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Méthodes d’éléments finis stabilisées pour les
coques a flexion dominante

Résumé : On s’intéresse aux méthodes d’éléments finis appliquées au modele de
coque de Naghdi dans le cas ou la déformation est “a flexion dominante”, dans le
but d’éliminer le verrouillage numérique. On propose deux formulations, baties sur
le principe des méthodes mixtes stabilisées, dont on démontre qu’elles sont stables,
ce qui exclut effectivement le verrouillage. Ces résultats théoriques sont corroborés
par des études numériques effectuées sur des cas-tests.



1 Introduction

During the last decade great progress has been obtained in the understanding of the
locking of finite element methods for various “thin structures”. For one-dimensional
problems, i.e. beams and arches, it is now completely known how “locking-free”
finite element methods should be constructed, cf. e.g. [1, 4]. For plates based on
the Reissner-Mindlin theory considerable advances have also been achieved, and by
now the problem with the shear locking can safely be claimed to be solved. In this
respect we refer to the papers [3, 8, 10, 48] in which the optimal order of convergence
is rigorously established for several methods and families of methods.

With regard to shells the present situation is unfortunately far from satisfactory.
Even if the literature on the field is voluminous, it is commonly admitted that the
elements presently in use are not completely reliable, cf. e.g. the survey [11]. From
the viewpoint of numerical analysis, it is not surprising to encounter difficulties with
shells. In fact, the general concept of “shell” covers whole families of problems with
very marked differences in behaviour depending on e.g. the geometry of the mid-
surface, the boundary conditions and the loading. Hence, the goal of developing
“the shell element” may be too ambitious, at least at present.

There are two main classes of shell behaviour that can be clearly distinguished:
the membrane and bending dominated cases. Mathematically, the membrane case
is a singularly perturbated second order elliptic problem when the thickness of the
shell is small. For this case the standard finite element method usually works quite
well. Difficulties arise in the other case, i.e. when the deformation is bending
dominated. Then, the limit problem leads to constraints which give rise to locking
if they are exactly imposed in the finite element model.

The numerical analysis of the locking problems for shells is still in its infancy.
The papers are in fact so few that they can very well be briefly reviewed here.
Pitkaranta was the first to address this question in [40], where he considers hp
finite element methods for a cylindrical shell in a bending dominated state. He
shows that the standard h-version locks for low order methods, or if the finite
element mesh is not aligned with the axis of the cylinder. In the paper it is also
shown that the p-version with a fixed mesh is free from locking. Finally, a carefully
designed hp-method is shown to be asymptotically convergent both with respect
to h and p, but unfortunately only on an aligned rectangular mesh. Pitkaranta
analyses the method directly from the (modified) energy expression. The “partial
selective reduced integration” introduced in the more recent paper by Arnold and
Brezzi [2] is based on the classical approach of writing the problem in mixed form.
They first use a splitting of the energy (already used by Pitkéaranta in [40]) to write

the mixed system in such a form that the “Z-ellipticity” condition of the classical



saddle point theory is avoided [9]. Then they prove the “inf-sup” condition by
constructing a Fortin operator. For this, the technique of “bubble functions” is
used. In the construction of the Fortin operator, the authors need the assumption
that the geometrical parameters (i.e. the fundamental forms and the Christoffel
symbols) are piecewise constants, which severely restricts the applicability of their
results (namely to circular cylinders). It seems to be non-trivial to extend their
analysis to the general case. In [49] Suri studies the approach of Arnold and Brezzi
as an hp-method for rectangular elements. The analysis of Suri is in the spirit of
Pitkaranta, and the modified energy expression is analysed directly without the use
of the equivalent mixed method. Also here the assumption of piecewise constant
coefficients is used. Let us remark that, intuitively, this assumption seems to be
even more restrictive for a “p-dominated extension” procedure as the elements then
can be quite large and the variation in the geometry big. Let us finally mention the
paper by Kirmse [28] in which a spherical surface is considered and a locking free
method is designed.

The purpose of the present paper is to explore the application of stabilization
techniques to shell problems. These stabilization techniques have earlier been shown
to give methods free from locking for several related problems in continuum me-
chanics such as incompressible elasticity [26, 22, 21|, beams [31], arches [30] and
Reissner-Mindlin plates [39, 27, 47, 33]. The stabilization technique is quite simple.
The equations are first written in a variational mixed form. Then, properly weigh-
ted least-squares-type expressions of the equilibrium and constitutive equations are
added to the bilinear form. This is, indeed, how we here treat the equations of the
Naghdi shell model [35, 5]. For the resulting finite element method we are able to
prove the stability, hence the method is free from locking. For our result we do not
need any restrictive assumptions on the geometry. Neither do we need any stabi-
lizing bubble degrees of freedom, and we are able to use standard finite element
spaces. We should also emphasize that the the auxiliary variables introduced in
the mixed stabilized bilinear form are condensed in an implementation which then
takes the standard displacement form. Our method is formulated in the h-version.
In principle, the method can be formulated in a general hp setting, but as we ex-
tensively use inverse estimates the resulting method would not be uniformly stable
with respect to the polynomial degree p. This lack of stability might, however, be
compensated for by the better approximability properties of an Ap-method, espe-
cially if a properly refined mesh is used. A general analysis would require that all
technical results are verified also with respect to p. As the present paper is already

rather technical, we have not tried to perform this.



