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Abstract: Two new classes of nodal methods, respectively weakly and strongly
discontinuous ones, are introduced and applied to the neutron transport equa-
tions in X-Y geometry in the discrete ordinates approximation. These meth-
ods are then applied to approximate the solution of a well-known benchmark
problem of the nuclear engineering literature. The results obtained are finally
compared to the ones obtained by recent classical nodal methods.
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Sur les Méthodes Nodales en Transport

Résumé : Deux nouvelles classes de méthodes nodales, faiblement et forte-
ment discontinues, sont introduites et appliquées aux équations du transport
de neutrons en géométrie X-Y et en ordonnées discretes. Ces méthodes sont
ensuite utilisées pour 'approximation de la solution d’un probleme de réfé-
rence bien connu de la litérature d’ingénierie nucléaire. Les résultats obtenus
sont finalement comparés a ceux obtenus par des méthodes nodales classiques
récentes.

Mots-clé : Méthodes nodales, équation du transport neutronique, ordonnées
discretes
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1 Introduction

One of the most important partial differential equations in the nuclear enginee-
ring field is the neutron transport equation in its discrete-ordinates approxi-
mation Sy which in x — y geometry reads:

_ Oty Oy — _ _
Lpy = pi—— + vk + oy =05y with +Se = Qr, k=1,..., M, (1)
ox dy =

where the unknown is v, the angular neutron flux corresponding to the k-th
ray of the Sy approximation, M being the total number of rays considered
which is given in this case by N(N + 2)/2. The domain to be considered is of
the union of rectangles type and boundary conditions must also be imposed.

Classically, with nodal methods, the domain of interest is decomposed in
relatively large homogeneous regions or “nodes”, over which each angular flux
1 is approximated by a generalized interpolant with interpolation parameters
which are cell and/or edge Legendre moments.

This unique interpolant is piecewise continuous using polynomial or expo-
nential shape functions, in the case of the so-called analytical nodal methods
which depend on transverse integration procedures. See e.g. [2]. For a ray in
the first quadrant, the possible left and bottom edge parameters are known
from the boundary conditions or from the neighboring left and bottom cells.
The unknowns are thus the right and top edge parameters as well as the cell
ones.

In this paper, we present two “new” (in a sense to be defined later) classes
of polynomial nodal methods. In essence, both classes of methods lead to
discontinuous approximations as they at most conserve some edge moments
between adjacent nodes, as in the case of the first class of methods which we
call weakly discontinuous. In this case one or several moments of the angular
flux are conserved between a given cell and its upstream neighbors. The second
class of methods, called strongly discontinuous, is fully discontinuous and only
has outgoing (at top and right) edge moments as parameters, in addition to
possible cell moments.

Before dealing with these methods in detail, we present in the next section
some notation and the basic formalism. The two classes of methods are then
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4 J.-P. Hennart & E. del Valle

developed in two sections and a third one proposes some numerical results,
before presenting some conclusions in a last section.

2 Notation and basic formalism

2.1 Notation

Assuming that the domain 2 of the union of rectangles type has been discreti-
zed in N, nodes or rather cells or elements, i.e. 2 = ), = UéV:HQe, each cell €2,
is mapped onto a reference cell O = [—1,+1x[—1, +1], as it is traditional with
finite element methods. A particular finite element is then defined by a set
of degrees of freedom D and a space of functions S with card(D) = dim(S).
With degrees of freedom which are cell and/or edge moments as in this paper,
we shall speak of nodal finite elements. For practical purposes, these moments
will be taken as Legendre moments.

To describe D and S in a compact way in the nodal case, some notation
will be helpful.

Let P, be the normalized Legendre polynomial of degree i over [—1,+1]
which satisfies

. +1
P(+1)=1, P(-1)=(-1), and / P(2)P;(«)dx = Nisiy.  (2)
-1
with N; = 2/(2i + 1). Define moreover P;(z,y) as P;(z)P;(y). Assuming

that Ly = @ is the given equation, 9 is approximated by v, and over 2, cell
moments of ¥, (x,y) € S are defined as follows

2= [T 7 Pt y)ine.y) dedy/N;- N; (3)

Edge moments are moreover given by

Yy = /:l Pi(sg)n(zp, ye)dsg/N;, (4)

where FE is a generic symbol corresponding to L, R, B, and T for the left, right,
bottom, and top edges respectively, g or yg is &1 depending on the particular
edge considered, the other coordinate being sg, the coordinate along that edge.

