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Abstract: The extension of the ideas of multigrid to complex compressible flow calculation is
generally not straightforward, especially when non-embedded grids or volume agglomerations
are used in order to work with unstructured grids. In this report, we study a multigrid method
for solving second order PDE’s on stretched unstructured triangulations. We use the finite
volume agglomeration multigrid approach developed for solving the Euler equations. First,
we present a method to generate coarse grids by volume agglomeration, allowing a directional
semi-coarsening based on the Poisson’s equation coefficients. The second order derivatives
are approximated at each level by introducing a correction factor adapted to semi-coarsening.
Then, we apply this method to solve the Poisson equation and extend it to the 2D turbulent
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Une stratégie d’agglomération anisotrope en multigrille et
en maillage non structuré

Résumé : L’extension de I'idée multigrille pour le calcul d’écoulements complexes compres-
sibles est généralement non triviale, spécialement quand les grilles sont non emboitées ou quand
I’agglomération des cellules est utilisée sur des maillages non structurés. Dans ce rapport, nous
étudions une méthode multigrille adaptée pour la résolution des EDP du second ordre sur
des maillages étirés. Nous utilisons 'approche multigrille de type volumes finis agglomérés
développée pour la résolution des équations d’Euler. Tout d’abord, on présente une méthode
de génération automatique des grilles grossieres par agglomération de volume, autorisant un
semi-déraffinement directionnel, basé sur les coefficients de I’équation de Poisson. Les dérivées
secondes sont approchées sur chaque niveau en introduisant un facteur de correction adapté
au semi-déraffinement. On applique cette méthode pour résoudre ’équation de Poisson et en-
suite étendue aux équations de Navier-Stokes couplées avec un modele de turbulence & deux
equations k — € a bas Reynolds.

Mots-clé : Ecoulement Turbulent - Ecoulement Compressible - Méthode Multigrille - Elé-
ments Finis - Volumes Finis - Semi Déraffinement - Analyse Numérique
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Nomenclature
Symbol Description
P Fluid density
U Horizontal velocity
E Total energy per unit volume
k Kinetic energy of turbulence
T X-coordinate
7 Laminar viscosity
V= % Kinetic laminar viscosity
T Laminar stress tensor
Tw Shear stress at the wall
Pr Prandtl number laminar
Cp Specific heat at constant pressure
v = g—: Specific heat ration
Ry = ;)P; Local Reynolds number

RR n~2950

Symbol

Mt

Tt

Tw

Uf— »

Pt

Description
Temperature

Vertical velocity

Pressure

Turbulent dissipation rate
Y-coordinate

Eddy viscosity

Eddy production term
Turbulent stres tensor

Friction velocity

Prandlt number turbulent
Specific heat at constant volume

Friction coefficient

Non-dimensional y
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1 Introduction

The prediction of complex compressible flows modelled by the Reynolds-averaged Navier-Sokes
modelling and unstructured meshes is getting some maturity. This maturity can be consi-
dered as reached when low-Reynolds statistical modelization (LRSM) such as the so-called
low-Reynolds & — ¢ model, is easily computed in 2D and 3D. Many methods are becoming
available for generating meshes including boundary layer severe stretching [11]. Also many im-
proved numerical approximations are arising(|4]). Our concern is the improvement of solution
algorithms. Indeed, with the improvement of models, model error should be smaller, which
requires the approximation error to be smaller; even with accurate approximations, this leads
to using rather heavy meshes. As a result, the asymptotic complexity of the solution algorithm
is important and this motivates to investigate the use of a multi-grid (MG) scheme.

A central issue in application of MG to LRSM is the efficiency of MG for highly stretched
meshes. Indeed, nodewise (explicit multistep, Jacobi and Gauss-Seidel) smoothers are gene-
rally adopted for MG methods in flow problems. MG methods relying on these smoothers
do not apply efficiently to stretched meshes since high frequencies aligned with the mesh are
neither smoothed by the fine grid nodewise smoothing, nor by the coarse grid correction if full
coarsening (in both mesh directions) is applied. The cures for this problem are of two kinds:
the smoother can be improved up to a directionally implicit one such as a line relaxation, or the
coarse mesh can be the result of a directional semi-coarsening. In this paper, we concentrate
on a semi-coarsening strategy.

Starting with the option of treating stretched LRSM calculations by semi-coarsening, we have
to decide how to semi-coarsen. In a lot of works dealing with structured meshes, several meshes
are considered for each coarse level in order to account for all the possible semi-coarsenings at
each level ( see for example [22]). In the case of unstructured meshes, this is not very easy to
adapt since a priori no special direction can be found in the mesh, except if we can identify
the stretching direction. In this work, we propose to use a single coarsening, aligned with the
stretching direction. This strategy has been studied for non-embedded meshes by [21]|. For an
approach in which volume-agglomeration is adopted for building coarser levels, a first study
is presented in [18]. The present study aims at contributing to a deeper understanding of the
mechanism of volume-agglomerated directional coarsening; in particular, we discuss the way
the inconsistency introduced by the inaccurate transfers defined by agglomeration can be cured
by an anisotropic correction factor.

