to verify that it isindeed feasible. Namely, according to Theorem 15, which is later shown,
ry =3andr, = 4.

Establishing a necessary and sufficient feasibility condition for any general task set with arbitrary fixed
priorities, essentially meansto develop a procedure for exactly computing the task worst-case response
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possibly released at time t. For any task T, the maximum number of instances released in [0,t] is
1+ /Ty

However, at most 1+| (a+ D;—D;)/T; | among them can have an absolute deadline before or at
a+ D;. Itfollows that

— . g a+D. -D. |0
Wi(a, t) = mnpL+| L1+ 22T C
,—; 0 {T,-J { T JD J

D;<a+D,

Being W, (a,t) amonotonic non-decreasing step function, the smallest solution of Equation (8) can be
found by using the usual fixed point computation:

0 1{7@ =0
A" @) = mex s a0 p{C -1} +\Tvi(a,L§’“)(a))+[T§Jci.
U : ' :

According to the argument of Lemma 5, we have defined the response time relative to a, r;(a) , asa
function of the busy period length L;(a) which is upper bounded by L , the length of the synchronous
busy period (see Annex A). Hence we conclude that the computation of r;(a) can be coherently limited

to values of a smaller than L. That is, the worst-case response time of T; isfinally

r, = max{r;(a): Osa<lL}.
The number of evaluations of r,(a) necessary to compute r; can be further reduced by observing that
the right side of Equation (8) is a step function whose discontinuities in a are for values equal to
ij + DJ- —D;, for some task T; and some integer k. The significant values of a in the interval

[0,L) can bereduced accordingly.

Moreover, as for the preemptive case, it is possible to restrict the interval where the worst-case
response time of T; has to be looked for, to [0, L;] with L; being the maximum length of a deadline
busy period, for T; in non-preemptive context (see Annex A for an exact computation of L; in

presence of Lemma 5's patterns of arrival). Once again, note that, contrary to what happens in the
feasibility section, the computation of L; might improve significantly the worst-case response times

analysis since it already makes use of recursive expression and since the following property holds (if
the tasks are sorted by increasing relative deadline): Ui O [1,n—1], L, < L;, ; (seeAnnex A).

Note that, similarly to the feasibility condition, the computation of worst-case response times has
pseudo-polynomial time complexity since L; is upper bounded by L, whose length is pseudo

polynomia whenever U < ¢, with C apositive constant smaller than 1 (see Annex A).
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In the new scenario, the workload in the interval preceding the start time of the T, ’sinstance released at
time a = t; —t5 cannot be less than that between t, and t, in the previous scenario. Hence the busy
period preceding this T, ’s instance execution cannot be shorter since it includes the worst-case priority

inversion w.r.t. the absolute deadline a + D; and the largest deadline-a + D, busy period preceding it.
That is, its relative response time cannot diminish. O

ty t t =4 +D;

[ deadlinet,busy period
I

Figure 5

As suggested by the lemma, if the length of the busy period starting at time t = O and preceding the
execution of the T; s instance released at time a istermed L;(a) , the response time of the instance is

L,(a) +C;—a.

Since the computation of L;(a) may occasionally give avalue smaller than a, more generally we have

r.(@ = max{C;, L(a)+C,—a}.

Thelength L;(a) can be determined by finding the smallest solution of the equation

t=maxp »a4p,{C;—1} +Wi(a,t)+{_%JCi, (8)

|
where the first term on the right side accounts for the worst-case priority inversion w.r.t. the absolute
a+ D, , while the second and the third terms represent the time needed to execute the largest deadline-
a+ D, busy period that precede the execution of the T;’s instance released at time a. More precisely,
the second term is the time needed to execute some instances of tasks other than T; with absolute
deadlines smaller than or equal to a + D; and release times before this T; s instance execution start

time. Finaly, the third term is the time needed to execute the T, ’s instances released before a.

The rationale of the equation is to compute the time needed by the T; s instance released at time a to
get the processor: every other higher priority instance released before this event will be executed
earlier, thus its execution time must be accounted for. For the same reason, the function W, (a,t) must
account for all higher priority instances released in the interval [0,t], thus also including those
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* Thefirst one has been already described in Theorem 14. Owing to the absence of preemption,
atask instance with later absolute deadline can possibly cause a priority inversion, which must
be accounted for.

* The second differenceisin some way subtler. Always owing to the non-preemptability of any
task instance execution, our attention will be on the busy period preceding the execution start
time of the instance, and not on the busy period preceding its completion time, asis the case
in the preemptive model. Aswill be clearer along the proof of the following lemma, thisdlight-
ly changes the way worst-case response times are computed.

Before describing the details of the worst-case response times computation, we first need to
characterize the scenarios, and in particular the consequent deadline busy periods, which provide the
local response times maxima.

Lemma 5 - Theworst-case responsetime of atask T; isfound in adeadline busy period for T; in
which T; hasan instance released at time a (and possibly others released before), all tasks with relative
deadline smaller than or equal to a + D, arereleased fromtimet = O on at their maximum rate, and
finally afurther task with relative deadline greater than a + D, , if any, has an instance released at time
t=-1.

Proof. Consider a scenario in which T; has an instance with arrival time t; and absolute deadline
t, = t; +D; (see figure 5). Let t,; be the instance execution start time, according to the non-

preemptive non-idling EDF schedule. Finaly, let t; be the last time before or at t; such that there are

no pending instances with arrival times before t, and absolute deadline before or at t, .

By choice of t; and t,, t; must be the release time of atask’s instance, and there cannot be idle time
between t5 and t,. That is, the execution of the T;’sinstance arrived at time t, is preceded by abusy
period of those instances released between t5 and t,, and that have absolute deadlines before or at t,
(the mentioned busy period isthen adeadline-t, busy period), plus, owing to the non-preemptability of

executions, at most one other instance released before t5 and having absolute deadline after t, .
Consider now the scenario in which:

* al tasks but T; with relative deadline less than or equal to t, —t, are released from time

t = 0 on at their maximum rate,

T

. T, isrdeasedamtimea—FJTi, a-ElEJ-lETi, .., aWwitha = t;—tg,),
* andthetask T;, if any, which attains the maximum value of maxp, .y _{C;—1} isre-
leased at timet = —1. Thatis, T; cause the worst possible priority inversion w.r.t. the abso-

j
lute deadline a + D; .
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Proof. Condition (7) is clearly necessary. Its sufficiency comes from several facts.

If the task set is not feasible, than there exists an instantt (t <L, t <B; and t <B,) such that (7) is

not verified. B, comes from Theorem 13 and B; can be obtained using similar algebraic
manipulations. In fact, if the condition is not satisfied for some value t, then

t< z %l-k\;tjl_DiJEbi-{_maxDpt{Ci_l}s Z %l+t
Dist i D;<t

Then:

—-D.
b g > (G- 1)

C, T, + D, T, + D,
t<tz?+2—c+maxD>t{C 1} <tU + ZT C, + max,{ C; — 1}

D;<t | Di=d Ti

> b <7 (1 =D/ T)C; + max{ C; -1}
1-U :

from which wefinaly have: t <

Furthermore, from Lemma 4 and Annex A, we know that for any task T; we only need to check the

absolute deadlines of itsinstances up to time LiS , thelength of the largest synchronous deadline-d busy

period involving a T; ‘s instance with absolute deadline d. Being the synchronous processor busy

period the largest one (also shown in Annex A), we necessarily have Liss L, and then L isaso an
upper bound.