INRIA



On Nodal Transport Methods 5

S is a space of functions, which are in general polynomials at least in this
paper. To describe them in a systematic way, let us introduce the spaces of
polynomials of degree i in z and j in y, Q;;(x,y) = {2%%° | 0 < a < 4,0 <
b < j}, with in particular Q; = Q;;(x, y) and also the spaces of polynomials of
degree i in = and y, P;(x,y) = {r%° | 0 < a + b < i}. For each nodal finite
element, we shall call N, = dim(D) the total number of parameters and N,
the number of unknowns which is less than NV, in the weakly discontinuous
case, where the interpolation parameters on the left and bottom edges are
taken from the neighboring cells or given by the boundary conditions. In the
strongly discontinuous case, there are no left and bottom parameters and we
have N, = N,. In the following, each particular method will be assigned
a symbol consisting of two capital letters, WD in the weakly discontinuous
case and SD in the strongly discontinuous one, indexed by the two numbers
N, and N, in the first case, and by N, or N, indifferently in the second
case. In the WD case, (N, — N,)/2 is the number of edge moments conserved
between adjacent cells. In most practical cases, this number is one or two. In
both cases, we have programmed all the methods from two to eight unknowns
per cell and applied them to multiplicative and nonmultiplicative problems
of the nuclear literature. In the weakly discontinuous case, we have given
a constructive algorithm to deduce S if D is known [5]. In that paper, we
always assumed that we had the same number of edge moments on each pair
of opposite edges. This is clearly not true in the strongly discontinuous case
and we had to adapt the earlier algorithm to that situation for applications in
neutron transport problems. For second order elliptic equations (the diffusion
case), extensions of the basic procedure were also studied to provide transition
elements of the p type with progressively more edge moments. These two
classes of extensions will be presented elsewhere in a paper in preparation. In
two dimensions applications as in this paper, the spaces S can be conveniently
described with a Pascal triangle in which the different entries ab correspond
to the polynomials P, (z,y) instead of the more usual monomials x%y°. The
definition of the basic polynomial spaces introduced earlier will be modified
accordingly, for instance P;(z,y) = {span(P,)|0 < a + b < i}. With these
conventions, it is extremely easy to check the unisolvency with respect to the
set D of the space S provided by the algorithm. Due to the normalizations
adopted, the basis functions can practically be determined by hand and they
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6 J.-P. Hennart & E. del Valle

are given in a very compact way in terms of the P,;’s. For the details, at least
for the WD case, the readers are referred to [5].

We shall give a concrete example, namely the element W Ds3. In this case,
D = {4, 9% ¢ % %} and correspondingly S = { Py, Po1, Pro, Poz, Pao}-
On each cell, ¥ is approximated by

Y =D_vpup + Yo ug (3)
E

where the basis functions have very compact expressions in terms of the P,’s.
For instance, u) = —1(Pyg—Ps) and u®) = Pog— Py — Py, the other edge basis
functions being obtained by changing the sign of 2 and/or y or by permuting
them.

2.2 Basic formalism

Replacing ¢ by 1y, in each cell, a local residual L, — Q) arises where @), is
evaluated from a previous iterate in the standard source iteration procedure
which can be accelerated or not. If the ray (u, ) is in the first quadrant, one
proceeds cell by cell by a standard diagonal sweeping beginning with the first
cell in ), seen by the particular ray considered. Consequently, we know from
the boundary conditions at the left or bottom of the domain or from the left
or bottom neighbors which have been processed previously the edge moments
on the left and bottom edges. If as it is the case with the weakly discontinuous
methods, some of these moments are conserved between neighbors, they are
directly known in either cell. The moment equations we shall now mention
make actually appear edge moments which are not interpolation parameters
and it is indispensable to know precisely if we must evaluate them in the
current cell or in the previous ones. Locally, Legendre moments of the residual
L1y, — Q) are taken to obtain as many equation as unknowns. Since L is
a first order partial differential operator, its application to a discontinuous
approximation 1, generates delta distributions and the correct way to take
them into account is to derive the moment equations over a cell €2, which is
shifted upstream by ¢, in the limit of a vanishing e. For a ray in the first
quadrant that means that the cell considered is moved slightly downward and
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On Nodal Transport Methods 7

to the left. As ¢ — 0, boundary terms arise at the left and the bottom of the
cell, connecting it to its upstream neighbors or boundaries.