In other respects our analysis suffers from the same shortcomings as the pre-
vious papers on the subject. In order to concentrate on the locking, we give our
estimates assuming that the exact solution is sufficiently smooth. As it is known
that the shell problems have boundary layers of different length scales [41], this
assumption is not very realistic. But as we have a stable method, the treatment of
the boundary layers should be done by a proper mesh refinement and this is a pro-
blem of approximation theory. The biggest shortcoming for the method we present,
and also for the methods that have been mathematically studied in previous works
[2, 49, 28], is that they do not perform properly when they are applied to membrane
dominated shells. Hence, we are still far from having “the shell element”.

An outline of the paper is as follows. In the next section we specify our notation
regarding the differential geometry of shell surfaces. In Section 3 we recall the
Naghdi shell model and give the equations in the bending dominated case that we
focus on. In the next two sections we introduce and analyse two finite element
formulations, corresponding to different choices of the stabilization weights. Then,
in Section 6, we give numerical results obtained with these methods in benchmark
computations. Finally, we close the paper with an appendix in which we prove some

results of differential geometry that we have used in our analysis.

2 Shell geometry and notation

We use the classical representation of the shell geometry, as described in [24]. Thus,
the shell mid-surface is characterized by a map 7 which is a one-to-one mapping

from €2, an open domain of IR?, into IR®. 7 will be assumed to be as smooth as

required (in practice C*(€2)). The actual surface we denote by S, i.e. § = 7(Q2). We
consider a shell of uniform thickness ¢.

Regarding the concepts and quantities of the differential geometry of surfaces
that we use in this study, we again refer to [24] for both definitions and notation.
However, with a view to making equations more compact, we also make use of
the alternate notation by which surface tensors are represented by letters with a
number of underbars equal to their order. In particular, a scalar is denoted by
a simple letter. With this notation, a tensor is considered as independent of the
type (covariant or contravariant) of its representations in the curvilinear coordinate
system, and transforming one set of components into another is simply done by
using the transformation formulas. Thus we will write

PT=T"d,@ds=Twpa" @ =T d"@ds =T i, @ d’.



Here @, = 0r/0¢,, a = 1,2, are the covariant surface base vectors and @*, a = 1,2,

is the contravariant base. A single dot will denote the simple contraction operator:

def
UV = utvg = uav”,

def
T-v=

Taﬁvﬁ C_ioz = aﬁ'Uﬁ at=... ,
def o — —
T - XETXp,0, 03 =T XV @ ®d,=...,
whereas a colon denotes a double contraction:

def

1:X = T Xg,.

The metric tensor for the surface we denote by a¢ and the second and third
fundamental forms are denoted by b and ¢ (= b : b), respectively.
For a second-order tensor, we define the transposition and symmetry operators

as follows
tz def Tﬁa Aoy @ C_Lb,
of 1
5(0) = (2 +D).
We next consider differential operators. The gradient of a tensor is obtained by

taking the covariant derivative and adding one index

and the divergence by contracting the gradient on the last two indices

. def
divu = u”,,

def

div = 7% do.

For a surface integral over w, a subdomain of ), we use the following compact

notation
[was® [ wie,&)vadéde,
We also write

/C'wds (gf/cw(fl,fg)ds

for an integral along a curve C', with (ds)* = a,pd€,d€s. With this notation, Gauss

theorem reads

/divgdSz/ u-vds, (2.1)
w dw



where v is the unit outward normal, in the tangential plane, to the boundary 7(dw).

From this the following Green formulas are derived

/ u-VwdS = (u-v)wds — / (divu)wdS, (2.2)
w dw w

/tX:Zde: (X-g)-gds—/(divi)-yds. (2.3)
w dw w -

For our analysis it will be convenient to use special norms for Sobolev spaces
of tensors. If two zero-order tensors v and w are in L*(w) we define the “intrinsic”

inner-product and norm
def
(v,w), = /'v'wdS,
w

def L
[wllow = (w,w)e .
This new norm is equivalent to the regular L*(w)-norm, cf. [43]. We also extend

this definition to higher order tensors and write
(w,v), dzef/u-de,

(r.X) * ['1:xas.