For this purpose, we recall in a first section the motivation of directional or anisotropic co-
arsening, in order to predict how efficient it can be as compared with the application of the

isotropic algorithm on isotropic meshes and on stretched meshes.

In a second section, we describe the anisotropic agglomeration process and the way the aniso-
tropic correction factor can derived in a recursive way from one level to the coarser one.

Some first experiments are considered in section 3 and analysed for the scalar Poisson equation.

INRIA
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Then laminar Navier-Stokes flows are computed with an implicit formulation involving an ag-
glomeration anisotropic MG algorithm.

At last, the main motivation of this study is condidered: a LRSM computation is presented
and discussed.

RR n~2950
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2 Spatial approximation

The approximation developed in [5], is a combination of both finite-volume and finite-element
methods. We assume that the computational domain €2 is bounded by a polygon. We introduce
the following definitions : 73, is a triangulation of 2, n, is the total number of vertices in 7,
and ¢; is the basis function associated with each node a;.

We derive a dual finite volume partition of €2, called the dual mesh of 7, and made of the
control volumes C; built from triangle medians around each vertex a;. (see Figure 1). The
following definitions are introduced : K (i) is the indices set of the neighboring nodes of a;,
0C;; = 0C;NAC; = [Gy,4j, I;;)U[Lij, Ga,i] is the interface between two cells and 7;; = 1+ 7
is the approximation of the normal vector to interface 6C;;.

GQ,ij
Nodea j ﬁl
Node a ; L.
«'ﬁ a; e U ga]
e Ty

w Cel Ci e

Figure 1: Median cell C;
Figure 2: Interface 0C;; separating
nodes a; and a;

We propose to discretize on © C IR the following advection-diffusion equation:

{-Awﬁ.(?u):f, VeR, uekR
ur=10

(1)

where 2 is an open bounded domain with a regular boundary I, Va propagation vector, f a
continuous function and u(z,y) a scalar function. The continuous problem on €, is approxi-
mated by the discrete problem defined on a triangulation €2, :

Z//?u?wzdmw Z / uV .7 ds = // ) fidedy  (2)

T ,a; €T jEk(’L 8Ci;

d1ffus1on advection

There are two different kinds of spatial discretization see [1] for details.
The diffusive term is calculated on each triangle and we use a standard P1-Galerkin formulation
(“linear elements”) :

// v)u ﬁgpz dxdy = Z aire (T) u; v)goj.ﬁgoi
j,a; €T
The advective term where the flux between the two cells C; and Cj, is calculated through the
interface 0C;;. The fluxes integration for 7 is obtained by summing the contribution of all
INRIA
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neighbors j. The integration on dC;; of the advective term for V constant on all Qp, is written
by :

/ U ?ﬁ dd = @ (uij, uji, ﬁij) (3)
6C;;

where

(@ (uij, wji, i) = aij (035 iy + (1= 035) uji )

Q5 = /50ij vﬁ” do

1,
{ 05 = 2 ( sign (i) + 1)

The values u;; and u;; are interpolates of u into interface 0C;;. The following choice results in
a (at best) first-order scheme :

Uij = Ui 5 Uji = Uj (4)
A second order scheme is obtained by using a MUSCL interpolation :
1 cent upw
=t [0 (T 45 (%)
cent upw

- 4;a;

with
(?u):j"t LT = Uy — (?u):pw —Vu (T3) (?u)lpw — Vu (T5) (6)

where Tj; and Tj; are the triangles out of which and into which @;a; points as shown on Figure
3. The scheme is second-order accurate for f = 1/2 (scheme of Fromm) and is three-order
accurate for § =1/3.

Tij Tii
PA— :
a a

Figure 3: Downstream and upstream triangles T;; and Tj;

RR n~2950



0 J. Francescatto, A. Dervieur

3 Linear multigrid method

The considered multigrid method is to be solved on the finest grid. It is an extension of the
linear multigrid approach developed by M-H. Lallemand and A. Dervieux [15] to solve linearized
Euler systems and extended to Poisson problems by B. Koobus and A. Dervieux [14], and to
High Reynolds models by G. Carré [1].

3.1 Grid coarsening by isotropic agglomeration

The volume-agglomeration coarsening algorithm is based on a neighboring relation. From a
fine unstructured triangulation, we first derive the dual finite-volume partition by building
cells/volume around vortices that are made of part of median. we then generate automatically
coarse finite-volume levels; to do this, we apply a technique of volume-agglomeration, described
in [15] that assembles neighboring cells of the finest grid (e.g these having a common boundary
) to build the cells of the coarser level, according to the following rule :

Consider successively every cell C; of the domain.

[1] If C; has already been included in a group (new coarse cell) then consider the next cell.
Else create a new group containing C; and put into this group neigbours of C; which do not
already belong to another existing group.

[2] Go to the next cell.