Finally, Zheng and Shin [2S94] proved that we can ignore the instants not corresponding to any
absolute deadline. 0

Ccondition (7) has a pseudo-polynomial time complexity since LiS is upper bounded by L, whose

length is pseudo polynomial whenever U < ¢, with ¢ a positive constant smaller than 1 (see Annex
A).

Remark: Note that owing to the general optimality of the preemptive EDF agorithm with respect to
uniprocessor scheduling, the feasibility of atask set under non-preemptive EDF scheduling implies the
feasibility of the same task set under preemptive EDF scheduling. The opposite is not true. Note also
that the feasibility of a task set under non-preemptive fixed priority scheduling does not imply its
feasibility under preemptive fixed priority scheduling.

4.2.3 Worst-case response times

In the previous section we have seen that the feasibility check of a task set scheduled by a non-
preemptive non-idling EDF scheduler isvery similar to the preemptive case. As expected, the similarity
isvalid also for the computation of task worst-case response times. There are, however, two differences
which are worth to mentioning:
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Finally, let also T; be released synchronously from time t'; . Once again, the processor demand in
[t';, t5] canonly increase. Let t', be the largest absolute deadline of any task before or at t,. The
processor demand in [t'4, t',] coincides with that in [t';, t,] . Hence the deadline-t', busy period
which startsat t , islarger than t, —t'; 2 t', —t'; , that is, we have an absol ute deadline missed at time
t',. 0

h I

t,l:tl_B tl t2

[ deadline- busy period
N

Figure 4

Asfor the preemptive case, for any task T; we can compute, in non-preemptive context and in presence

of the pattern of arrival described for Lemma 4, the length Lis of the longest synchronous deadline busy

period relative to an absolute deadline of a T, ‘sinstance (see Annex A).

As will be seen now in the following theorem, the assessment is achieved by checking the absolute
deadlines of several task instanceswithin particular busy periods. The length L of the synchronous busy
period isthus auseful upper bound that lets us limit the number of absolute deadlines to be checked and
that can be combined with the bound established by [2S94] in Theorem 13. Note that the feasibility
condition we are going to show is a necessary and sufficient one since it computes exactly the worst
cost of possible priority inversions, caused by task non-preemptability. Finally, combining al these
results, an NSC for general task sets in non-preemptive context is:

Theorem 14 - Any geneanl task set witHJ < 1 is feasible using EDFif and only if:

Ot0S, t=h(t) + max, -1 C; =1}, (7)

with the convention thanax, ., {C;—1} = O if Q( D, >t where,

On S_D.
s= 0] %(Ti +Di,km[o, LD, }%n [0, min{L,By, B,})
H:1D Ti m
5 - zDisTi(l—Di/Ti)Ci+ma>g{Ci—1}
1~ 1-U )
5 - 0 5 3 1-.(1-D/T)CO
2 = maxgnale...n( i); .y m

L? is the length, for task T;, of its synchronous deadline busy period and L the length of the

synchronous processor busy period.
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precisely state a NSC for the feasibility of a general task set. Furthermore, as for the preemptive case,
we will see that the notion afeadline busy period is still useful.

As remarked in Annex A, as far as the schedule is non-idling, the ldngph the synchronous
processor busy period does not depend on the scheduling algorithm, and is the biggest among all busy
periods. This property limits the number of checks to do in order to assess the feasibility of a given task
set. Moreover, as for the preemptive context, we can make use of the more specialized notion of
deadline busy period to refine our analysis by further restricting the interval of interest. In non-

preemptive context, a deadlirtk-busy period is still a busy period in which only instances with

absolute deadlines before orchtare executed (see Annex A for a formal definition). However, since
we must take into account the effect of non preemption, it might occur that a priority inversion precedes
the deadlined busy period. It turns out that only the synchronous deadlihesy periods preceding

by the worst possible priority inversion are the busy periods interesting in order to check the feasibility
of a task set.

Lemma 4 - Given a general task set, if there is &arflow at timet,, for a certain pattern of avil,

then there is anverflow in a deadlinet, busy periodstarting at timef; such as one task‘- starts its
execution at timet;—B-1, where B = maxp >t2_tlJer_l{ C;—-1} (B =0 when
dj, Dj St,-t + Cj —1 ) and all the other tasks are released at timeB (see figure 4).

Proof. Assume there is a pattern which causes an instance of;taskmiss its absolute deadline at
time t,. Lett'; be the last time befor,, such that there are no pending instances with arrival times
earlier thant’; and absolute deadline before ottt By choice,t’; must be the arrival time of a task

instance, and there is no idle time betw&gnandt, . Furthermore:

* it might occur that a priority irersion taks place at'; , due to the ééct of non preemption.

Let us callb the duration of such a priorityviarsion.

* only instances with absolute deadline before dr,afire &ecuted in[t'; + b, t,]. That is,
t'; +b is the beginning of a deadlind, busy period, whose length is greater than

t, —t'; —b, by the lypothesis of werflow at timet,,.

Let T; be the task verifyind3 = maxDj>t2_t,l{ C;—1} (B = 0 whenl]j D;st,—-t),
then B is the length of the worst possible priority inversiorrjifstarts its execution at tinte; — 1.

Indeed, any other priority inversiof < maxp - {Cj—1} .

Consider now the scenario in whiah is released at tim&, —1 and all the other tasks buf are
released synchronously and at their maximum rate from timen. Because of the worst possible
priority inversion,the bginning of the deadliné, busy period(that is now int; = t'; +B) is
delayed. Moreover, because of the possibly larger processor demétigl t9] , the length of the
deadlinet, busy period cannot decrease. Thus this instance still misses its absolute deadline at

timet,.
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Theorem 12 - ([KN80], [JSM91]) A non-concrete periodic or sporadic task set (with D; = T,
Oi O[1, n]) isfeasible, using EDF, if and only if:

HU<1,

2)0tds, tzh(t)+maxDi>t{Ci—1},
with the convention that mexg, . { Cj—1} = 0 if Q( D;>t ,and

S= [ﬁ{(k+DTPkDD}EnﬂlmwQDJL
=1

-0

This pseudo-polynomial test is basicaly similar to the preemptive case. In preemptive context, for any
absolute deadline t, aNSC is to check that [Jt, t = h(t). Nevertheless, in non preemptive context, we
must account for an extra load resulting to a priority inversion w.r.t priority t. Indeed, even if EDF
scheduling policy is considered, due to non-preemption, it might occur that at time O, task’s instances
are pending with their absolute deadline smaller or equal tot and at the same time 0 atask instance with
an absolute deadline greater than t is scheduled. The worst duration of a priority inversion w.r.t priority

t is then given by maxp, >t C; =1}, following that for any time t > max{ D;} , preemptive EDF or
non-preemptive EDF scheduling are basically similar (since in that case, maxp, -1 C;—1} = 0).