We also denote the corresponding norms by || - ||o. and these can be shown to be
equivalent to the regular L?(w)-norm of any of the representations of these tensors in
covariant or contravariant components [43]. Finally, we introduce new H'(w)-norms
through

ol = ool + 192010,

def
laall? o = Maell5 o + 12 (5

Recalling the relationship between covariant and regular derivatives, it is clear that
this new norm is again equivalent to the standard H'(w)-norm of the the ten-
sors in any representation. Using higher-order covariant differentiation, there is no
difficulty in similarly defining intrinsic H*-norms (k > 2) and establishing the cor-
responding equivalence properties. For all norm and inner-product signs, we will

omit the domain subscript when the domain considered is €2 itself.

3 The variational shell model

The shell model we consider, the so-called Naghdi model, is of the Reissner-Mindlin
type, i.e. it includes the effect of shear deformation, cf. [35, 5, 50, 52, 19] and the
references therein. The unknowns are @ = (u, us), the displacement at each point
of the mid-surface decomposed into tangential and transverse parts (respectively a

first-order and zero-order surface tensor), and @ as the first-order tensor representing



the rotation of a fiber normal to the mid-surface & in the undeformed configuration.
We let 000 = 'y UT'; and we assume that the boundary conditions on 9S8 = #(I'g) U
r(I'1) are given so that 7(I'g) is the part of the boundary along which the shell is
fully clamped (i.e. @ = 0,0 = 0) and 7(I'y) the part where all displacements are left
free. The problem is posed in the domain  and we define the displacement space
U by
U= {(5,n) € [H(Q) x [H'(Q)]*|#=0and n =0 on o}
0

The variational formulation then reads [5]: find (u, ) € U such
t3
o Q:(J,Q) E:k(U,n)dS +1 | g(i): E:¢(V)dS (3.1)

Here the material properties are given by the two tensors

Fobi — 7E [aakaﬁ“ + a®*aP + —21/ a®Pat )
2(1 +v) 1—v
Gaﬁ — E aaﬁ
2(1 4+ v) ’

and £k, g, v denote the bending, membrane and shear strain tensors, respectively:

We also recall that b and ¢ are the symmetric tensors corresponding to the second
and third fundamental forms of the surface, respectively.

We also write equation (3.1) in the shorter form:
£ A(E,0;5,) + 1D(i,0:5,n) = (7). (32)

with
A, 0;7,1) 4 / 5(@,9): E: 5(5,n) dS (3.3)

and

D(@,0:5,1) & [ <(@): B:2(7)ds + /sz,@ CG-y(T,n)dS. (3.4)

Implicit in the use of a shell model is the assumption that the shell is "thin”.

Hence, it is essential to study how the solution behaves in the limit when the

thickness ¢ — 0. This limit behavior is very different depending on the geometry



of the shell and the boundary conditions and depends in a crucial way (cf. [44, 45,
15, 16, 36, 37]) on the subspace

U = {(5,n) € U|D(@,n;7,7) = 0}

consisting of the displacement fields with vanishing shear and membrane strains.
In this paper we only consider the case when the shell is said to be in a bending
dominated state of deformation. This is the case when (cf. [44, 16, 37])

U’ #{(0,0)}.

Then the limit problem is obtained by assuming the loading to be given by g = th
with findependent of the thickness ¢. In the sequel we therefore study the following

problem.

Py« Find (u,0) € U such that

A(w,0;0,m) +t72D(4,0; 0,n) = F(0) Y(v,n) € U. (3.5)

Here we introduced the notation F(-) def (f, ).

From [6] and [18] we know that, for any ¢ > 0, P; has a unique solution, pro-
vided that the distributed force field ]? is in an appropriate space, say [L*(2)]°.
Furthermore, as ¢ tends to zero, P; can be seen as a standard penalty problem. The

limit problem Py is defined as:
Py : Find (do,8,) in U such that

Alilo, 05;7,m) = F(D)  ¥(5n) €U°. (3.6)

The term “limit problem” is justified since, as ¢ — 0, it can be shown that
the solution (u,8) of P; converges strongly in U to the solution (ty,8,) of Py (cf.
[13, 40]).