The main advantage of this method is to generate automatically one fastly the coarser grids
without having to build a coarse genuine triangulation.

————————————————————

___ COARSECELL
—_ FINECELL

Figure 4: Isotropic agglomeration

3.2 Grid coarsening by anisotropic agglomeration
3.2.1 Why semi-coarsening ?

The essential principle of MG is to combine iterations that are good contractions for each
subset of a partition of the whole set of frequencies of the considered system. In the case of an
isotropic algebraic system, that is for example provided by a discretization on a uniform mesh
of an isotropic system, it is well known that usual relaxation schemes are efficient contractions
for all high frequencies. They can be successfully combined with a multigrid scheme relying on
isotropic coarsening as sketched in Figure 4.

INRIA
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If some cause of anisotropy arises, such as either an anisotropic physical property, or a stretched
mesh, then the above property is lost.

It is then possible to think of a new class of relaxation that would anyway smooth out all the
high frequency modes; an example is line-relaxation; but such a choice is rather cumbersome
to apply to unstructured meshes.

In this work we prefer to remark that usual relaxation is still a good smoother for a subclass
of the high frequency modes, the transverse ones (to anisotropy direction), and to derive a
coarser mesh that would still involve the non-smoothed aligned frequencies. This strategy is
called semi-coarsening, and consists to increase the mesh size only in one direction. For the
case of an isotropic problem discretized on a stretched mesh, this method is sketched in Figure
6. In the case of a periodic problem, with the Laplace operator, a local mode analysis shows
that semi-coarsening in the adequate (transverse) direction does produce a fast converging
multigrid algorithm when combined with a damped Gauss-Seidel relaxation whatever be the
strength of anisotropy. It is in particular faster than the standard isotropic multigrid applied to
an isotropic system. We illustrate this fact in Table 1 which presents reduction factors for both
strategies; we observe that the best 2D case corresponds to the anisotropic algorithm applied
to an infinitely anisotropic system, for which performances of the 1 — D algorithm are obtained.
However our strategy will involve an important difference as compared to structured-mesh
strategies in which the semi-coarsening of one grid (Az, Ay) should produce two grids ((2Az, Ay
and (Az,2Ay)) in order to manage with any case of alignement. Indeed, in the proposed
method, we assume that mesh stretching is the only source of anisotropy. Advective alignment
is not addressed by semi-coarsening but by using enough transverse numerical viscosity. Thus,
we may apply a one-to-one coarsening according to the detection and measure of the anisotropy
of the fine mesh.

Isotropic MG || Anisotropic MG
€ wopt Ge wopt Ge

1. 0.80 | 0.60 0.80 0.60
0.5 0.91 | 0.82 0.71 0.43
10711099 | 099 | 0.67 0.34
1073 | 1.00 | 1.00 0.66 0.33
1075 | 1.00 | 1.00 0.66 0.33

Table 1: Optimum relaxation parameter and reduction factor of the Jacobi method, according
to e = Az /Ay and coarse

3.2.2 Anisotropic agglomeration technique

Our algorithm relies on two mechanisms. Firstly, we identify the stretching direction and
strength, we call this, local metrics. Secondly, agglomeration is adapted to local metrics.

For building the local metrics, inspiring from an idea used in Algebraic Multigrid [15], we have
chosen to measure the coefficients of the Finite-Element Laplace operator in order to evaluate
the strong connections. We denote the matrix coefficients of A by a;j, (1,7) € (1,---,np)>

Définition 3.1 For a given cell C;, we define the neighborhood of C; by
RR n°2950



o) J. Francescatto, A. Dervieur

N;={jel, a;+#0}

where we denote by I ={i, 1=1,---nu}
Strong connections are defined by :

Définition 3.2 We say that i is strongly connected to j if

1
laij| > @ ;%?V>i<|az‘p|, a@=7

We denote by S; the set of indice j to which 1 is strongly connected.

Invariance by rotation of the Poisson equation allows to redefine for each node local rotated
coordinates with basis (€, €,). It enables to estimate a vector V. indicating the stretching
direction :

Vi= Y | e e+ Y | 6| € (7)
JES; JES;
in which a; are cell barycenters, and where (€7, €3) is the Euclidean basis. The ratio L; between
components of Vj :

EjESi |CT@;€E|

L= ¢
! EjESi |GTU/;€77‘

(8)
determines the strength of stretching.
The anisotropic agglomeration algorithm is defined as follows :

Consider successively every cell C; of the mesh.

[1] If C; has already been included in a group (new coarse cell) then consider the next cell.
Else create a new group containing C; :
If L; ~ 1, then put into this group neighbours of C; which do not already belong to another
existing group.
If L, < 1or L; > 1, then put into together C; such that j € S; (strong connections).

[2] Go to next cell.