Condition 2 includes this worst case duration of a priority inversion. Given this similarity and as
D; = T;, 0i O[1,n] the[LL73] condition (U <1 that is condition 1 in this theorem) is sufficient

after max{ D} . Finaly, as for the preemptive case [KN80] proposed to evauate the processor

demand only on the set S of points corresponding to absolute deadlines of task requests (i.e. the set of
points where the value of h(t) changes).

m General case (i O [1,n], T; and D; arenot related)

Recently, Zheng and Shin [2S94] focused on message communication systems in which the relative
deadlines and the periods are not necessarily related. In that model, they established the following
sufficient (but not necessary in our task context) feasibility condition.

Theorem 13 - ([Z394]) A general message set (with U < 1) isfeasible, using EDF, if:
atads, t=h(t) + Cp— 1, with Cp the maximum transmission time of any message and

Cp—1+ Zrzl(l_Di/Ti)CIE
1-U D.

n O
S = EDI{ D, +kT;, kO D}Em {0, max%rnaxi -1 n(D)),
|:

As for the preemptive model, they show that the number of checks to do in order to assess the
feasibility can be first limited in a bounded interval (using successive overvaluation of h(t)) and
second to a restricted set of suitable time instants (i.e. the set of pointsin S where the value of h(t)

changes). However, as their model is conceived for message communication systems, the cost of the
non-preemptive effect is larger than necessary in our context. Indeed in this theorem, the cost of

possible priority inversions, caused by message non-preemptability, is always initiated by Cp (the
worst transmission time) and moreover is effective during al the studied interval. In the following we
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preemptive EDF, for the scheduling of a set of sporadic tasks with relative deadlines equal to their
periods. A similar result was implicitly given by Jeffay et al. [JSM91], who proposed a sufficient
condition for assessing the feasibility of such a set of tasks, which turns out to be also necessary for any
given non-idling algorithm. Finally, the optimality of the EDF algorithm was proven in the general
model of arbitrary arrival laws and arbitrary relative deadlines by George et al. [GMR95]:

Theorem 11 - ([GRM95]) Non-preemptive non-idling EDF is optimal in the presence of general
task set.

The proof of the theorem is based on a classic interchange argument, by which any valid non-
preemptive non-idling schedule is transformed in a polynomial number of stepsin a still valid non-
preemptive non-idling EDF schedule. In other terms, if there is a valid non-preemptive, non-idling
schedule for a given task set, then there is also a valid non-preemptive non-idling EDF schedule. Note
that to our knowledge, no optimality result is known within the context of fixed priority scheduling (see
Section 4.3.2).

Also note that the Least Laxity First algorithm [MOK83], which at any scheduling decision chooses the
task instance with smallest laxity (absolute deadline minus current time minus remaining execution
time), and which is optimal in the preemptive context, is no longer optimal when preemption is not
alowed. In Figure 3 an example with two tasks whose schedule is valid under EDF, but not under LLF
isgiven. As can be easily remarked, the reason why LLF isno longer optimal isthat with respect to this
algorithm the priorities of the pending tasks change continuously, thus making necessary the
preemption. Being the schedul e non-preemptive, an absolute deadline may be missed.

Non-valid schedul e obtained by non-preemptive, non-idling LLF

221 $1+Dq S$+Do
T T

T 2I T T I| 1 I| T >
0 6 8
Valid schedule obtained by a non-preemptive, non-idling EDF
2 s+D; 9D,

T T

Il l| T T 2 T I| T >

0 6 8

Figure 3: non-preemptive LLF is not optimal

4.2.2 Feasibility

Owing to the optimality of the EDF algorithm, in this section, as well as in the following one, we will
assume a hon-preemptive non-idling EDF scheduler. In particular, feasibility conditions and worst-case
response times, respectively, will be studied for a given task set scheduled according to this model.

mCaseD; = T,, 00 0[1n]
A first feasibility condition for a set of n sporadic tasks with relative deadlines equal to their respective

periods was given by Kim and Naghibzadeh [KN80]. A similar and well known result, even if in a
discrete time model, was then presented by Jeffay et al. [JSM91].
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preemptive algorithms that use inserted idle times. However, the general problem of finding afeasible
schedule in an idling non-preemptive context is known to be NP-complete [GJ79, annex 5].

In the restrictive hypothesis that all tasks have only one instance and share their rel ease times, we have
avery simple solution known as Jackson’s Rule [STA95]: if we define the lateness of atask instance as
the difference between its completion time and its due date, the maximum lateness is minimized when
“all instances are put in order of non-decreasing due dates.” Unfortunately, the result is not useful for
systems in which task are non-concrete and recur. In this case the problem of minimizing the maximum
|ateness becomes NP-hard [STA95].

When the tasks recur, heuristic techniques can be used [MA84], [MOK83], [ZRS87] to reduce the
complexity. However, this reduction is achieved at the cost of obtaining a potentialy sub-optimal
solution. For example (see next figure), non-preemptive, non-idling EDF is not optimal for idling
scheduling.

non-valid schedul e obtained by non-preemptive, non-idling EDF

S $+D; $;+Dg
T T
1 | | -
Valid schedule obtained by a non-preemptive, idling scheduler
S ) $1+Dy
r |
T | 1 | >

Figure 2: non-preemptive EDF is not optimal in idling context

When the tasks recur and their release times are known a priori, optimal decomposition approaches
have been proposed [YUA9L], [YUA94] to reduce the complexity by dividing the n tasks into m
subsets. Decomposition, however, is not possible for any task sets. In the same context, optimal branch
and bound scheduling algorithms [GMR95] have been studied that efficiently limits the cost of an
exhaustive search but the theoretical complexity isstill in n! in the worst case.

Finally, in presence of non-concret task sets, [HV95] proves formally that the feasibility problem for
any periodic task set is NP-Hard in the strong sense when inserted idle times are allowed. It also proves
that there cannot exist an optimal on-line inserted idle-time algorithm for scheduling sporadic task sets.

For these reasons, aswell as for practical considerations, non-preemptive, idling scheduling algorithms
will not be further considered in our context of non-concrete task sets. On the other hand, non-
preemptive, non-idling scheduling algorithms will be examined in detailsin the sequel.

4.2 Dynamic priority driven schedulers

In the following we will first recall the optimality of the EDF algorithm in non-idling, non-preemptive
context and second describe useful procedures for the assessment of the feasibility of atask set (see
section 4.2.2), aswell as for the computation of task worst-case response times (see section 4.2.3).

4.2.1 Optimality

EDF is optimal within the class of non-preemptive non-idling scheduling algorithms, too. The first
result concerning the non-preemptive non-idling EDF agorithm was found by Kim and Naghibzadeh
[KN80], who showed the optimality of their relative urgency non-preemptive strategy, namely non-
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atacritical instant t=0. r; is computed by the following recursive equation (where hp(i) denotes the set
of tasks of higher priority than task T, ):

i

= max(w; ;—qT;), 5)
q=1..Q

where Q is the minimum value such that w; o< (Q +1)T; and

n
wi"’al = (q+1)C; + Z {chj. (6)
iofp@| T

The [JP86] analysisis still not sufficient, as it does not consider periods which are smaller than relative
deadlines. This limitation is, however, overcome by [LEH90] using the notion of level-i busy period
defined as the maximum interval of time during which a processor runs tasks of higher or equal

priorities than task T; (see Annex A). [LEH90] and [TBW94] show that the worst responsetime r; of

agiventask T; occurs during its synchronous level-i busy period. In that purpose, they show that it is
possible to ook successively at severa windows, each one starting at a particular arrival of task T; . If

W; o denotes the width of the busy period starting at time qT; before the current instance of task T;,

the analysis can be performed by the recursive Equation (6) that ends when w' 1= WR

i,q = Wi,

q a:

Finally, the worst response time of task T; isthen given by Equation (5) where Q is the minimum value
such that W; o < (Q+1)T; (meaning that the maximum length of the level-i busy period has been
examined, see Annex A).