In the approximation of plate problems it has often turned out to be advanta-
geous to use a mixed formulation, cf. [9, 10, 20]. This is the approach that we use
here as well. Hence, we define as new unknowns stress variables dual to the strains
in the variational formulation (3.5). By n we denote the symmetric membrane force
tensor, Here we depart from the usual notation, cf. Remark 3.1 below. The shear
force we denote by g. These are connected to the membrane and shear strains

through the constitutive equations

QZ%ééW% (3.7)
4= 3G A(@0) (3.9

Ne)



The symmetric bending moment tensor is not taken as an independent unknown

bl
but we use the following abbreviation based on the bending constitutive equation

(3.9)
By introducing

(n,q) € Q= {p e [LX()*?| 'p=p} x [L*(Q))?

as new unknowns and by writing the constitutive equations (3.8) and (3.9) in a

weak form, we obtain an equivalent “mixed” formulation of the problem

M, Find (d,0,n,q) € U x Q such that

, (3.10)

and

def
N(Qaﬂ?alz%ﬂ) = tQ/Q(n:

Here we use the notation

o 1+v 2v
Eaﬁ/\ﬂ = W I:aoz)\aﬁ,u + Aopdpy — 1—aaﬁaA;L 5
o 2(1 4+ v)
Gog = ——045.
B B Gap
The second order tensor é is the inverse of G (i.e. G - Q = Q G = a), whereas E
is such that, for any two symmetric tensors 7' and X: B

L=

E:X — X-=

|||IM<
I~

(3.11)

Finally, we recall that using the symmetry of the second order tensors, and
the Green formulas (2.2

) and (2.3), the following integration by parts formulas are
obtained

(3.12)



Lg:g('ﬁ)dSZ—/wdi_VQ-QdS—/W(Q:Q)UgdS—I— (n-v)-vds (3.13)

and
/wgzl(ﬁ,ﬁ)dSZ/wg-ﬂdS%-/

w

(Q-Q)-QdS—/divgvgdS—l— (q-v)vsds. (3.14)

dw

Collecting these formulas gives

/W@:g(ﬁ,ﬁ)ds+ Q:g(ﬁ)d5+/wg¢1('ﬁaﬁ)d5=

_/w(diVQ‘FQ!(Q—Q-g))'v3d5—|—/aw(g.z)_ﬂds (3.15)
) (w—b-m) v)-vds+ | (q-p)vsds

Hence, recalling the constitutive equations (3.7)—(3.9), problem P; gives the

following equations of equilibrium

divm—q = 0, (3.16)
divip—b-m)-b-q+f = 0, (3.17)
divg+b:(n—b-m)+fs = 0, (3.18)

in the domain €2, and the natural boundary conditions

m-v = 0, (3.19)
(n—b-m)-v = 0, (3.20)
qg-v = 0, (3.21)
on the free boundary I';.
Remark 3.1 In the above equations the quantity
n=n—b-m (3.22)

is the tensor obtained by integrating the three-dimensional membrane stresses over
the shell thickness, cf. e.g. [29,24, 35, 52]. Usually this is called the membrane force.
For designing a stable method it seems more practical to introduce the variable n,
and not 7, as an new unknown. For simplicity we refer to n as the membrane force.

11



4 A first approximation scheme

We use a finite element partitioning C;, of  into straight-sided triangles or quadri-
laterals. Naturally, the partitioning is assumed to satisfy the usual regularity and
compatibility conditions, cf. [14, 7, 42]. The diameter of an element K € C;, we
denote by hg, and we let h = maxgec, hx. By 'y we denote the collection of edges
in the mesh, and by hg the length of an edge £ € I',. The letters C' and ¢ are
henceforth used to denote generic strictly positive constants, independent of both
t and h, which are allowed to take different values at different occurrences except
when appearing with indices.

Let 24" and Q" be finite element subspaces of U and Q, respectively. A mixed
finite element method of the “classical” saddle point type would be based on the

formulation M, viz.

M? : Find (u T Qh n h) e U" x Q" such that

B(@*, 0" n", ¢"; ,Q,};,[):F( )15 5T r) V('ﬁ,ﬁ}; r)eUr x Q" (4.1)

It appears difficult to design a stable finite element method directly based on this
formulation. Hence, we follow an approach that has turned out to be fruitful for the
related beam, arch and plate problems, cf. [22, 21, 47]. The approximation scheme
we propose is derived from (4.1) by adding weighted least-squares-type terms of
the equilibrium equations (3.16)—(3.18) and the constitutive relations (3.7)—(3.8).
In order to simplify the presentation of our method, we introduce the weighted

inner-product

(v, w) h 4.2
Z Ix ? ( )

KecCy
with analogous definitions for higher order tensors. Further, in accordance with
(3.9) and (3.22) we introduce the notation

p) = p—b-m(¥n). (4.3)
Our first stabilized method will now be defined as follows:
S : Find (u T Hh n h) e U" x Q" such that

Bu(@", 0", n",¢"; %, n,p,r) = Fu(8,n,p,r) V(G m,pr) €U x Q" (4.4)

