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A minimaz optimal control problem with infinite horizon 1

1 Introduction

Minimax optimal control problems have received considerable interest in the last
years. Although they describe several problems in a better way than those with
cumulative costs, these problems are not so widespread known as cumulative cost
problems due to the difficulty of its analysis.

Barron and Ishii studied the minimax optimal control problem with finite hori-
zon from its continuous point of view in [2]. In [7, 8] we have developed a numerical
procedure to approximate the solution of that problem.

This paper deals with the infinite horizon case. General properties of the optimal
cost function are studied, among them, the issue of regularity and the approximation
with finite horizon problems. We analyze the relations between subsolutions and su-
persolutions of the associated Hamilton-Jacobi-Bellman equation and we prove that
the optimal cost function is the minimum supersolution and the maximum element
of a special class of subsolutions.

1.1 Description of the problem

We consider a dynamic system which evolves according to the ordinary differential
equation

Y1) = g(y(t), alt)) VO <1< o0,
y(0) =z, z € QCIR™, Qan open domain.

The problem consists in minimizing the functional J
J:OxA - R
(z,a(-)) = J(z,a)) = esssup iepo,00) f(y(t), a(t)). (2)
The set of admissible control policies is denoted by A,

A=L"((0,00);4), ACR". (3)

We study the optimal cost function
u(z) =inf {J(z,a()) s a() € A}, (4)

RR n°2945



2 Silvia C. Di Marco and Roberto L.V. Gonzdlez

the regularity of w and the associated Hamilton—Jacobi-Bellman equation in its
integral form.

1.2 General assumptions

Let BUC(2 x A) be the family of bounded and uniformly continuous on Q x A.

We assume the following hypotheses are satisfied
(H1) g:Qx A= 1R", g€ BUC(R2 x A),

lg(z, a)|| < My, |lg(z,a) = 9(z,a)|| < Lg|lz —2]|, V2, 2€Q,VacA

(5)

(Hy) f:Qx AR, f € BUC(Q x A),

0< f(z,a) <Cy, |f(z,a)— f(Z,a)| < Lflle—2Z||, V2, 2€Q,Vac A
(6)

(Hs) The control set A is compact in IR”

(Hy4) The trajectory y(t) remains in Q, V¢ € [0,00), Va € A.

2 The optimal cost function u

As it is usual with infinite horizon problems, the optimal cost function u defined in
(4) has poor properties of regularity. In fact, under general hypotheses, it is only
possible to prove that u is bounded. Moreover, no semicontinuity property holds as
it is shown in the examples presented below.
2.1 Boundedness properties
B(€2) denote the family of the bounded functions, in symbols,

B2)=<v:Q—= 1R : sup |v(z)| <ocop.

r€Q

Proposition 2.1 u € B(Q).

INRIA



A mintmaz oplimal control problem with infinite horizon 3

Proof. From (2) and (4), it follows that u is bounded by the bounds of f, then
0 S U S Cf.

2.2 Regularity properties

We will present here two examples which show that, in general, the cost u is not
upper or lower semicontinuous.

Example 2.1 u is not upper semicontinuous

We consider a dynamic system which evolves according to the following differen-
tial equation

The solution is

(14 (252 - 1)6_25)_1/2 if 2, > 0,

2(s)=| - (14 (272 - D)e~2)™? if 2, < 0, (8)

0 if 2o = 0.

Let f(z(s)) = |z(s)|. It is easy to check that f verifies the hypothesis (6). Moreover,
if 2, =0, f(z(s)) =0 and if 2, # 0, |2(s)| = 1 when s — oco. Then, we have

1 zo # 0,
J (o) = u(zo) = (9)
0 x, = 0.

Therefore, in this example, the function » is not upper semicontinuous; see Fig. 1.

RR n°2945
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M u(z)

u(0) =0

Figure 1: u is not upper semicontinuous

Example 2.2 u is not lower semicontinuous

Let us consider a dynamic system which evolves according to the differential equa-

tion

z1(s) = 21(s) (1 = 2{(s)),
v5(s) = 1/2(za(s) + 23(s)) (1 = §(s)),

z3(s) = a(s),

z(0) = (a,0,0), a€lR

where a(-) € A, A={-1,1}.

Let J be the functional

where M > 1.