Note that the length of the busy periods that need to be examined is bounded by the lowest common
multiple of the tasks periods. It is also bounded by: (Zj O hp(iy O CJ-)/(Ti —C,) [LS95]. Also, note

that the computation of worst-case response time has a pseudo-polynomial time complexity since any
level-i busy period is upper bounded by L, whose length is pseudo-polynomia whenever U < ¢, with
C apositive constant smaller than 1 (see Annex A).

4. Non-preemptive schedulers

Non-preemptive schedulers have received less attention than the preemptive ones and some results
such as optimal schedulers, feasibility conditions or worst-case response times need to be established or
to be improved. This chapter gives first a justification for using non-idling scheduling algorithms in
non-preemptive context. Then it consider the case of dynamic (resp. fixed) priority driven schedulers,
see Section 4.2 (resp. Section 4.3). In particular, we will show that non-idling, non-preemptive
scheduling is closely related to preemptive scheduling taking account the extraload resulting to priority
inversion.

4.1 |dling/non-idling for non-preemptive scheduling

Non-preemption usually makes the problem of feasibly scheduling a set of tasks more difficult than in
preemptive context due to the possible priority inversions and the theoretica dominance of non-
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3.2.2 Feasibility condition and wor st-case response times
mCaseT, = D;, 0 O[1,n]

Theorem 8 - ([LL73]) For a given synchronous periodic task set (with T, = D;, Ui O [1, n]),

the RM scheduleisfeasibleif U < n(2"" - 1).

[LL73] proved the sufficiency of this processor utilization test for tasks assigned priorities according to
the RM showing that it is possible to find a least upper bound on the processor utilization. This result
gives us asimple O(n) procedure to check the feasibility.

In addition to this approach based on the processor utilization, another interesting approach focused on
deriving the worst-case response time r; of each task T; of a given non-concrete task set. This led to

the obvious following NSC that unifies the feasibility of atask set with the worst-case response time:
Oi O[1,n] r,<D;.

Let us summarize now the main results on worst-case response times computation in several contexts
for preemptive fixed priority driven scheduler.

mCase D,<T,,0i0[1,n],

Theorem 9 - ([JP86]) Theworst-caseresponsetime r; of atask T; of a non-concret periodic, or
sporadic, task set (with D; < T, i O [1, n] ) isfound in a scenario in which all tasks are at their
maximum rate and released synchronously at a critical instant t=0. r; is computed by the following
recursive equation (where hp(i) denotes the set of tasks of higher priority than task T; ):

n
ri“+1 =C+ Z {_[I_Lwcj 4
jORp@)] 'j

In[LL73] tasks are periodic and relative deadlines are equal to periods. [JP86] analysisis more general
because it alows relative deadlines to be smaller than periods. The proof shows that Formula (4) is
correlated to the synchronous pattern and cannot be worse in the presence of another pattern. The

n+1 n

recursion ends when r; =1, =T

i i and can be solved by successive iterations starting from

rio = C,. Indeed, it is easy to show that rin is non decreasing. Consequently, the series converges or

exceeds D; . Inthe latter case, task T; is not schedulable.

m General task sets(Li O [1,n], T; and D; are not related)

Theorem 10 - ([LEH90], [TBW94]): The worst-case responsetime r; of atask T; of a general
task set isfound in a scenario in which all tasks are at their maximum rate and released synchronously
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According to Lemma 3 and to the subsequent considerations, the significant values of the parameter a
arein the interval [0, Li] . Furthermore, also within this interval we can restrict our attention to the

points where either 5, = 0 or a + D; coincides with the absolute deadline of another instance, which

correspond to local maximaof L;(a). Thatis, a0 An [0, L;], where:

n
A= []{kT;+D;-D;k00}.
j=1

Finally, ageneral task set isfeasible, using EDF, if and only if:

OiO[1,n], r; = maxyse{ri(a)} <D;. (3)

Note that, similarly to the feasibility condition, the computation of worst-case response time has a

pseudo-polynomial time complexity whenever U < c, with C a positive constant smaller than 1
[SPU9S].

3.2 Fixed priority driven schedulers

In this section, we briefly summarize the principles of preemptive fixed priority scheduling. These
principles were derived in particular from [LL73], [LW82], [JP86], [LEH90], [AUD91] and
[TBW94]. Note that, contrary to what is happening in the dynamic priority case, feasibility and
response time computation are closely related in the state of the art.

3.2.1 Optimality

Optimality property is limited in this section to the fixed priority driven class of schedulers. In other
words, ascheduler x is said to be optimal in the sense that no other fixed priority assignment can lead to
avalid schedule which cannot be obtained by Xx. This limitation reflects the theoretical dominance of
the class of dynamic priority driven schedulers.

Inthecaseof T; = D; [i O[1,n], original work of [LL73] establishes the optimality of the Rate

Monotonic (RM) priority ordering. The priority assigned to tasks by RM is inversely proportional to
their period. Thus the task with the shortest period has the highest priority. For task sets with relative
deadlines less or equal to periods, an optimal priority ordering has been shown by [LW82] to be the
deadline monotonic (DM) ordering. The priority assigned to tasks by DM is inversely proportional to
their relative deadline. [LEH90] points out that neither RM nor DM priority ordering policies are
optimal for general tasks set (i.e. when relative deadlines are not related to the periods). Finaly,

[AUD91] solves this problem by giving an optimal priority assignment procedurein O(nz) .

Theorem 7 - ([AUD91]) The Audsley priority assignment procedure is optimal for general task
sets.

The procedure first tries to find out if atask with an assigned priority of level nis feasible. Audsley
proves that if more than one task is feasible with priority level n, one can be chosen arbitrarily among
the matching tasks. Then the first feasible task is removed from the task set and priority level is
decreased by one. The procedure proceeds with the new priority level until either all remaining tasks
have been assigned a priority (the task set is then feasible) or for a certain priority level (no task is
feasible, then there is no priority ordering for the given task set).
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the iterative computation L{9(a) = 0, L{M* (@) = Wi(a, L{M(a)) + (1+|a/T,; |)C;, where

. —D. |O
W, (a,t) = 2 mingj L | 1+ M C;.
iFi T Ty Jo
Dj<a+D,

(for an explanation of the formulathe interested reader is referred to Annex 1 or [SPU96)).

Similarly to what was done in Section 3.1.2 to establish atask set feasibility, the result of Lemma 2 can
be improved by using the notion of deadline busy period. In particular, the busy period mentioned in

Lemma 2 is always one in which “only instances with absolute deadlines less than or equal to d
execute”, that is, it isindeed a deadline busy period.