12



with a stabilizing term originating from the equilibrium equations

E —ay (div m(, 1) — s, div m(#,n) — 1), (4.6)
—ay (div A, 7, k) = b- s, div i(#n,p) —b- 1)
—ag (divs +b: (@, 7, k), dive + b:(#,,p)),
and one from the constitutive equations
Si(W, 7, k, 8,0, 1, p,7)
Yo [ |ed) — PEA] B |2@) - £Ep) as (4.7
tos [ ()~ G- s] - G- [y(E.0) - G -1] dS.
The right hand side is defined as
Fo(Bm,pr) & F(0) + ez (f, divi(@,m,p) —b-r) (4.8)

+as <f3,dlvr + b: (7, 7

s
~—
~—

o>

The norm used for the displacement is the modified H*(2)-norm that we pre-
viously defined, i.e.

1.0l =

1/2
(23 + [losli? + Nlefl,) " (4.9)

For the stresses, we use a discrete norm defined by

def 1/2
o = (Pllpeld + lprli + prl) (4.10)

lp; |

with “interior” terms

def

1/2
ool € (X Akleldc+ Y Ailidiv pld o+ D Aklldivetbepld ) T, (4.10)

KecCy KecCy Kecy,
and “jump” terms
. 1/2 .
prls ™ (X he [ [lpe B+ ds) (4.12)
Eel'p\lo N

where [-] stands for the jump of the quantity if the edge is in the interior, and for
the quantity itself if it is on I'y. Finally, we let

— def — 1/2 <
15,1, oz llen = (1151013 + llpowll?s) (4.13)

We begin our analysis by noting the consistency of formulation S!* with respect

to the continuous problem M.

13



Lemma 4.1 Suppose that fE [L*(Q)]?. Then the solution (i,0,n,q) € U x Q of
M satisfies

By(u,9,n,q;0,n,p,r) = Fu(G,n,p,r) V(¥ n,p,r )Euh Q" (4.14)
Proof:  First we note that, due to the assumption ]? € [L*()]?, the quantity
By (i, 8,1, q;0,n,p,r) is well defined for all (4,7, p,r) € U" x Q". Therefore, using
the continuous formulation M, the equilibrium equations (3.16)—(3.18) and the
constitutive equations (3.7)—(3.8), we directly obtain

In order to obtain a stable method we have to specify the finite element spaces.
To this end we let, for [ > 0,

def | P(K) if K is a triangle,
Ri(K) = { Qi(K) if K is a quadrilateral, (4.15)
and for £ > 1 we now define
U (i) €U | vilk € Ripa(K), i =1,2,3, (4.16)
and 77a|K € Rk([(), a=1,2, VK € Ch},
Q"L {(pr)€Q | pIk € Rer(K), a,8=1,2, (4.17)

and r%|xg € Ry_1(K), a=1,2, VK € Cy}.

Remark 4.1 With the choice of finite elements spaces that we made, the stresses

are interpolated discontinuously between elements. This implies that they can be

14



eliminated at the element level to obtain a purely displacement-based numerical

scheme, cf. equation (6.3) below. m

Remark 4.2 Our choice of covariant components for the displacement variables,
and of contravariant ones for the stresses, enables us to establish Lemma 4.4 (using

Lemma A.2), which we need for proving the stability of the method. m

We are now ready to state our main stability result. We will assume that the
shell thickness is in the range 0 < t < ¢y, with ¢y fixed.

Lemma 4.2 Assume that:

(S1) 0 < a; < Cf, fori = 1,2, where the positive constants C! are fized, derived

from inverse inequalities.
(S2) a3 > 0.
(S3) 0 < a; <32, fori=4,5.
(S4) h is sufficiently small.

Then the stabilized formulation St is stable, i.e. there is a positive constant C such
that, for all (G,7,k,s) € U" x Q", there exist (Z,n,p,r) € U" x Q" with

B(w,1,k,s;2,m,p,1) > C||i, 1, k, 5|¢n (4.18)
and

12,1, ps e < 1. (4.19)

Proof: Let (W, 1,k,s) € U" x Q" be arbitrary. The proof we will now divide into
three steps.