A typical example of application of this anisotropic coarsening is presented now. Starting from
a C-type structured mesh around an airfoil we get the fine partition of median cells sketched
in Figure 5. We observe that some vertical and horizontal lines are also stretched. Conversely,
top and bottom right region are more isotropic. In the semi-coarsening partition of Figure
6, directional coarsening is evident at front/left region (two cells in one new cell); isotropic
coarsening (fours cells in one new cell) can be observed in bottom of right part.

INRIA
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Figure 5: Fine grid : 3014 cells Figure 6: Coarse grid : 1380 cells

3.3 Coarse grid equation for advective term

The convectives fluxes, integrated between two control volumes of the finest grid, are computed
in the same way on the coarse grid between two macro-cells. The coarse-grid matrix compo-
nents are computed on the coarse grid. Both conservative variables and normal vectors are
interpolated between the different grids. The normal vectors, linked at each couple of neighbo-
ring coarse macro-cells, result from the summation, once for all, of the finer grid normal vectors
(for the fine cells which have a common boundary with the considered macro-cells); as a result,
at most one flux is computed between two given macro-cells, i.e. the number of flux to compute
per cell is comparable to the fine grid case.

3.4 Coarse grid equation for diffusive term

To evaluate diffusive terms on a coarse level, related basis functions are needed. The principle
has been proposed by Koobus, Lallemand and Dervieux in [14] and consists in summing the
fine grid basis functions in an algebraic equation point of view.

In the finite element formulation on the fine grid, the equations are integrated and assembled
by edges and triangles. As triangles do not exist on the coarser grids, it is necessary to define
a new edge-based discretization.

A variational formulation for any function f, can be expressed by :

In (96, Z/) = Z Ji® (CC, y)

where f; is the value of f,, value at a triangulation point (x;, ;).
The diffusive fluxes can all be written as :

_ 09: 9¢;
Flur = > )fk/QC(m,y) o, 8xmdv

k=i,keV (i

where C (x,y) contains certain characteristic values of the flow, which are averaged on edges

fori#j
Let us denote:

RR n~2950
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0pi 0¢;
Q 0x; 0%,

Integrals L;; contain the basis functions gradients of the FEM formulation. They are solved
on the fine grid and assembled by points and edges. A summation of these by neighboring
relations on virtual coarse points, or edges connecting two macro-cells, allows one to define the
coarse integrals (Lyy) :

_LUIZ

o dv (9)

8¢18¢J 2: ./ 8¢Za¢]

L= 83:1 axm o0x; 8xm

iel,jed
This formulation is completed for isotropic and anisotropic agglomeration by a correction

matrix (see |9], |14]), designed for approximatively preserving the consistency between two

grids. The new feature is that directional coarsening has to be locally accounted for.

Each basis functions gradients of the k + 1-level is multiplied by this matrix C,ik 41 defined by :

1 Cﬁ 0
Crrs = (RS ikl RY 10
o= (B (T o)) () (1)
where k + 1 denote the indice from the coarse level (coarse grid G**1 built from a fine grid
G*), RF is a rotation matrix of the coordinates (z;,1;) and C¢ 41> Cf py1 are respectively a

corrective factor of the basis function gradient ﬁcﬁ 7 following & and 7.
For an isotropic mesh (see Figure 7 and 9, and Table 3), these correction factors are equals
C’,‘ik+1 = C}l 111 = Cr41 and defined together with the rotation matrix by :

N, —1
Cr+1 = \/5% ;. Rf =1, (11)
where N}, is an approximation of the number of nodes in one direction (square root of the
number of nodes n; of fine grid G* (see [14])).
For an anisotropic mesh (see Figure 11), these correction factors are put to unity in the
stretching direction and Cj ;41 in the orthogonal direction.
This device does not guarantee that the inter-grid consistency is recovered; this is in fact strictly
not true; but a good part of the error is removed (see Figure 8) and the effect of this correction
on convergence will be verified later (Table 5).

INRIA
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ux,0.5)
°
°
g

Figure 7: Anisotropic agglomera-
tion for the Poisson problem in a
structured uniform mesh : fine and
coarse mesh solutions produced by
the anisotropic coarsening with and
without correction term, distribu-
tion for y = 0.5

U(x,0.5)
°
2

Figure 8: Anisotropic agglomera-
tion for the Poisson problem in a
stretched structured mesh : fine and
coarse mesh solutions produced by
the anisotropic coarsening with and
without correction term, distribu-
tion for y = 0.5

3.5 Multigrid cycles

The essential features of the linear multigrid solver are standard : correction schemes formula-
tion and V-cycle or F-cycle. We use a Gauss-Seidel iteration as a smoother. The details can
be found in ([1],[9]).