Lemma 3 - Theworst-case responsetime of atask T; isfound in adeadline busy period for T; in
which all tasksbut T; are released synchronously from the beginning of the deadline busy period and at

their maximum rate.

Proof. Consider a T;’s instance with release time a and absolute deadline d = a+ D, respectively
(seefigure 1). Let t, beitscompletion time, according to the EDF scheduling algorithm. Let t; bethe
last time before t,, such asthere are no pending instance with arrival time earlier than t; and absolute

deadline less than or equal to d (notethat t, = L;(a) if t; = 0).

Sincethe T;’sinstanceisreleased at time a, t; < a. Furthermore, by choice of t; and t,, t; must be
thearrival time of atask’sinstance and thereisnoidletimein [t,, t,] . Thatis [t,, t,] isabusy period
in which only instances with deadlines less than or equal to d execute, i.e., it is indeed a deadline-d
busy period.

Consider now the scenario in which all tasks but T; are released synchronously and at their maximum
rate from time t; on. Because of the larger workload and processor demand in theinterval [t,, d] , the

completion time of the T;'s instance considered can only increase. Thus, the response time of the T;’s
instance considered cannot decrease. 0

| 3

51 a ty d=a+D;

[ deadline-dbusy period
Figure 1

This lets us restrict the interval where the worst-case response time of T; has to be looked for, to
[0, L;] with L; being the maximum length of adeadline busy period, for T, (see Annex A for an exact
computation of L; in presence of Lemma3's patterns of arrival). Note that, contrary to what happensin

Section 3.1.2, the computation of L; might improve significantly the worst-case response time analysis

sinceit aready makes use of arecursive expression and since the following property holds (if the tasks
are sorted by increasing relative deadline): Ui O [1,n—1], L, <L, ; (seeAnnex A).
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Proof. Condition (2) is clearly necessary. That it is sufficient is proven by several facts.

The generalization of Theorem 3 and Theorem 4 tells us that if the task set is not feasible, then thereis
aninstant t (t<L, t<B,; and t <B,) such as condition (2) is not verified. L comes from [SPU96],

B, from [ZS94] and B, is obtained using an algebraic manipulation similar to that used in Theorem 4.

We have
t—D. C. T,-D. T,-D.
t<h(t) < + c =ty 2+ § ——C <tU+ ZT—'C-,
Dizst%l Ti ECI DizstTi Dizst LI DI<T, LI

from which, if U <1, we can conclude

o<1 (1-D/T)C

<
t 1-U

Furthermore, from Lemma 1 and Annex A, we know that for any task T; we only need to check the
absolute deadlines of itsinstancesup to s Lis, the length of the largest synchronous deadline-d busy
period involving a T; ‘ sinstance with absolute deadline d.

Finally, Zheng and Shin [ZS94] proved that we can ignore the instants not corresponding to any
absolute deadline. 0

Note that condition (2) has a pseudo-polynomial times complexity since Lf is upper bounded by L,

whose length is pseudo polynomia whenever U < ¢, with ¢ a positive constant smaller than 1 (see
Annex A).

3.1.3 Wor st-Case Response times

Contrary to our intuition, and to what happensin fixed priority systems, the worst-case response time of
agenera task set scheduled by EDF are not necessarily abtained with a synchronous pattern of arrival.
In [SPU96], Spuri shows the following lemma.

Lemma 2 - ([SPU96]) Theworst-case response time of a task T; isfound in a busy period in which
all tasks but T; are released synchronously and at their maximum rate.

In practice, in order to find r;, the worst-case response time of T;, we need to examine severa
scenarios in which for a given a, T; has an instance released at time a, while al other tasks are
released synchronously (sj = 0, Oj#i). In general, T; may also have other instances released

earlier than a. In particular, itsstart timeis ;. = a—| a/T; |T;.

Given a value of the parameter a, the response time of the T;’s instance released at time a is

ri(@ = max{C,, L(a) —a} , where L;(a) is the length of the busy period, computed by means of
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t' > 0, any task instance released after t' with an absolute deadline smaller or equal to t can-
not miss its absolute deadline if not detected before (otherwise this would contradict Lemma
1). It followsthat it is not necessary to check these instancesin theinterval [t', t] .

* thecontrary holds, it is sufficient to check the instances of agiven task T; in the longest syn-
chronous deadline busy period.

As shown in Annex A, for any task we can compute the length L; of the longest deadline busy period
relative to an absolute deadline of a T; ‘s instance. Being the synchronous processor busy period, the

largest one, (also shown in Annex A), we necessarily have L; < L . Note that:

* L, dependson the pattern(s) of arrival considered, e.g. for the feasibility analysisthat we study

here, only the synchronous pattern of arrival is considered (L; is called LiS in such acase).

* therecursive procedure that we propose in Annex A to compute Lis can be costly, for specific

task sets, in comparison to asimple check of h(t) <t onalimited interval (we leave the ques-

tion of finding afaster procedure to compute Lis as an open question to the interested reader).

Whatever the casg, it is possible to maximise Lis by L and, as will be explained in Section

3.1.3, the use of the deadline busy period is more relevant for the analysis of the worst-case
response times.

Finally, combining these results, an NSC for general task setsis:

Theorem 6 - Anygeneral task set with U < 1 isfeasible, using EDF, if and only if:

Ot S, h(t) <t 2
n S_p. ||
where = O] %< T, +D, kD[ Li —Di }mn [0, min{L, By, B,}]
=10 T; il
5 - zDisTi(l_Di/Ti)Ci
1 1-U
H _.(1-Dy/T,)C
B, = maxgmax, - ; (D;), Z' 1 -0 I[
0 - C
S . . .
L; is the length, for task T;, of its synchronous deadline busy period and L the length of the

synchronous processor busy period (see Annex A for the computation).
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In particular, Theorem 3, originally conceived for task setswith relative deadlines equal to periods, was
independently shown to hold also for the less restrictive models by Ripoll et a. [RCM96] and Spuri
[SPU95, SPU96], respectively. That is, in order to check the feasibility of ageneral task set, we can still
limit our attention to the synchronous busy period.

On the other hand [BMR90], [BHR93] and [ZS94] showed by agebraic manipulations of h(t), as for

Theorem 4, the possibility of checking the feasibility of a general task set on the following set S of
points in a limited interval. The only difference with this theorem comes from the lower bound

max(D;,) that is needed to take into account of relative deadline greater than periods. Finally:

S (1-D/TNC
1-U s
N

Dﬁ kKT, +D,kOO}En |0 5 D
- 0o, i gn ’maXEmaX:l...n( i),

As[RCM96], in the case where Di < Ti i O[1, n], itisnow possibleto integrate these upper bounds

in one theorem for general task sets. However, if we introduce a more speciaized notion of busy
period, namely the deadline busy periodsee Annex A for a formal definition), we can refine our

analysis by further restricting the interval of interest. Specifically, a deadline-d busy period is a busy

period in which only instances with absolute deadline before or at d are executed. It turns out that only

synchronous deadline busy periods are the busy periods required in order to check the feasibility of task
Set.