J(@, () = sup (=M Jai(t)] + |e2(t)] + M)

te[0,00)

The component z; has the following temporal evolution

—-1/2

(14 (a™? = 1)e™2) if a >0,
zi(s) =] — (14 (a2 - 1)e=2)""? ifa<o,
0 if a =0.

(10)

(11)

It can be easily checked that z3(s) is an increasing function and ILm za2(s) = 1.
S o0

INRIA



A mintmaz oplimal control problem with infinite horizon 5

Hence, if ¢ = 0,

u(0,0,0) = J((0,0,0),a(-)) = p (lz2(t)] + M) =14 M. (13)

If @ # 0, |21(-)| is an increasing function and ILm |z1(s)| = 1.
Let 1 € IN and let us define h = 7'/ and the sequence of controls «,,(+)

{aw € Az au(s) = (-1)'if s € [ih, (i+ 1)h),i € N},

It can be proved that «, is a minimizing sequence for the functional J. Then,

lim J((a,0,0),a,(-)) = u(a,0,0).

H—00

Let 0 < |a| < 1—1/M. For p large enough, z3(s) < |z1(s)|, V s € [0,00), then, from
(10) we have |z1(t)] > z2(t), V¢ € [0,00), in consequence

J((a,0,0), (")) = e (=M |2y ()] + 22 ()| + M) = M (1 — |a]). 0

Therefore, the optimal cost u is

1+ M if a =0,
u(a,0,0) = (15)
M(1—|a|) ifa#0,

function which is not lower semicontinuous, see Fig. 2.
w(0)=14+M

u(e)
M (1~ |al)

Figure 2: w is not lower semicontinuous

RR n°2945



6 Silvia C. Di Marco and Roberto L.V. Gonzdlez

3 Dynamical programming principle

3.1 Auxiliary definitions: Finite horizon problems

We will use some elements and properties of the finite horizon problem studied in
[2, 8]. So, we consider the truncated control set A, where t € [0, 00) and

Ay = L>=((0,¢t); A),
the cost functional J;

Jt($, a()) = €888Up r¢lo,¢) f(y(T)7 a(T)) )

where y(-) is the solution of the differential equation (1), and the optimal cost
function u;

w(z) = inf {Jy(z, (")) s a(-) € A} (16)

3.2 Dynamical programming equation for u

The optimal cost function satisfies the following dynamical programming principle.

Theorem 3.1 For allt € [0,00), the function u is a solution of the following dy-
namical programming equation,

w(z) = inf {max{Ji(z,a(:)), u(y(t))}} (17)

a-)eA;

Proof. Forall z € Q, a(-) € Aand t € [0,00), it is valid that

J(z,a(-) = maX{Jt(x, a(-)),esssup s€lt,00) fly(s), a(s))}. (18)
Since
ess 5D sefpoe) S (0(5), a(5)) > u(y(®), (19)
we have
J(z,a(-)) 2 max{Ji(z,a(")), u(y(t))}- (20)

INRIA
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In the right side of (20), « is involved until time ¢. Since its restriction to [0,1),
which is also denoted by «, belongs to Ay, it is valid that

S (2, () 2 %§1€fA {max{Ji(z, a(-)), u(y())}} - (21)

Oé( t

As (21) is valid for all «, we have that

u() > inf (max{Ji(z.a()). u(y(t))}). (22)

On the other hand, for all z € Q, € > 0, there exists a. such that

J(y(t), ac()) < u(y(t)) +e. (23)
Then,
max{Js(z, (), u(y(t))} = max{Ji(z,a()), J(y(t),ac(-)) —€}.  (24)
By defining
a(s) _{ als)  ifse0,t),
ac(s) if s € [t,00),
we have

max{Je(z,a(-)), J(ya(t), @c(-)) = e} 2 J(z,a()) —e 2 u(z) —e.  (25)

Since « is arbitrary, it follows that

inf | {max{i(z,a()), u(u(t)}} > u(a) - <. (26)

O(( t

As ¢ is also arbitrary,

a(i.?efAt {max{Ji(z, (), u(y(t))}} = u(z) . (27)

RR n°2945
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0

Remark 3.1 It is clear that the dynamical programming equation has not an
unique solution. In effect, every constant function greater than C'y is a solution.
Then, in this problem, this equation is not enough to characterize the function w.