Going back to the W D53 example, there are actually two posibilities: in
these two cases the zeroth order moment of the residual should be taken |,
which ensures balance, i.e. particles conservation. Let p;; be P;; scaled to the
particular cell considered [z, xg] X [yg, yr]- The balance equation corresponds
to taking the moment of the residual with respect to pgg. The missing equations
correspond to taking that moment with respect to pip and pg; by symmetry
or with respect to pyg and pga. Both methods work but the first one is more
satisfactory, and in fact better, as it fills in the Pascal triangle from the top
by taking moments with respect to P;.

After taking the limit for €, the general final equations read

/yZT{NPn(ILa Y)[Un(rr +0,y) — Yn(rr — 0,y)]} dy
s [ e (e s+ 0) — oy — )} o
n /Q Di(,9) Ly — Qu) dady = 0. (6)

The first two lines in (6) correspond to the boundary terms at the left and
bottom of the cell. For the first of them, since p;;(xr,y) = (—1)'p;(y), we get
after some algebra

u(2i +1)(=1)' Wi, — ¥f_]/Ax, (7)
where Ax = g — x;, while w% 4 is the jth left edge moment of 1)), evaluated
at xy £ 0, that is in the cell considered or in the adjacent one on the left. The

corresponding expression at the bottom is easily obtained by permuting ¢ and
j, x and y, and L and B, to give

v(2) + 1)(=1) [y — ¥_]/Ay, (8)
The third line in (6) corresponds to cell moments of the residual. For
17 = 00 for instance, we get the cell balance equation

gl = YR+ I = ]+ o = QP (9)
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8 J.-P. Hennart & E. del Valle

The corresponding 75 = 10 and 75 = 01 equations are respectively given by

3

R e + 00y — 200+ W ] o = Q2 (10)
and

g b 1+ S0 g, — 20 o = QY. (11)

A.T R— L+ Ay T— B+ C t¥YC C

These last two equations have been obtained using the expression for 1, given
by (5) with the explicit forms of v% and u¥, as well as the fact that Py = 3P;.
Notice that as soon as i or j are equal to 1, some edge and cell moments of i,
appear, which are not among the original interpolation parameters.

With classical nodal methods (see e.g. [2] and the references it contains)
polynomial (or exponential) shapes are assumed for the angular flux at the
surface and in the interior of each cell separately, leading to schemes typi-
cally described (in part at least) by two capital letters, like for instance C-Q
for Constant-surface-Quadratic-interior, L-L for Linear-surface-Linear-interior,
etc.

Here we present “new” nodal methods: with respect to the classical nodal
schemes, their main distinctive feature is that all the information contained at
the surface and in the interior of the cells is integrated into a unique interpolant
which is piecewise continuous. Omne of the advantages of this approach is
that all the possible edge and cell moments of the resulting representation
are unambiguously defined in the cell considered (and its upward neighbors
if necessary). If we combine (7) and (8) with (9), (10), or (11) following
(6), we get a final set of equations which are identical to the former ones
except that everywhere ¢}, and ¢4, with ¢ = 0 or 1 are replaced by % _
and 9%_ respectively. It then remains to evaluate in the cell considered or in
its upward neighbors the cell and edge moments which are not interpolation
parameters, in terms of the interpolation parameters of the common cell. This
is a straightforward operation and we have for instance ¢’ = (¥%_ — ¥%,)/2
and ¥p_ = (Vg — ¥14)/2.

Before leaving this section, we want to add a few words about the selection
of the N, moment equations needed. The possible moments are with respect to
any P;; included in S. In the strongly discontinuous case, since we have N, =
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N, = dim(S), there is only one possibility but in the weekly discontinuous
case several choices of equations are possible as mentioned above for the W D53
example. The criteria used are the following ones:

1.

2.

The moment (00) must always be included to ensure particle balance.

If the moment (ij) is taken, then by symmetry the moment (ji) must
also be considered.

For some of the spaces S considered where it may happen that the P,’s
do not all appear independently (See [5]), some equations are built by
taking the difference between moments (ab) and (ba) of the neutron trans-
port equation (1).

. The algebraic system obtained for a given set of moments must not be

singular in the case of an infinite medium without scattering, i.e. for the
equation o = Q.

The moments of the neutron transport equation considered should ideally
fill the Pascal triangle from the top.

If these features are taken into account, the final system generally provides
good numerical results as we shall see.