Lemma 1 - Given a gneal task set, if theris an eerflow for a certain arrival pattern, then theer
is an overflow in a synlsronous deadlineusy period
Proof. Assume there is a pattern which causes an instance of task T; to miss its absolute deadline at

timet. Let t' bethelast time before t, such that there are no instances pending with arrival time earlier
than t' and absolute deadline before or at t. By choice, t' must be the arrival time of atask instance,
and thereisno idle time between t' and t. Furthermore, only instances with absolute deadline before or
at t are executed in [t', t]. Thus, t' is the beginning of a deadline-t busy period, whose length is
greater than t —t', by the hypothesis of overflow at time t.

Consider now the scenario in which all tasks but T; are released synchronously and at their maximum

rate from time t' on. Because of the possibly larger processor demand in [t', t], the length of the
deadline-t busy period cannot decrease. Thusthe T; ‘s instance still missesits absol ute deadline at time

t.

Finally, let also T; bereleased synchronously fromtime t'. Once again, the processor demand in [t', t]

can only increase. Let t" be the largest absolute deadline of any task before or at t. The processor
demand in [t', t"] coincideswith that in [t', t] . Hence the deadline-t" busy period which starts at t',
islargerthant —t' > t" —t', that is, we have an absolute deadline missed at time t" . 0

From Lemma 1, the following properties hold:

* Consider aNSC starting at time O (acritical instant), based on acheck of all the absolute dead-
lines. At any time during the schedule, let t' be the beginning of adeadline-t busy period. If
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A further improvement on the result of Leung and Merril [LM8Q] for synchronous periodic task setsis
found in [BHR90] and [BMR90], where Baruah et a. show that if U <1 an NSC for the feasibility of

atask setisthat h(t) <t, Ot in the limited interval:[O, max; -, (T, ~D) 5

U
1-U
The proof is based on the fact that if the task set is not feasible, then there is an instant of time t such

that h(t) >t. By algebraic manipulations of this condition, an upper bound on the value of t can be

determined. Recently, by using a similar manipulation on the same condition [RCM96] obtained a
tighter upper bound:

t<h(t)<ZD T Eb,stU+Z%[ %c,,

i=1 i=1
from which:

Y i-1(1-Di/T)C,
t< i=1
1-U
Note that if U <c, with ¢ a constant smaller than 1, this result leads to a pseudo-polynomial-time
NSC [BMR90]. Note also that the interval to be checked can be largeif € iscloseto 1.

A second upper bound on the length of the interval to be checked is given in [SPU95, RCM96]. In
particular, Ripoll et a. extendto D; < T;, 0i O [1, n] the result of Theorem 3, by showing that the

synchronous processor busy period isthe most demanding one (using the same overflow argument asin
[LL73]). That is, if an absolute deadline is missed in the schedule, then one is missed in the

synchronous processor busy period. The computation of the synchronous busy period length L is
described in Annex A.

Finally, the evaluation of the NSC is further improved as proposed by Zheng and Shin [2S94], who
propose to evaluate the processor demand only on the set S of points corresponding to absolute
deadlines of task requests (i.e. the set of points where the value of h(t) changes).

m Case D, 2T, 0i O[1,n]

Theorem 5 - ([BMR90]) A non-concrete periodic, or sporadic, task set (with D; 2T,
0i O[1, n]) isfeasible, using EDF, if and only if U < 1.

The proof of [BMR90] simply showsthat if D; > T;, Li 0 [1,n] and U <1:

Ot>0, h(t):Dét%L+r_ ch tz—<t

i=1

m General task sets (i O[1,n], T; and D; are not related)

The results seen for task sets with relative deadlines smaller than or equal to the respective periods, are
also valid for general task sets, in which there is no a priori relation between relative deadlines and
periods.



resulting synchronous processor busy period cannot lead to an idletime prior totime t. Thisleadsto a
contradiction if weassume U <1 and an overflow at time t.

Theorem 3 - ([LL73], [KLS93]) Any non-concrete periodic task set (with D; = T;,

Oi O [1, n]) scheduled by EDF, is feasible if and only if no absolute deadline is missed during the
synchronous busy period.

This result is also valid for other sorts of task sets. Ripoll et a. [RCM96] and Spuri [SPU95, SPU96]
showed that in order to study the feasibility of a non-concrete task set, in preemptive context, we can
limit our attention to the synchronous processor busy period (see Annex A for a definition). All we
have to do isto check the absolute deadlinesin thisinterval. Note that [KL S93] and [ SPU96] show that
it is possible to consider the scheduler implementation costs in this synchronous busy period.

In the sequel, we will see that we can improve the previous results using the new concept of deadline-d
busy period.

m Case D, <T,, 0i O[1,n]

Historically, an NSC for this model has been known since the publication of [LM80], in which Leung
and Merril established that the feasibility of an asynchronous task set can be checked by examining the

EDF schedule in the time interval [0, 2P + max{s;}], with P the base period as defined in

section 2.2; and by verifying that (1) al absolute deadlines are met during this interval and (2) the
configurations (i.e. the amount of time for which each task has executed since its last instance) of the

schedule at the time instants P + max{s;} and 2P+ max{s;} coincide (that is, the schedule
becomes cyclical after the first “unstable” base period). The result was later improved by Baruah et al.
[BHR90], who showed that condition (2) is always satisfied whenever U < 1.

Note that this NSC operates in exponential time in the worst-case (which is usually unacceptable) since
P isin the worst case a function of the product of the task periods. On the other hand, it turns out that

for a synchronous periodic task set we can restrict our attention to theinterval [0, P], with O acritical
instant. That is, the synchronous arrival pattern is the most demanding for non-concrete task set.

In addition to this, the approach we are going to show now is based on the evaluation of the processor
demand h(t) on limited intervals such as the synchronous processor busy period (see Annex A).
Indeed, being the processor demand, the amount of computation requested by all instances in the
interval [0, t], it follows that for any t >0, h(t) must not be greater than t in order to have a valid

schedule. Note that this approach leads to a pseudo-polynomial NSCif U <c<1.

Theorem 4 - ([BRH90], [BMR9O0], [ZS94], [RCM96]) A non-concrete periodic, or sporadic, task
set (with D; < T; 0i O[1,n] and U < 1) isfeasible, using EDF, if and only if:

OtO S, h(t) <t 1)

L " (1-D./T)C
where S = %D{kTi"‘Di,kDD}%n {O,min%_, Di=1 i” i |%
i=1 ] 1-U M

and L isthe length of the synchronous processor busy period (see Annex A for an explanation).



The literature regarding preemptive algorithmsis quite important. Thus, Section 3 is more adescription
of the state of the art of the existing results such as optimal fixed/dynamic priority assignment schemes,
and the associated off-line feasibility conditions and worst-case response times computation. However,
for the dynamic case, we will introduce the new concept of deadline-d busy period in order to improve
the efficiency of the NSC's. We consider this concept as a parallel with the existing concept of level-i
busy period used in fixed priority driven scheduling (see Annex A for aformal definition).

In non-preemptive context, the literature is not so important. After a short discussion on the limited
interest of idling schedulers for non-concrete task sets, Section 4 mainly recalls the existing results and
establish new results when needed. It will appear that preemptive and non-preemptive scheduling are
closely related, foe example in terms of optimality and feasibility properties.