The transfer operators are specific to the agglomeration techniques. We denote G¥*! the coarse
grid built from a fine grid G*.

e Solution restriction from fine G* to coarse G**! is done by averaging fine solutions W*
belonging to the same coarse cell :

Elel}c areqa (C’l’“) Wk (C’lk)
area (C]’?H)

(B (W) (G57) =

for each coarse cell C’j’”l of G**1, where I Jk is the list of subcells, i.e. the set of level-k
indices ! such that C;*" = U,cr CF and where area (Cl’“) denotes the area of cell CF of
G*. J
e Residual restriction from fine G* to coarse G**! is done by summing fine residuals res®
belonging to the same coarse cell :

[R}Z}:H (resk)] <le_¢+1) =Y res” (Clk)

k
leI].

for each coarse cell C’J’?+1 of GF+1,

RR n~2950
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e Correction prolongation from coarse (GF*1) to fine (G¥) is composed of a trivial injection :

[P (4] (€5) = & (c1)

for each fine cell C of G*, where [ is the index of the coarse cell CF*! which contains fine
cell C*.
J

INRIA
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4 Application to linear scalar problem

We first consider the application of a linear MG cycle built from the above options for solving
the Poisson problem on several types of mesh with Dirichlet condition on the boundary. The

approximation is purely a P1-Galerkin one.

4.1 Structured uniform mesh

A first mesh is a square one by one and not stretched. The mesh contains 41 x 41 points (see
Figure 9). A rotation was applied to avoid alignment of mesh with cartesien coordinates.

We observe in Table 2 that convergence is as good with both algorithms which build meshes
not much different, since the problem is isotropic.

Figure 9: Fine mesh : 1681 cells Figure 10: Coarse grid : 441 cells
Cycles Isotropic MG Anisotropic MG
T | Pmoy | Q6 | CPIT || NIVT | fhmoy | O | cPlT
BGI(2,2) 2 10202 10| o© 2 10166 | 9 | o©
V-cycle(2,2) 5 10.227 |11 | 67 5 (0177 9 | 56
F-cycle(2,2) 5 10175 | 9 | 68 5 [0.159 | 9 | 70

Table 2: Poisson equation solution on a uniform mesh: comparison between isotropic and
anisotropic coarsening; ag denotes the number of cycles needed for a 6-decade residual reduction

Cycles Anisotropic MG (without) || Anisotropic MG (with)

NWT | Moy | 06 cplx NWT | Mhmoy | Q6 | CPIT
BGI(2,2) 2 (0510 22| oo 2 10166 9 | oo
V-cycle(2,2) 5 |0.800 | 64 392 o 0177 | 9 | 56
F-cycle(2,2) 5 |0.669 | 36 273 5 0159 | 9 | 70

Table 3: Poisson equation solution on a uniform mesh: influence of the correction factor (with
or without)

RR n~2950
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4.2 Stretched structured mesh

The mesh is identical of first mesh but with a geometrical progression according to (Ox) (see
Figure 11). The maximal aspect ratio is 100.

From Table 4, we observe that the isotropic algorithm has real troubles. The anisotropic one
has performance not much worse than in the previous isotropic test case.
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Figure 11: Stretched fine mesh : Figure 12: Coarse grid : 761 cells
1681 cells
Cycles Isotropic MG Anisotropic MG
TWT | oy | Q6 | CPIT || NIVT | oy | O | CplT
BGI(2,2) 2 10.79 | 62 | o 2 10201 |10 | o

V-cycle(2,2) 5 |0.801 | 64 | 391 6 |0.224 |11 | 87
F-cycle(2,2) 5 | 0.798 | 63 | 476 6 |0.227 |11 | 130

Table 4: Poisson equation solution on a stretched mesh: comparison between isotropic and
anisotropic coarsening; ag denotes the number of cycles needed for a 6-decade residual reduction

Cycles Anisotropic MG (without) || Anisotropic MG (with)

NWT | Moy | 06 cplx T | Mhmoy | Q6 | CPIT
BGI(2,2) 2 10454 [19] oo 9 ] 0.201]10 | oo
Vocycle(2,2) | 6 | 0.752 | 50 | 401 6 0224 11| 87
Fcycle(2,2) || 6 | 0.615 |30 | 367 || 6 |0.227 |11 130

Table 5: Poisson equation solution on a stretched mesh: influence of the correction factor (with
or without)

4.3 “Flat plate” mesh

We consider a mesh usually used for calculations of a turbulent flow on a flat plate (see Figure 18;
the maximum aspect ratio is 5000. We examine the iterative solution of the Poisson equation.
The effect of such a stretching on the standard MG approach with the regular coarsening is
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obvious : we observe a loss in convergence speed and the reduction factor is .90 (see Table 6).
Contrarily, the anisotropic semi-coarsening strategy proves again to be much less sensitive to

stretching ( reduction factor is .24; Table 6). A gain the correction factor shows its influence
(Table 7).