3

Weakly discontinuous methods

In the case of the weakly discontinuous family of schemes, we have programmed
all the methods from two to eight unknowns per cell and applied them to
different benchmark problems of the nuclear literature. In the following we
shall describe them briefly by giving in each case the set D of interpolation
parameters and the corresponding space S. In all the following examples, F
stands for L, R, B, and T and we have:

WDy, = D = {Tﬂ%},s = {P, @& (P — P2)}l,
WDs3 = [D={yp, 9}, S = {P1& (P, Po)},

RR no2947



10 J.-P. Hennart & E. del Valle

WD64 = D= {¢%a goa¢él}’s = {7)2}]’
WDos = [D={up,vp, &} S ={P:® (Pa, P2, P31 — Pi3)}],

[
[
WDss = [D={% @Wd,i,j=0,1}5={P,& (P, Py)},
[
[

WDn: = [D={p,vp( &z +7=0,1)}LS={Ps& (P51 — Pi3)}l,
WD12,8 = D= {w%aw%}a( guiaj = 0) 1)})‘5 = {P?) D (P317P13)}]-

With respect to the approximation properties of the schemes described
above, all depends on the greatest k such that P, € S. With the notation used
to describe the different spaces S, it is clear that W D,y and W D53 contain P,
but not Py. Similarly W Dgs, W Dgs, and W Dgg contain P, while the last two
spaces contain Ps.

A particular scheme is completely defined if we specify the moments of the
residual which are taken in (6) to yield a system of linear algebraic equations
of order N,. As mentioned above, these choices are not always unique. In the
following, we give the ones chosen to produce the numerical results exhibited
later which essentially satisfy the criteria formulated at the end of the previous
section. In each case, before the symbol of the method, we give the space
M spanned by the Legendre polynomials used to weight the residual in (6),
following the conventions defined above. The result is:

M = {Py,®(P1g — Py1)} for WDy,

M = {P,} for W Dss,

M ={Q,} for W Dgy,

M={Q, ® (Ps; — Pi3)} for WDy,

M ={9; & (Pa, Poa)} for W Dgg,
M =A{P, & (Py — Pi3)} for WDz,
M = {Py & (Py, P} for WDiys.

4 Strongly discontinuous methods

In the case of the strongly discontinuous methods, we also programmed all the
methods with 2 to 8 (actually 10) unknowns per cell. With the notations of the
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previous section, they are very easy to describe. To each weakly discontinuous
method WDy, y,, corresponds a strongly discontinuous method SDy, with
the same number of unknowns. Here N, = N, as there are no edge moments
on the ingoing edges, that is the left and bottom edges for a ray in the first
quadrant. The set D of interpolation parameters for each SDy, is the same
as for WDy, n,, provided E stands for R and T only, corresponding to the
outgoing edges. This set will be called D} y . For each case, we also need
to specify the space S which turns out to be identical to the space M of the
weighting Legendre polynomials and we have:

SD, (D35, S = {Po & (Pro — Por)}l,

S Ds (D35, S = {P1}],

SDy = [Dg, S ={Qi}],

SDs = [Dg5S={Q1 & (Pu — P},
S Dg = [Dgg, S = {P2}],

SD; = [Di;,8 ={P:® (Pu — P2)}],
SDs = (DI85 = {P2 @ (P, Pr2)}].

With the notation used, it is clear that SD, only contains P, and is the-
refore not very interesting. SDs3, SD,, and SDs all contain P; as do the last
three spaces with Ps.

5 Numerical results

All these methods have been tested on a series of multiplicative and nonmul-
tiplicative benchmark problems of the nuclear literature. A first report on the
weakly discontinuous methods appeared in the master thesis of Filio [4]. The
strongly discontinuous methods were developed in the master thesis of Delfin
[3]. All these results in their final correct form will be a part of the doctoral
thesis of one of us (E. del Valle) which is in preparation.

In this paper, some results will be given for a test problem proposed by
Azmy [1], in fact problem 2 of his paper. As described by Azmy, it is a
modification of Khalil’s steel and water problem [6] with a smaller average
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12 J.-P. Hennart & E. del Valle

scattering ratio to avoid excessively slow convergence of the standard source
iteration. The geometric configuration can be described by introducing four
square domains §2; = [0, L;] x [0,L;],i = 0,...,4 with L; =40, L, = 50,L3 =
70, and L, = 100. Then four regions I to IV can be defined as follows:
I = Q11 = Q\Q, 1T = Q3\Q,, and IV = Q4\Q3. Vacuum boundary
conditions are specified at the top and right edges, while reflection is imposed
at the left and bottom edges. The nuclear data o;, 05, and the neutron source
S are given in Table 1.