3. Preemptive schedulers
3.1 Dynamic priority driven schedulers

In this section, we first recall the existing results of preemptive dynamic priority scheduling (see
section 3.1.1 for the optimal scheduling algorithm, section 3.1.2 for the feasibility of a given task set
and section 3.1.3 for the worst-case response times). These principles were derived in particular from
[LL73], [LM80], [BMR90], [BHR93], [KLS93], [2S94], [SPU96] and [RCM96]. At the end of the
section, we will show that it is possible to combine the existing results with the new concept of
deadline-d busy period in order to optimize the NSC.

3.1.1 Optimality

We will focus on EDF (Earliest Deadline First) scheduling algorithm. At any time, EDF schedules
among those tasks that have been released and not yet fully serviced (pending tasks), one whose
absolute deadline is earliest. If no task is pending, the processor isidle.

Theorem 1 - ([DER74]) EDF isoptimal.

The proof showsthat it is always possible to transform a valid schedule into one which follows EDF (if
a any time the processor executes some task other than the one which has the earliest absolute
deadline, then it is possible to interchange the order of execution of these two tasks).

This optimality property is general following that any feasible task set is schedulable by EDF. Note
also that the LLF (Least Laxity First) scheduler, which at any time schedules the task instance with the
smallest laxity (absolute deadline minus current time minus remaining execution time), has also been
shown to be optimal in the same context [MOK83], but leads to more preemptions than EDF.

Owing to its optimality property, all the results described in the sequel for dynamic priority driven
schedulers are referred to EDF.

3.1.2 Feasibility Condition
mCaseT, = D;, Hi0[1,n]

Theorem 2 - ([LL73], [COF76]) For a given synchronous periodic task set (with D; = T;,
Ui O [1, n]), the EDF scheduleisfeasibleif and only if U < 1.

Thisresult givesusasimple O(n) procedure based on the processor utilization to check the feasibility.
The proof shows that if agiven processor busy period (see Annex A) leadsto an overflow at time t, the



processor busy period isformally introduced. Specific definitions of priority busy periodsare
aso introduced, which are useful in the analysis of the different scheduler classes (either
dynamic or fixed priority driven), and few properties are established.

Given anon-concrete general task T;, Ui O [1, n], r; isthewor st-caseresponsetimeof T;,

i.e., the longest time ever taken by any instance of the task from its release time until the time

it completesits required computation [JP86]. Note that:

- asshown in the sequel, the value of r; is scheduling algorithm dependent and can be

computed using the concept of priority busy period.

- if atask hasaworst-case responsetime greater than its period then thereisthe possibility
for atask to re-arrive before the previous instances have completed. In our model, we
consider that the new arrival isdelayed from being executing after the previousinstances
terminate. In other words we keep the order of the events of the same task. Other ways
to deal with such a situation exist (e.g. to deliver the most recent instance of the same
task first), leading to an adaptation of the proposed results.

2.3 Goals

Given a scheduling context, the main goal of the existing works is to couple an “optimal” scheduler
with apolynomial (or even a pseudo-polynomial-time) Feasibility Condition (FC) that could be either a
Necessary and Sufficient Condition (NSC) or a Sufficient Condition (SC) only. A lot of results
regarding optimality, feasibility conditions and worst-case response times computation are now

available

(see Table l).

TABLE 1. Main existing results

Preemptive scheduling

Non-preemptive scheduling

Dynamic priorities Fixed priorities Dynamic priorities Fixed priorities
Section 3.1 Section 3.2 Section 4.2 Section 4.3
Optimality [DER74], [MOK83] [LL73], [LW82], [KN80Q], [JsM9a1],
[AUD9]] [GMR95]

Feasibility [LL73],[LM80],[BMR90], | [LL73], [IP86], [LEH9O] [KN80Q], [JSM91], [THW94], [TBW9I5]
conditions [BHR93],[KLS93], [2S94]

[Z2S94], [RCM96]
Worst-case [SPU96] [JP86], [TBWO4] [THW94], [TBW9I5]

Response times

Table 1isnot an exhaustive list of papersin the field of real-time scheduling but more a summary of the
main results in our knowledge. In the sequel, we will focus on these results, considering general task
sets as a central figure for the description of possible processor loads, in centralized, non-idling, fixed/
dynamic, preemptive/non-preemptive contexts. A synoptic (see table 2) of existing and new results for
genera task setswill be given in Section 6. More precisely, this paper:

recalls existing results straight from the state of the art when a cell of the table is white.

extends existing results from the state of the art in order to deal with general task setswhen a
cell of thetableis coloured in grey.

establishes new results in order to deal with general task sets when a cell of the table is col-
oured in grey and has no reference.




a concrete task set w is said to be feasible with respect to a given class of schedulers if and
only if thereis at least one valid schedule that can be obtained by a scheduler of this class (in
this paper, we consider only four classes of schedulers, by combining non-idling, preemptive/
non-preemptive, fixed/dynamic priority driven schedulers). Similarly, a non-concrete task set
T issaid to be feasible with respect to a given class of schedulersif and only if every concrete
task set w that can be generated from 1 isfeasible in this class.

Note that from the real-time specification point of view, a non-concrete task set is more real-
istic than a concrete one, since not one but all the patterns of arrival areindeed considered. For
the same reasons, but from the scheduling point of view, afeasibility condition for a non-con-
crete task set is generally more selective and less complex than one for a concrete task set.
[BHR9Q], [BMR90] showed that a concrete task set cannot, in general, be tested efficiently un-
less P=NP. Anyhow, they also showed that a concrete synchronous task set, or a non-concrete
task set, can be tested in pseudo polynomial timewhenever U < c <1 (i.e., with C aconstant
smaller than 1).

a scheduler is said to be optimal with respect to a given class of schedulersif and only if it
generates avalid schedule for any feasible task set in this class.

U= ZI”: 1 Ci/ T, is the processor utilization factor, i.e., the fraction of processor time

spent in the execution of thetask set [LL 73]. An obvious Necessary Condition for the feasibil-
ity of any task setisthat U < 1 (thisisassumed in the sequel).

P =lecm;_;.,{T;} isthebase period (or Hyperperiod), i.e., a cycle such as the pattern
of arrival of a periodic task set recurs similarly [LM80]. Note that, even in the case of limited
task sets, P can be large when the periods are prime.

given acritical instant at time 0 (LJi O [1,n], s; = 0), the processor demand h(t) isthe
amount of computation time requested by all instances whose release times and absolute
deadlinesarein theinterval [0, t] [BMR90],[SPU96]:

0 g 2o g3

i=1

given acritical instant at time 0 (0i O [1, n], s; = 0), theworkload W(t) (resp. W(t)) is
the amount of processing time requested by all instanceswhosereleasetimesarein theinterval
[0,t) (resp. [0, t] ) [BMR9Q]:

n

w = Hﬂc,

i=1

W(t) = %%HH_IJBC,

i=1

Given anon-concrete task set, the synchronous processor busy period is defined as thetime
interval [0, L) delimited by two distinct processor idle periods, i.e., any periods such that no
outstanding computation exists, in the schedule of the corresponding synchronous concrete
task set [KLS93]. It turns out that the value of L does not depend on the scheduling algorithm,
as far as it is non-idling, but only on the task arrival pattern. In Annex A the concept of



* Anon-concreteperiodictask set T = {Ty..., T} isasetof n non-concretetasks. A con-

crete periodic task set w = {w; ..., w3 isaset of N concrete tasks. Then an infinite
number of concrete task sets can be generated from a non-concrete task set (without loss of
generality weassume min; _; . ,{ S} = 0).