Cycles Isotropic MG Anisotropic MG
T | fhmoy | Q6 | CPIT || NIVT | Umoy | 6 | CPlT
BGI(2,2) 2 10902 | 135 | o© 2 10191 10| o

V-cycle(2,2) 5 10903 | 137 | 827 6 |0.384 |16 | 132
F-cycle(2,2) 5 10.906 | 141 | 1041 6 |0.239 |11 | 141

Table 6: Poisson equation solution on a flat plate mesh: comparison between isotropic and
anisotropic coarsening; o denotes the number of cycles needed for a 6 decade residual reduction

Cycles Anisotropic MG (without) || Anisotropic MG (with)
MWL | fmoy | O cplx NWT | oy | O | CPIT
BGI(2,2) 2 0472 20| oo 9 ] 0.191]10 | oo

Vocycle(2,2) | 8 | 0.817 | 70 | 588 6 |0.384 16 | 132
F-cycle(2,2) | 8 |0.683 | 38| 522 6 |0.239 | 11 | 141

Table 7: Poisson equation solution on a flat plate mesh: influence of the correction factor (with
or without)

4.4 Some comments

Performances for the diffusion-advection model are generally better than for the Poisson case
(see [14],[9] for details). Although more costly in the above experiments, the F-cycle appears
to have a convergence less sensitive to test cases. However the V-cycle will be used in the rest
of the paper.
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5 Extension to Navier-Stokes

5.1 Physical model

The governing equations are obtained by Reynolds averaging the compressible Navier-Stokes
equations, and modeling the Reynolds stress by the Boussinesq assumption.
These equations can be written in a conservative form as:

8t+ or * oy " Re

Q
ox * oy ox + oy + QW)

oW  OF(W) oGW) 1 <8R(W) 6S(W)>+8R(W) dS(W)
where

e W(x,y,t) is vector function of IR, the components of which are the non-dimensional
conservative variables

F(W) et G(W) are the functions of the convective fluxes

R(W), S(W) are the functions of laminar viscous fluxes and Re is the laminar Reynolds
numbers from nquation non-dimension

e R(W), S(W) are the functions of turbulent viscous fluxes
e (W) is the source term of the turbulence

The closure of the system is realized by the high-Reynolds number £ — ¢ turbulent model of
Launder-Spalding [17]. In order to treat the hyperbolic terms in the same way as in the laminar
case, an appropriate change of variables is used. One lets:

12 2
p =p+§/0k
' 2
E =F+(@pk and f=-1+

3(v—1)

where

1
{ E = pC,T + ip(u2 +v?) + pk
p=(-1pC,T, ~=14

where p is the pressure, E the total energy per unit volume, p the fluid density, k£ the turbulent
kinetic energy, C', denotes the specific heat at constant volume, 7" the temperature and u, v
are the component of fluid velocity.

The relation between E and p written the classical way as:

=) (8 - Lo+ 9).

Thus, the change of variables intruduced in the initial system allows to keep the classical
conservative form of the physical variables.
INRIA
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We denote respectively by u; and wg, w., the turbulent viscosity and the components source
term for k, € :

4 ka
M = C,u?

{ wp=—pe+P

2
€ €
W, =c€1E73—cgsz

\

where

2 Ou; Ouj;  20uy ou;
= — | 5 pk0;j; — — =0 | | =
P <3pk(5] Ha (83:]- + oz, 30z j)) 0z;

with ¢,, ¢, and ¢, are the empirical constants of the modeling, € denote the turbulent dis-

sipation rate and P the production term of the turbulent. The laminar Prandtl number is
Pr = 0.725 and the turbulent Prandtl number is Pt = 0.86.

The above transport equations on k£ and ¢ are obtained by assuming that the turbulent

effects are dominant in the flow domain [12]. Thus the standard k£ — ¢ model is not valid in
regions where the viscous effects are large compared with the turbulent effects (near-wall zones).
In order to account for low-Reynolds number effects (near-wall effects), Chen-Patel [3] (1988)
proposed to solve the k — ¢ equations only in the high-Reynolds number regions and to use a
low-Reynolds number one-equation model in the near-wall region. In many cases one-equation
models show near the wall a better agreement with experiments than standard two-equation
models [10]. A further advantage is that one-equation models require less mesh nodes in the
viscous sublayer than low-Reynolds two equations models and this increases the computational
efficiency and convergence properties of the numerical method.
Following the approach of Chen and Patel 3], the one-equation low-Reynolds number model of
Wolfshstein [23] has been included in the present method. In regions adjacent to the surface,
where R, < 200, the mean-flow equations and the equation for the turbulent kinetic energy
are solved, whilst the characteristic length scales are determined via algebraic relations. In
these regions, the eddy viscosity employed is defined by

Mt = Cy p\/Efm fy:”%wlu

where p,, is the fluid density of the wall and the dissipation rate of turbulent kinetic energy
employed for the modelled source terms in the equation for k is given by

ks
621

with [, and [, are two algebraic length scales, defined in the following way

l,=Ciy (1—exp <_AR‘”>> I.=Cy (1—exp <_ARy)>.
o €

RR n~2950



J. Francescatto, A. Dervieur

The damping functions, which contain the turbulent Reynolds number R,, are introduced to
mimic the correct behaviour when the wall is approached and the flow is totally dominated by
effects due to the molecular viscosity. The model requires two constants which are

_ [Py

A, =70, Ci=kc,* R,
Pw  Vw

where x and ¢, take the usual values of 0.45 and 0.09.
A detailed discussion of the merit of this model compared with genuine low-Reynolds two-
equations models is presented in [10].