4 Finite horizon approximations

Proposition 4.1 The family {u:}, defined in (16) is non-decreasing when t — oo
and it is upper bounded by w.

Proof. Ji(-) is non-decreasing function of ¢. Then, if ¢t < ¢/, we have
Ji(-) < Ju () < J ().
Since A, A; and Ay have their images on the same set A, it results
wl) < we() < u().
Consequently, {u;},,, is non-decreasing family, with upper bound. Then, it has a
limit w. It is obvious that u(z) < u(z).
O

Remark 4.1 Generally, it is not true that u(z) = u(z) as we show in the following
example.

Example 4.1 Let (21, z3) be the dynamic of the system, given by

z1(s) = a(s),
w3(s) = (1= (22())*)(w2(s) + (w1(s))?), (28)
(21(0),22(0)) =z, z€RxRT.

We define the functional J to be

J(@,a()) = tes[ggo)wa(t% (29)

INRIA
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where a(-) € A, and the control set is A = {—1,1}.

From (28), for the initial conditions = = (0,0), it follows that z(-) is increasing

function which verifies

7515[010 z2(t) = 1.
Therefore, ¥V a(-) € A it results
J(0,a(-)) =1,
which implies that
uw(0) =1

We consider now the finite horizon problem

Tr(e,a()) = max za(0).

Let ¢ € IN and let us define h = T'/u and the sequence of controls

{aw € Az au(s) = (—1) Vs € [ih, (i+1)h), i € No}.

Since x3(+) is increasing function, it follows that
J1(0, (")) = w2(T) -
Besides, from (28) we have

T

T
o2(1) = [(1= a3(0) wa®) + 3(0) de < [ (@alt) +230)) dr.

0

By using one of the Gronwall inequalities, it results

T
wa(T) < [af(t)di < T max a30).
0

RR n°2945
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10 Silvia C. Di Marco and Roberto L.V. Gonzdlez

By considering only the controls «, , we have that
2 2
max z7(t) < h

tel0,T) 1( ) - '

SO

zo(T) < e Th2. (37)

Since h = T/, if we take the limit of the right side of (37) when p — oo, it results

zo(T) < eTTh? = 0. (38)
Then, from (34)
ur(0) =0 (39)
and in consequence,
Jim ur(0) =0#u(0) =1. (40)

Taking in mind the behaviour of u shown in Remark 4.1, we conclude that the
infinite horizon problem cannot be approximated by a sequence of finite horizon
problems as it is usually done in other control problems. In the following sections,
other analytical tools will be employed to study and characterize the optimal cost
u.

5 Subsolutions and supersolutions

5.1 The operator M; and their properties

We define ¥ ¢ € [0, 00), the operator

M;:B(Q) — B(Q)

w +— M;w,

INRIA



A minimaz optimal control problem with infinite horizon 11

such that

(Myw)(z) = a(iyefAt {max{Ji(z, a(-)), wly ()} - (41)

The right side of (41) is the optimal cost corresponding to the finite horizon problem
where the functional (42) is minimized

max {J(z, a(-)) , w(y(t))}- (42)

Proposition 5.1 M, is monotone ¥Vt € [0,00), i.e. w > v implies M;w > M, v.

Proof. The proof is immediate from the definition of M.

O
Now, let us see that {M;},5, has the following semigroup property.
Proposition 5.2 Ift < 7, it is valid that
Mt M»T_t — Mq— . (43)

Proof. It is immediate from the definition of A, that this set can be decomposed
in the following way

ATIAtXC, (44)

where

C=L>((tT)A).