Step 1. First, a direct calculation gives

+ar Y b (sl x = Ildiv m(, )13 ) (4.20)
Kec,,

tay 3 bk (Idivk—b-s|2 x — [ldiv [b- m(F, )] |12 )
Kec,,

tas Y bk (Idivs + b k|2 — lle:m(d, )12 ) -
I\ECh

15



We will use the following inverse estimates

> Rilldiv m(@, 7)||§ x < CL(A(E, 750, ) + k||, 7)|3 &), (4.21)
Kec,,

> Rilldiv (b m(ib,1))|6 x < C2(A(B, 30, 7) + K2, 7)|3).  (4.22)
IXECh

For clarity, we will establish (4.21) and (4.22) as a separate result in Lemma 4.3
below. We also have

Y hille: m(@,1)|5 x < Ch?|lm(e8, 7)|I5, (4.23)
IXECh
and from Lemma A.1l:
A, 755,7) = 12 [ m(d1): Bim(F,0)dS > Clm(@, 03, (124)
Q= = =
so that we get
S Rl ml @ 0)| < CHRAE, 731, 7). (1.25)

I\ECh
Combining equations (4.21), (4.22) and (4.25) with (4.20), we obtain
Bh(u_)) r é; ;u_}vza _év _ﬁ)
> (1 — 06101 - 01202 - ChQ)A(Uj 7 W 1) - ChQHLB7ZH(2J
+a4/ £(@): B e(@) dS + a5/ y(i#,7) - G- y(F,7)dS  (4.26)
Q= Q= = -
+12(1 — ayt?) EE:EdS—I—t(l—ag,t)/g G- sdS
EL:E R

+o E hIxH Ix + o Z h Hlek_b SHOI&

Kecy, Kecy,

+ag 3 hilldivs +b:Ello «-

Kee,

¥

IIm

e \ Il

Since a; > 0, ¢ = 4,5, the ellipticity result proved in [6, 18] gives
(1 — 06101 — OfQCQ Ch )A( 0 LB T) (427)
tas [ 2(@): Eie()dS +as [ 1(i,7) - G- 1(i, 1) dS > Oz,
Q- = = Q— =

when choosing
a; < CIE (20)™, i=1,2 (4.28)

=

and for A small enough. Next, Lemma A.1 implies

J

e

B:kdS > C|&2. (1.29)

Further, it holds

dSZZ(l—I—I/)

S~
I
[ient
It

Isllo- (4.30)



Since
l—ait*>1—aiti>0,1=4,5, (4.31)

a combination of the above relations gives

Bh('u_ja ) év 35 'U_jv ) _éa _§)
> Cy (||, zll} + |1k, 5115) (4.32)
+an E h%&'HﬁH(Q),K + E h?{ |div E—b- §H§,K
Kecy, Kec,
+az Y hiclldivs + bkl k.
Kec,,

again when h is small enough, to take care of the term —CR?||«0, 7|2 in (4.26).
Finally, using the arithmetic-geometric mean inequality, and the boundedness of b,

we get, for 0 < n <1,

) . 1
Z h?{ ‘dl—vﬁ_ b- §”(2J,K > (1—=mn) E h%’ |div ﬁ”g,l{ - 04(; —1) Z h?{”ﬁ”é]{-

KeCh KeCh KeCh
(4.33)
Hence, by setting n close enough to one, we obtain
BA(, 7,k 0,7~k —) > Cs (15,72 + ksl + sl)) (430
Step 2. Next, we use the result that there exists (¢,0) € U" such that
S [kl vt s v es) ds > Colksf (4.35)
Eer\ro ™"
and
> h 19llo + 11917 < |k s[5 (4.36)
KECy

The proof of this result is rather technical and hence we will postpone it to Lemma
4.4 below.
With this ¢ we first write

Bu(i8, 7, k, 5;5,0,0,0) = I + I1, (4.37)
with
I % AW, 1;7,0) + ag /Q £(): £:£(7) dS (4.38)
+Oé5/91(@z) 2(5.0)dS — an (div (i, 7) — s, div m(¥,0)),




and

1 —a4t2)/9§(17):£d5+(1 —a5t2)/ +(7,0) - 5dS. (4.39)

Note that estimates (4.21) and (4.22) immediately imply, for all (7, x) € U" :

S % |div m(E )2k < CIIZ, X1, (4.40)
IXECh
> hiclidiv [b-m(Z )] 18« < CllE 1} (4.41)
I\ECh

,0), and we use

In order to bound I, we apply these relations to both (w,r) and (v
the Schwarz inequality and (4.36). We obtain

o - 1/2 o 1/2
1] < Co|l#)s (16, 1% + |k, s13) ™ < Colle, sl (116, 212 + |k, s2) (4.42)

We transform the term I7 by using the integration by parts formulas (3.13) and

(3.14) over each element

IT = 111 — (1 — ast?) Z dlvk—b-ﬁ)-de (4.43)
Kec, 'K o
—(1 — ast?) Z (divg—l—é:é) v3dS,
Kecy, 'K
with
[[]d—ef(l—oz4t2) > /[[k v]-vds+ (1 —ast?) > /[[5 v]vsds.
EecTp\Ig E€l'y\Io

Hence, using (4.31), (4.35), (4.36) and the arithmetic-geometric mean inequality we
get