5.2 Implicit time advancing

It is well known that a global Newton iteration starting from an arbitrary initialization cannot
be applied to a compressible flow. In order to approach the convergence domain of a (modified)
Newton iteration, an Euler backward-time linearised implicit advancing is constructed, with
the following features:

e Linearization : except for the production part in the source term, the linearization is
obtained by freezing the Jacobian in Roe’s flux difference splitting for convective terms,
and by exact differentiation of diffusion and source terms. Also, the turbulent viscosity
1 is frozen so that the k and e variables are coupled to each other but uncoupled from
the other four flow variables.

e A Roe approximate Riemann solver is used for the approximation of the fluid convec-
tive terms; the positivity- preserving multi-component Riemann flux proposed in [16] is
considered for the turbulence convective terms.

e Preconditioning : it is performed using a first-order Godunov scheme because it is tri-
diagonal in 1D and better conditioned than the second-order one, which furthermore
produces larger matrices (pentadiagonal in 1D).

e Local time stepping and time-step incrementation : a local time-step is computed on each
cell so that the Courant number (denoted by “CFL” in the sequel) is somewhat uniform
on the mesh. The CFL number is an increasing function of time and of the nonlinear
residual Ly norm, in order to ensure the progressive switch from the unsteady phase to
the asymptotic convergence.

e Each time step involves the solution of the two linear systems (mean flow and closure
variables) by an agglomeration multi-grid method described in next subsection.

e Each computation is started from a uniform flow.

5.3 Multigrid solution of the linear system

The linearised system to be solved is essentially of the same type as advection-diffusion. Its

MG treatment is proposed in [1] and we recall now some main features of that approach and

some differences with [1].

Main features : coarse grid systems rely on Finite-Volume for the (first-order acurate) advective

terms and on integrals L;; (see (9)) for other terms. Variable coefficients arising from the
INRIA
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freezing of flow field are derived from restriction of the flow field variables, and edgewise constant
values are taken for simplifying the building of edge based diffusion terms.

Novelties with respect to [1] : several important quantities are transfered to coarse grids :
friction velocity, normal distance to wall, turbulent local Reynolds number R,, wall laminar
viscosity v;. The reduction of unknows in the layer obtained by putting to zero non-diagonal
terms for e, and fixing the diffusion of € in (block) diagonal terms.

The V-cycle with 2 sweeps per level is used. Only one cycle per time step is performed.
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6 Application to the flows problems

6.1 Laminar flow around an airfoil

We now consider the introduction of the semi-coarsening method in the laminar Navier-Stokes
solver presented in Section 3.2.2. The farfield Mach number is 0.8, the angle of attack is 10 deg.,
the Reynolds number is 73. The mesh used (involving again about 12000 nodes) is stretched

near the airfoil and in other places according to a C-type structured topology (see Figure 14).
Figure 15 depicts the pseudo-time nonlinear convergence of the implicit scheme when it is

equipped by the present MG scheme. When the isotropic version is used, the convergence and
the efficiency is better than with a single-grid equivalent approach, but its convergence in 800
iterations (for ten decades) makes it rather disappointing as compared to the computation done
with a non-stretched mesh. The anisotropic semi-coarsened version does much better with a
convergence in 140 iterations and is four time more efficient in terms of computer time (see
Table 9).

DEC Alpha 266

Iso. MG
CPU time

63 min.

Aniso. MG
12 min.

Table 8: CPU time following using the MG methods
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Figure 13: Zoom of the airfoil mesh

Figure 14: Zoom of the mesh on a
near leading edge
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Figure 15: Laminar flow past a NACA airfoil: convergence history for the isotropic MG (800
iterations) and the anisotropic one (140 iterations)
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6.2 Turbulent supersonic flow over a flat plate

A second test case is the computation of a turbulent flat plate flow. The case was introduced
and experimented by Mabey (see [8]; farfield Mach number is 4.52 and Reynolds number is
28.2 10° m™'); this flow was chosen recently as a test case for the ETMA Workshop [7] for
which a common mesh involving 113 x 81 nodes was provided by Vrije University of Brussels
(thanks to Ch. Hirsch and E. Shang); we use this mesh for which the first node row corresponds
to a YT less than 1; the mesh is highly stretched with an aspect ratio near wall of 5000. The
turbulence model chosen is a k —e one with a two-layer Chen-Patel [3] treatment. In Figures 16
and 17 we give an idea of the weak level of model and numerical errors (mesh convergence has
been verified as good, except maybe at proximity of the uniform flow, see [8]). In Figure 21 are
presented three convergence histories, obtained with an implicit time advancing in which the
linearized system is solved by three different algorithms, but with about the same CPU time
per time iteration. The slower convergence is obtained with a few linear Jacobi (Single-Grid)
sweeps for each time step; after a rather good phase, convergence slowens to a fair rate. The
second convergence results from the application of a MG cycling relying on isotropic coarsening;
according to theory, MG should not be much better than Single-Grid on this very stretched;
a kind of confirmation is given by convergence: after a phase converging better than Single-
Grid, convergence also degrades to an analogous asymptotic rate, proving that, for example,
in a 4-decade converged solution, a component of the error where not damped by a factor 10.
Conversely, a quasi-constant convergence rate is obtained with the new anisotropic algorithm.
Futher, the convergence is essentially not sensitive to mesh size (Figure 22). Note that mesh
convergence is observed toward a solution that has a pretty good agreement with the mea-
surements of Mabey, for the two typical quantities that are streamwise friction at wall and
distribution of z-moment normal to the wall (see Figure 16 and 17).