We consider an operator F': A, — IR and we define,

F:AxC > R
(Oét7&) — F(Ozt,&) = F(Oét U &)7

RR n°2945



12 Silvia C. Di Marco and Roberto L.V. Gonzdlez

where U is the concatenation between two functions. With these definitions and
taking in mind that any element of A, can be seen as the concatenation of elements
of A; and C, it is clear that

inf (F(a) = inf (ilclff(at,&)) . (45)
Then we have
(M) (&) = inf {inf fmax L5 (2, (), wly(r) )} (46)
Due to
Jr(w, o)) = max {Jy(z, a()) , esssup gepe,r) (y(0), a(9)) } (47)

(46) is equivalent to

gt {max {1z, gt {max {essonp oego) S(6(0),0(0), w(u(r) }H

t (48)
Since
inf { max {esssup oepe.r) S(y(6), a(6)) , w(y(r)) }} = (Mr—sw) (y (1)),

(49)

from (48) and (49), it results

Mow(e) = ol {max (e, a()  (4,-00) ()}

= M; (M;_;w) (z). (50)
U

5.2 Subsolutions and supersolutions

Definition 5.1 For each ¢ € [0,00), we define the {-supersolution set for the equa-
tion (41) to be
Si={s€ B(Q): M;s < s},

INRIA



A mintmaz oplimal control problem with infinite horizon 13

the t—-subsolution set for the same equation to be
Wy={we B(Q): Myw > w},
and the {-solution set to be Sy [\ Ws.

We also define the supersolutions (S) and subsolutions (W) sets.

«S= N S

te[0,00)

the function set consisting of ¢{-supersolutions, V¢ € [0, 00).

o W = ﬂ Wt
te[0,00)

the function set consisting of ¢-subsolutions, Yt € [0, 00).

Remark 5.1 By virtue of Theorem 3.1, V¢ € [0, 00) the function w is a solution of
the fixed point problem

(M v)(2) = v(z), (51)

so, u is always a t-subsolution, a t-supersolution, a subsolution and a supersolution.

6 Characterization of the optimal cost

6.1 In the supersolutions set

The central result of this paragraph is the characterization of the optimal cost as
the minimum supersolution.

6.1.1 Preliminary results
To get that property, first we obtain some auxiliary results.
Proposition 6.1 The following properties are valid

1. S is non empty.

2. VseS, it resulls s > 0.

3. MySCS,Vte0,0).

RR n°2945



14 Silvia C. Di Marco and Roberto L.V. Gonzdlez

4. M; is non-increasing with respect to t when the operator is restricted to S.
Proof.
1. S # 0; for Cy (any upper bound of f) it is valid that M;Cy = Cy.
2. Because of the definition of s and f > 0, we have V¢ > 0,
s(z) > My s(z) > 1£f {max{0, s(y(t))}} > 0. (52)

3. If s € 5, then s > M;s, Vi > 0. By the monotony property, we have V¢ > 0,

M,s> M, (M;s) = M, (M;s), VT > 0; which means that M,s € S, V7 > 0.
4. Let s € S and t, 6 > 0. By Proposition 5.2 and by Definition 5.1, it results

Mt+5 s = Mt (M5 S) S MtS . (53)
g

From 3 and 4 of the previous Proposition, for each s € S, {M;s},,, is a non-
increasing set of functions, which is lower bounded. These properties allow us to
introduce the following definition.

Definition 6.1 For all s € S, we define the element Ms in the following form

Ms:tlggo M;s. (54)
Obviously, it results
Ms <s,¥s€eS. (55)

Proposition 6.2 The operator M defined in (54) holds the following properties
1. MSCS.
2. M is monotone, i.e. if s < §, then Ms < MS5.

3. Let s=inf{s:s € S}. Then, Ms=s.

Proof.

INRIA
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1. Let s € S. By definition of M, we have that M; Ms < M;M,s, ¥V 7. Then,
from Proposition 5.2, My Ms < Myy,;s, ¥V 7. Since My, s < M;s, V 7, we
obtain that M; Ms < M, s, V 7. By definition of M, it results M; Ms < Ms,
V t, that means Ms € S.

2. This result follows from (54) and the monotony of M;.
3. Since s =inf {s : s € S}, it is valid that
s<s,Vsebs.
By virtue of monotony property, we have that
Mis< Mys<s, VseS Vt>0.

As the previous inequality is valid ¥V s € S, we get, by definition of s,

Mys<s, Yt>0.

In consequence, s € S. Then, from property 1, it results Ms € S.

As s is the infimum of the set S, we obtain
s< Ms.

This property and (55), imply

i
=

(56)

6.1.2 The optimal cost as the minimum supersolution

Now, we characterize the optimal cost as the minimum supersolution. Characteri-
zations of this type are frequently used in the field of HJB equations, when there
are not available results of uniqueness (see e.g. [4, 5]).