11> 10— esl( Y )

Kee,

> 11— |k, s|i|k, s|s
> 7|£,§|J — |k, 8|1k, 55
Cs 1
> I|£a§|3 - @@éﬁ- (4.44)

Combining (4.37)-(4.44) and using, once again, the arithmetic-geometric mean in-

equality, we obtain

By(w,1,k,s;7,0,0,0)
= 2 2, Ce 2 2
> =Crlk sl (1,2l + Ik sff) ™ + Pkl = o1k sl

06 07 g

C7 1
2 = 2 2 - 2
(Z — T) |E7§|J - %(HU%ZHI —I_ |£7§|I) 06 |£7§|I ?
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for any strictly positive . By choosing ¢ small enough, we then have
Bh(’LB,z, év S5 177 0, g7 Q) > 08|£7§|3 - C9(HL67£H% + |£7§|§) (4'45)

Step 3. Choose now (Z,n,p,r) = (@ + 00,7, —k,—s) with § > 0. The relations
(4.34) and (4.45) proved in the previous steps then give

82,1, p,1)
> (Cs5 = 8C5) (|1, z]1F + Ik, sl7) + Cs2?llk, slIf + 6Cslk, 5[5
> Cyol|lw, T, ﬁvﬁHihv

Bh(’lﬁ, T,

(o
IIE
|~3

when choosing § < C5/Cy. Using (4.36) we get

1Z,m: e < (10, 7, K, sllon + 6]19,0,0, 0l = [0, 7, &, 5

.+ 9|1
< B, 1, k, 8llen + 0|k, 8l < Cua||B, 7, ks 8o, (4.46)

and the assertion is thus proved. m

Next, we will prove the missing steps in the proof above. We start with the
inverse estimates (4.21) and (4.22).

Lemma 4.3 The following inequalities hold for any (v,n) € U

> hiclldiv m(@, )l i < C1(A@, 138, 1) + B*||F, nllg), (4.47)
IXECh
> Rilidiv [ m(@ )] fx < Ca(A@,p;8m) + B[ nl5).  (448)
KecCy

Proof: First we note that
> hilldiv m(@ n)llox < C Y hicllm(@, )i« (4.49)
Kec,, Kecy,
while, by virtue of the smoothness of b we also have
> hilldiv b m(@ )] 5k < C 3 Acllm(@ )l i (4.50)
Kecy, KeCy,

Therefore the proof will be identical for both estimates. Further, the above defini-

tion of Sobolev norms for tensors implies

(5, )17 e < O I (@, )l e (4.51)
a7ﬁ

where the norm in the right hand side now denotes the standard H'-norm. Our
argument will not require the detailed expression of m*(7, 1), so we instead sym-

bolically denote

maﬁ@)? n) = p?ﬁwvz,ﬂ + pamvz + /03 77%# + pamma (4.52)
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where all coefficients involved are smooth functions that incorporate geometric and
material terms. For a smooth function p we now define 7”p as the linear part
of its Taylor expansion at the center of each element. Using standard expansion

properties, we have for any («, #) and any element

[(p5P8 — TR p2Pi8 Y0, + (5P = T p3% o, (4.53)
(P57 = TH 5" Vi + (057 — T illa i < ChicllF,

H(pfﬁw Th Otﬁw)vi’#_{_( af Th aﬁZ) v; + (paﬁw Th aﬁz#)m’}i (454)
+(p5™ = T 5" millf i < CRINT, mll3 s + P lIT, 1l )

Hence, we obtain

h?&'l‘maﬁ(ﬁ 77)”?1{ (4.55)
< h2 H(Th ozﬁm)vmi 4 (Th aﬁZ) 4 (Th aﬁzu)m# 4 (Th aﬁZ)mnl ®
—I_Ch HU 77”2 K + Ch HU 77”1 K-

We can now invoke standard inverse estimates on polynomial functions to obtain

hiclm* (@, )11 x (4.56)
< TP i+ (1" 5™ Yoi + (T 057 s+ (T" 37 il I5
—I_Ch ”U 77”0]&7

and, using (4.53) combined with an inverse estimate, we finally get
Ricllm? (@)} i < Im* (@, 5k + Chi 1T, 1ll§ (4.57)

which, combined with (4.24), concludes the proof. m

Remark 4.3 It is not clear whether estimates (4.47) and (4.48) would hold without
the terms A?||7,n||5. These estimates, however, are sufficient for our purposes in

their present form. m

Remark 4.4 In the above proof, it clearly appears that estimates (4.47) and (4.48)

follow from similar local estimates that we can explicitly write as:

. S 1 .
i ldiv m(B )3 < 155 [ £00): £ia(Fn)dS + W@ ), (458)

Wi div (b m(5,n)] 113 (4.59)

1 5
S 02(_ ﬁ('l%ﬂ): ( )dS—I—h ‘U TIHOIX)

12 /Jk =

||||tq
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This implies that these inverse inequality constants can be computed for each ele-
ment using a simple local eigenvalue problem, cf. [25] where this idea is introduced
for several stabilized methods. Therefore the choice of a; and a9 can be made

automatically in the course of the assembling process. m

We proceed to establish the result required at the second step of the proof of

Lemma 4.2. For this, the technical Lemmas A.1 and A.2 are essential.