DEC Alpha 266 || Single-Grid | Iso. MG | Aniso. MG
CPU time 65min. 42 min. 13 min.

Table 9: CPU time following using the MG methods
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Figure 16: Mabey flat plate test Figure 17: Mabey flat plate test
case for 29 x 21, 57 x 41, 113 x 81 case for 29 x 21, 57 x 41, 113 x 81
meshes : frictions meshes : z-moment on x = 1.384
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N

Figure 18: Zoom (bottom left) of
the flat plate mesh : 113 x 81
points

Figure 19: Zoom of the flat plate
mesh : 57 x 41 points

Figure 20: Zoom of the flat plate mesh : 29 x 21 points
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Figure 21: Turbulent flow past a
plate flat: convergence history for
the single grid implicit algorithms
(1050), isotropic MG (580 itera-
tions) and the anisotropic MG (180
iterations)
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Figure 22: Turbulent flow past a
plate flat for 29 x 21, 57 x 41, 113 x
81 meshes : convergence histories
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6.3 Turbulent subsonique flow around an airfoil

A much more difficult case is now considered: it consist of the flow around an OALT25 airfoil.
The geometry has the particularity of being finished as a truncated forebody (Figure 24). The
mesh (courtesy of Dassault-Aviation) is of hybrid type with an unstructured part far from wall
and a structured layer near wall. The total number of vertices is 19 756.

In order to obtain a realistic shock location, the above model has ben modified according
to the Menter method [19]|. This method is based on the one equation model of Johnson-King
[13] :

pak
= (12)

a € ou
max (c# 7 | oy FD

where

1 siyt < 1000
F= and a=./c, (13)

0 sinon

Smaller time steps are used in this case and the improvement of convergence and efficiency
is less impessive (Table 10, Figure 27 and 28). Pressure distribution has some agreement with
experiment (see Figure 25).

DEC Alpha 266 || Single-Grid | Aniso. MG
CPU time 68 min. 49 min.

Table 10: CPU time following using the methods
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Figure 23: Zoom of the airfoil mesh Figure 24: Zoom trailing edge
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7 Conclusion

The main question addressed in this paper is whether MG methods can perform on stretched
unstructured meshes as well as they do on isotropic meshes. Indeed, the theory seems to in-
dicate that convergence should be at least as good for an anisotropic algorithm applied to a
stretched mesh as for an isotropic algorithm applied to an isotropic (non-stretched) mesh. In
other words, the only source of additional cost should be the fact that semi-coarsened meshes
contain more nodes than fully coarsened ones.

In the above study, we got experimental confirmation that the isotropic algorithm, that
performs well for isotropic meshes, has a much slower convergence when applied to stretched
meshes, for models problems as Poisson, as well as complex compressible flows. In some case,
asymptotic convergence is not significantly better than for the analogous single grid scheme.
We have proposed an isotropic algorithm for which experiments show the expected improve-
ment:

For the elliptic model problem, convergence becomes insensible to mesh stretching: while about
9-10 cycles are used for the isotropic MG on non-stretched meshes, the anisotropic MG needs
also 10-12 cycles for the same computation, but also about 10-12 cycles for a stretched-mesh
computation.

For the compressible flows presented, the poorer asymptotic convergence rate of the isotro-
pic version is not observed for the anisotropic one; at the contrary, convergence rate is rather
constant from beginning to end of convergence. This last point is essential, the slower mode is
generally not solved in a strategy in which convergence is stopped after some cycles of quasi-
stagnation. The fact that this happens for an already small residual level can be deceitful,
especially when shock and boundary layers can interact, and may yield bad predictions.

In other cases, it may even happen than the slower error mode be large at initial conditions
and the bad asymptotic rate may appear early.

However the presented algorithm may not enjoy this ideal property for all cases, and further
experiments and improvement are necessary to qualify it as a kind of ultimate anisotropic MG
method in 2D.

Also most experiment were done with locally structured stretched meshes because good
unstructured highly streched meshs are still difficult to build.

For 3D extension, although no explicit use of the two-dimensionality is done in building
the method, we anticipate some -hopefully resolvable- extra difficulties in the derivation of a
semi-coarsening algorithm ensuring efficiency for most types of meshes.
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