Theorem 6.1 s(z) = u(z).

Proof.

RR n°2945
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e As it was highlighted in Remark 5.1, ¥ ¢ € [0,00), M;u = u, then u € S and

consequently it results u > s.

To prove u < s, let s € S,t € [0,00) and ¢, = vt, Vv € IN.

By definition, we have
My s(z) < s(z).

By definition of M, given € > 0,3 . € Ay, such that,

max { s(y(1)), esssup o, F(y(r), ae(r)) } < s(z) +e. (57)

Let e, = ¢/2¥, where v € IN and

ty

y(t) =ylt-) + [ 9(y(s), ac,(s)) ds, (58)

ty—1

we denote by «., the control such that

max {s(y(1,)), esssup i, )/ (9(7), 02, (7)) } < s(y(tu-1)) +E,m1

We define
E(T) = Q¢, (T)v V7 e [tU—latu)-

By induction, we can see that
v—1
max{Jy, (z,a(-), s(y(t,))} < s(z) + Y _ei. (60)
=0

For v =1, (60) becomes (57). Let us assume that (60) holds for v and let us
prove that it holds for v+ 1. By virtue of (59) and by hypothesis of induction,

INRIA
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we write,

max{Js, ., (z,@(-)),s(y(tv41))}

max {Jtu(a@, a(-)), max{s(y(ty+1)), esssup [1,1,.,) Jy(r), ae,yy (T))}}

< max (. (e,a0)), s(y() + e}
< max (. (o,a(), s(y(t))} + 2,
< max {Js, (2. 7()), s(y(0)} < s(@) + Z -
Then, V n € N,
To. (2, @(-) < s(z) + nz:ég < s(z) + 22 (61)

By taking limit in the left side of the previous inequality, it becomes

J(2,3(-) < s(z) + 2. (62)

Therefore,

u(z) < s(z) + 2¢. (63)

Since ¢ is arbitrary, making it go to zero, it results

u(z) < s(z). (64)

The inequality (64) holds V s € S, so does it for s.

RR n°2945
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6.2 In the subsolutions set

In this paragraph we characterize s to be the maximum element of a special subset
of subsolutions. Similarly to what was done in the previous section, we first obtain
some auxiliary results.

Proposition 6.3 The following properties are verified

1. 0e W.

2. MW C W, Vit >0.

3. Let {wp},; CW and w(z) = sup{wy(z) : p € I}, then & € W.

4. M; is non-decreasing with respect to t when the operator is restricted to W.
Proof.

1. From the definition of the operator My, it is easy to prove that Vi > 0,
M;0 > 0. Then, 0 € W.

2. Let w € W and t > 0. From the definition of W, it follows that M;w > w.
From Proposition 5.2 and the monotony of the operator M., we have that
M, (Myw) = My (M;w) > Myw, Y7 > 0. Then, Myw € W and therefore,
MW CW.

3. Let {w,} c; € W, and w(z) = sup{wy(z) : p € I}, then w, < @. From the
monotony of the operator My, w, < Myw, < Myw. Then, @ < M;w and
therefore, w € W.

4. This property follows from the Proposition 5.2 and the Definition 5.1. Let
w e W and t, § > 0, then

Mt+5w = Mt (M5 ’U)) Z Mt w. (65)
g

From the properties 2 and 4 of the previous Proposition, the following operator M

is well defined on W.
Definition 6.2 On the set W, we define the operator M to be

Mw = lim M;w.

{—00

INRIA
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Proposition 6.4 M has the following properties on W

1. MW CW.

2. M is monolone on W, i.e. w > v implies Mw > Mwv.

The proof follows from the fact that these properties are valid for all M;.
Remark 6.1 M is well-defined on W NS, u e WS and Mu = u.

In the infinite horizon problem analyzed in this paper, it is not possible to consider
all the complete subsolution set because it is not upper bounded. Then, we will only
deal with a special subsolution class.

6.2.1 A singular class of subsolutions

Let us consider the following family of sets of subsolutions

W = {W, C W, such that conditions (C1) — (C3) are satisfied }
(C1) 0 e Wy.
(C2) MW, C Wy.
(C3) Let {w,},c; € Wo and & = sup{wy, : p € I}, then & € Wy.
Proposition 6.5 The following properties are valid
1. W#0,
2. Wy={weW: :w<steW

3. W, = ( N WO) is the minimum class of W.
Woew

Proof. The validity of Property 1 is obvious, because from the Proposition 6.3,
WeWw.