Table 1: Nuclear data for Azmy’s test problem 2
Region oy O S
I 1.0 0.50 1.0
II 0.1 0.01 0.0
111 0.3 0.10 0.0
v 0.1 0.01 0.0

This problem was solved by Azmy on a sequence of uniform meshes using
an S, EQN-type angular quadrature, and a pointwise, relative convergence
criterion of 10~* on each one of the calculated nodal flux moments. The
converged solution was used to calculate the quadrant-averaged scalar fluxes
over the four regions. Different methods were used, in particular the Linear
Nodal one (LN), which has 7 unknowns (N, = 7) and 11 parameters (N, = 11)
per angular direction and node. The method of solution proposed relies on
transverse integration where zeroth and first order moments of the neutron
transport equation (1) are taken on a set of horizontal and vertical slices. The
final result is a set of one-dimensional coupled equations, two per horizontal
and per vertical slice. These equations are solved analytically and exponentials
appear in the final expressions which are considerably more complicated than
in the purely polynomial case we have considered. Finally no attempt is made
to combine the linear edge and cell behaviors, which in the case of the WDy, 7
method for which results are given below lead to a global interpolant containing
P3 and for which all the extra moments not contained in D are perfectly defined
in every cell. The numerical results obtained for different meshes are given in
Table 2. The results for the 8080 mesh can be taken as the reference result.
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Table 2: Numerical results obtained for Azmy’s test problem 2 using the LN

method

Mesh

I

IT

ITI

vV

10x10
20x20
40x40
80x&0

1.953
1.955
1.957
1.957

3.650E-1
3.504E-1
3 388E-1
3.339E-1

1.626E-2
1.556E-2
1.516E-2
1.504E-2

2.222E-5
2.727E-5
2.696E-5
2.682E-5

Using different weakly and strongly continuous methods presented in this
paper, the Azmy’s sample problem 2 was run with the same angular quadrature
and stopping criterion. The corresponding numerical results are shown in Table
3. The motivations behind our choice of the results presented is that W Dg,
and SD, have the same number of unknowns. On the other hand W Dg, and
S D¢ have the same number of parameters. SD, includes Q; and thus P; but
no more. WDs4, SDg, and SDg include Py. WDy, 7 finally has the same
number of parameters and unknowns as LN and includes Ps.

Table 3: Numerical results obtained for Azmy’s test problem 2 using the
W Dgy, WDh1,7,SD4, SDg, and SDg methods

Mesh Region WD64 WD1177 SD4 SDG SDg
10x10 I 1.957 1.957 1.953 1.955 1.955
IT 3.272E-1 3.329E-1 3.776E-1 3.501E-1 3.493E-1
ITI 1.557TE-2 1.500E-2 1.463E-2 1.544E-2 1.567E-2
v 1.399E-5 2.569E-5 xx %% x*xx 3.636E-5 3.699E-5
20x20 I 1.957 1.957 1.955 1.957 1.956
II 3.330E-1 3.328E-1 3.546E-1 3.390E-1 3.390E-1
II1 1.508E-2 1.502E-2 1.552E-2 1.511E-2 1.518E-2
vV 2.873E-5 2.677TE-5 2.062E-5 2.722E-5 2.724E-5
40x40 I 1.957 1.957 1.956 1.957 1.957
IT 3.331E-1 3.328E-1 3.418E-1 3.340E-1 3.341E-1
ITI 1.504E-2 1.502E-2 1.524E-2 1.503E-2 1.505E-2
1AY 2.695E-5 2.685E-5 2.614E-5 2.684E-5 2.685E-5
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14 J.-P. Hennart & E. del Valle

6 Conclusions

From Table 3, it is clear that all the methods proposed converge to the refe-
rence solution when the mesh is refined. The difference between them is more
pronounced in a low flux region like IV when coarse meshes are used. In the
case of SD,, which is clearly the least accurate method, we even get negative
(non physical) results in that region. If we compare the results given by W Dy,
and SDg, with the same number of parameters, 4 unknowns for the first one
and 6 for the second one, it turns out that SDg is clearly better.

WDq1,7 on a 40x40 mesh yields much better results than LN on the same
mesh, quite comparable with the reference solution on a 80x80 mesh. These
results may even be better as LN, at least in regions II and III, does not seem
to have converged.

On the same 40x40 mesh, SDg and SDg which have slightly less or more
unknowns are remarkably good, with less parameters and only P, included in
S: they are actually slightly better than WD, ; with an S containing Ps.

In conclusion, most of the schemes developed are quite valuable. They
provide a global representation of the angular fluxes, taking into account all
the edge and cell information available. Being polynomial, this representation
is clearly simpler than the ones based on the exact anlytical solution of the
transverse integrated equations. Finally, if moments are needed which do not
belong to D, they can always be retrieved in a completely consistent way in
terms of the parameters belonging to D.
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