A concrete periodic task set w iscalled asynchronoustask setif s; = s; forall 1<i,j<n

(s; isthen called acritical instant in the literature) otherwise, w is called an asynchronous

task set ([LM80] showed that the problem to know if an asynchronous task set can lead to a
critical instant is NP-compl ete).

* Sporadic taskswere formally introduced in [MOK83] (although already used in some papers,
e.g., [KN80]) and differ only from periodic tasks in the invocation time: the (k+ 1)th instance
of aperiodictask occursattimet, , ; = t, + T, ,whileitoccursat t, , 1 2 t, + T; if thetask
issporadic. Hence T; represents the minimum interarrival time between two successive invo-
cations.

* Ageneraltaskset T = {T4...,T} isanon-concrete periodic or sporadic task set such as
Oi O[1,n], T; and D; arenot related.

Throughout this paper, we assume the following:

* all the studied schedulers make use of the HPF (Highest Priority First) on-line algorithm but
differ by their priority assignment scheme (in the sequel, we will no longer refer to HPF). They
all make use of afixed tie breaking rule between tasks that show the same priority. They are
non idling (i.e., the processor cannot be inactive in presence of pending instances) and are ei-
ther preemptive or non-preemptive (preemptive means that the processing of any task can be
interrupted by a higher priority task).

« Oi0[Ln],C<T,, C<D,.

* all tasksin the system are independent of one another and are critical (hard-real-time), i.e., al
of them have to meet their absolute deadline. Unless otherwise stated, tasks do not have re-
source constraints and the overhead due to context switching, scheduling... is considered to be
included in the execution time of the tasks.

* timeisdiscrete (task invocations occur and tasks executions begin and terminate at clock ticks;
the parameters used are expressed as multiples of the clock tick); in [BHR90], it is shown that
there is no loss of generality with respect to feasibility results by restricting the schedules to
be discrete, once the task parameters are assumed to be integers.

2.2 Classic concepts

Let us now recall some classic concepts used in hard-real-time scheduling:

* the scheduling of aconcrete task set wissaid to bevalid if and only if no task instance misses
its absolute deadline.



1. Introduction

Scheduling theory, as it applies to hard-real-time environment, has been widely studied in the last
twenty years. A ot of results have been achieved for the problem of non-idling scheduling over asingle
processor. Although the most effective real-time schedulers make use of the HPF (Highest Priority
First) on-line policy, the community of real-time researchers is currently split into two camps, those
who support fixed priority driven schedulers, that were devised for easy implementation, and those who
support dynamic priority driven schedulers that were considered better theoretically. Moreover, non-
preemptive schedulers have received less attention than their preemptive counter parts. Therefore, on
the whole, given areal-time problem, it might be unclear for non specialists to pick a solution using a
theoretical analysis from the plethora of results available. The aim of this paper, considering general
task sets as a central figure for the description of possible processor loads, is to:

* first focuson ageneralization of the existing results regarding optimality, feasibility conditions
and worst-case response times in a preemptive context. This will be done in the presence of
fixed/dynamic priority driven schedulers and for several kinds of task sets;

* second extend these results, or establish new results when needed, in a non-idling, non-
preemptive context.

A synoptic will be established and, while a lot of results are taken from the state of the art, some of
them will be either new results or improvements on existing results. In particular, we will introduce the
new concept of deadline-d busy period for dynamic priority driven scheduling that we conjecture to be
an interesting starting point for a comparison with the level-i busy period used in fixed priority driven
scheduling. Furthermore, it will be shown that preemptive and non-preemptive scheduling are closely
related, for example in terms of optimality and feasibility properties.

The paper is organized as follows. Section 2 outlines the computational model, the concepts used and
the goals. Section 3 (resp. Section4) focuses on preemptive (resp. non-preemptive) scheduling
algorithms. Some classic extensions such asjitter and resource sharing are considered in Section 5 and
asynthesisis given in Section 6. Finally, Annex A focuses on the concept of busy period and Annex B
examines several approaches that will allow us to establish very simple sufficient (but not necessary)
conditions for general task sets.

2. M odel, concepts and notations used in this paper
2.1 Modd

In this paper, we shall consider the problem of scheduling aset T = {14..., Tn} of N non-concrete

periodic or sporadic tasks on a single processor. This will be done in presence of hard real-time
constraints and with deadlines not necessarily related to the respective periods of the tasks. A task isa
sequential job that isinvoked with some maximum frequency and result in a single execution of the job
a atime, handled by a given scheduler. From the scheduling point of view, atask can then be seen as
an infinite number of instances. By definition, we consider that [JSM91]:

* A non-concrete periodic task T; recurs and is represented by the tuple (C;, D;, T;) , where

C,, D, and T; respectively represent the computation time, relative deadline and period (note
that the absolute deadline of a given instance is equal to the release time of this instance plus
the relative deadline). A concrete periodic task w; isdefined by {T;, 5} where s;, the start

time, is defined as the time lapse between time zero and the first instance of the task.
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Ordonnancement monopocesseur temps réel
préemptif et non préemptif

Résumeé :La théorie de I'ordonnancement, comme elle s'applique @nosmement temps

réel, a été lgrement étudiée durant les vingt dernieres années et il peut appartdite di

s’y retrouner face a la pléthore de résultatéstants. Notre objectif est premiérement de réu-

nir ces résultats en comte centralisé, non-oisif, préemptif/non-préemptif, a priorité/fix
dynamique. Pour cela nous considérerons des jeux de taches génériques afin de prendre en
compte le plus de scénarios d'aés possibles. Deuxiémement de reawx résultats sont
établis si nécessaire. En particylisoptimalité des politiques d’ordonnancement, les condi-
tions de &isabilité associées ainsi que I'analyse des pires temps de réponseastnées

grace aux concepts de chey de demande processeur et de période occupéextBesians
classiques telles que la gigue sur les Hatewées ou la présence de ressources partagées
sont aussixaminées.

Quoique ce tnaail ne soit pas orientéeys une comparaison formelle des résultats, il apparait
cependant que I'ordonnancement préemptif et non-préemptif sont trés proches. De plus,
I'analyse de I'ordonnancement a prioritéefigt dynamique peut étre unifiée par I'utilisation

des concepts de période occupée radai une priorité (et donc dépendante de I'ordonnan-
ceur utilisé). En particuliemous introduisons le concept de “deadlinlauisy period” pour
I'ordonnanceur EDF qui nous parait étre un point de départ intéressant pour une comparai-
son aec les “level-i busy period” utilisées dans le cas des ordonnanceurs a priogie fix

Mots-clé : Faisabilité, EDFpriorités dynamiques, priorités i, non-oisif, non-préemptif,
optimalité, ordonnancement, préemptif, pire temps de réponse, temps réel.
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