Let us prove that W, e W

1. 0 € W, because 0 € W and 0 < s as it was shown in Proposition 2.1.
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2. Let w € W;. By definition, w < s and, by monotony of the operator M, we
have Mw < Ms. As s is a fixed point of the operator M, we have Ms = s.
Therefore, Mw < s. Then, Mw € W, and in consequence, MW, C W;.

3. Let {wp} ; € W; and & its supreme, so w, < sV p € I. Then, & < s.
Therefore, w € W, .

To prove 3, it is enough to show that W, € W.

1. Since 0 € Wy, ¥V Wy € W, we have that 0 ¢ W,,, .

2. Let w € W,,. From condition (C2), it is valid that Mw € Wy, V Wy € W.
Then, Mw € W,,. Therefore, MW,, C W, .

3. Let {wp}pel C W,, and ® its supreme. Then, from condition (C3), it follows
that w € Wy, ¥V Wy € W. Therefore, w € W, .

O
6.2.2 The optimal cost as the maximum element of W,
Theorem 6.2 s =sup{w : w e W, }.

Proof. Let w =sup{w : we W,}.

From condition (C3), we have that @ € W,,. Then, w € W. Therefore, @ < M@.
Moreover, by virtue of condition (C2), M@ € W,, and w is the supreme of W, , it
results

@ > M. (66)

Then, w is a supersolution of the operator M. Since s is the minimum supersolution,
we have that s < w.

To prove s > w, we consider the set
Ws={weW:w<s}. (67)

It is clear that s = sup {w : w € W,}. By Proposition 6.5 Wy € W, so it must be
W, C Wy because Wy, is the minimum class. Hence, it follows that
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s=sup{w:we W} >sup{w:weW,}=u. (68)

A direct consequence of Theorem 6.1 and Theorem 6.2 is the following

Corollary 6.1 The optimal cost is the minimum supersolution and the maximum
element in the minimum closed sel of subsolutions W,,. In other words,

u(z) =s=sup{w:we W,}.

7 Final comments

In this work, we have considered the minimax optimal control problem with conti-
nuous time and infinite horizon. The analysis of the optimal cost function and its
approximated computation present considerable difficulties. Particularly, characte-
rizing it through the HJB equation requires a careful treatment because the optimal
cost function has poor properties of regularity.

Taking into account these facts, in this first attempt of analysis we have only ana-
lyzed the HJB equation in its integral form and not in its differential form.

Even in its integral form, the HJB equation has not unique solution. For that
reason, we have identified the optimal cost function as the minimum supersolution
and the maximum element of a special subset of subsolutions.

We have seen that the following property holds,

lim v, =u < u,
{—00

property upon which is based the study of the approximation procedure via finite
horizon problems. This approach brings up several questions, for instance:

1. under which conditions we have that u = wu,

2. how u can be interpreted as the optimal cost of an infinite horizon control
problem.
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In [9] we deal with these subjects. There, we prove that
(a) Under suitable conditions of compactness (weak-x), we have that
i. there exists an optimal control,
ii. it is valid that u = u.

(b) By itself, the existence of an optimal control does not imply the property
U=u.

(c) Compactness condition seems to be essential. See e.g. Example 4.1, for u < u.

(d) The function u can be interpreted as the optimal cost function corresponding
to a minimax problem where the original functional is minimized on a relaxed
controls set.

Concerning these results, we wish to remark the following facts:

e The analysis of the function u as the increasing limit of a subsolutions sequence
starting at 0, and its interpretation as the optimal cost function of a special
optimal control problem, is a very well known technique in the literature of
this area (see e.g. [4]).

e Relaxation methods are commonly used to obtain a problem with better ana-
lytical properties in the areas of Calculus of variations, control theory and
differential games. For the minimax problem, we have adapted some results
contained in [11, 12, 14, 15] and used techniques and concepts which can be
seen in [6, 10, 13]. We want to remark that a similar procedure has been
employed by Barron and Jensen in [3] for the finite horizon case.
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