Lemma 4.4 There is a positive constant C such that, for all (k,s) € Q" there
exists (0,0) € U" such that

[k-v]-vds+[s-v]vs)ds > Clk, |
EE%:\FO/E<_ 3) =

and

> RIS + 11117 < 1.
Kee,

Proof: We use the normal Lagrange degrees of freedom for ¢ and we choose these
so that ¢ = 0 at the vertices and the internal nodes of all elements. To the remaining

degrees of freedom of ¥ along edges we assign values so that
’UQ|E = hE ELaA[[k/\HI;#]] bE, ’U3|E = hE [[SHI;#]] bE, (460)

where a bar over the symbol of a continuous function denotes its value at the
midpoint of the edge, and by stands for the second-degree “bubble function” along
the edge with value one at the midpoint (i.e. by = 1). As it holds

[E*]E € Peoi(E), [s"]ls € Proi(E) and bp € Po(E), (4.61)

this construction yields a function ¥ lying in the appropriate finite element subspace
for the displacement.

Now, we first note that Lemma A.2 gives

S [lku]ovds = Y hg /[[ka’\u,\]]&ag[[kﬁ“l?#]]b,gds

Ber\Io ' ¥ BeT,\T B
= Y hp / [£% 7 Jaus[ k7, ] b ds,
E€Tx\To B

where ( is a smooth positive function bounded away from zero. Then we can apply

Lemma A.l to obtain

> /E[[é-z]]-yds > C > hE/E[[kO‘ADA]] [k**0,] bg( ds

EeTp\Io EeTp\lo

> ¢ Y hg /E [k ] [k*4,] by ds,

Eel'p\I'o
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and since the quantities involved are now polynomial functions, a standard scaling

argument yields

S hp / 0] [0, ] bpds > C S hg / [ 0] [k°"5,] ds

Eel'y\I'o Eel'p\I'g

so that, using again Lemmas A.1 and A.2, we have

Y [ledovds 2 ¢ X he [ nl e ds

=

Eel'p,\Iy Eelp\Io
> C Z hE/[[k‘ AvnJaas[k™v,] ds
Eel'y\Io
> ¢ % hellk- dlls. (162
Eel'y\Io

To bound v, we first note that inverse estimates imply

lolly <€ > hlllullox -

Keey,

Then, using the fact that all degrees of freedom are equal to zero except along edges,

we get by scaling arguments, and Lemmas A.1 and A.2

lly+ > heilelox <€ 2 hellk-v]llss - (4.63)

KECh EEFh\FO

For the component v3 similar arguments give

3 /[[3 Vvsds >C S hull[s- V|20 (4.64)

Eelp\Ig E€Tp\To
and
losll T+ > hillvsllo e <C Y- hulls- ]G e - (4.65)
Kecy, Eel'p\I'o

The estimates (4.62)—(4.65) then prove the assertion. m

To perform the error analysis, interpolation estimates in non-standard norms

will be required.

Lemma 4.5 For (ii,0) € U N ([H*(Q)]® x [H*1(Q)]?) it holds

mfh{uu—ve—nm D ol [ (4.66)
(@m)eu Eem\lo
9 1/2
+ 3 (bRl — 5,0 — 0|2 + B3 llid — 7,0 - nll3 ) }
Kecy,

< ChM|1a@, Ol -
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Proof: The estimate follows from scaling arguments. m

Lemma 4.6 For (n,q) € QN ([[‘I’“(Q)PX2 X [Hk(ﬂ)]Q) it holds

inf {lln—p,g—rlln+lln—p.g—rlo} < Chln gl . (4.67)

(pr)eQ”

Proof:  Let (p,r) be the L?-projection of (nr,¢) in Q". Since no continuity is
imposed on the finite element functions, this projection is defined locally element

by element. We now have

e~ pog =zl + lln—p.g — 22 < Ol —p,g i3

+ 3 kil —pa—rlic+ > Y heln—plds+llg—rll2s)

KecCy KeCp EeoK

The last term above is handled by a scaling argument
> > hallln—plds +llg - zll6 )

KeCp EcOK
Clle—pa—rl+ X hilln—p.a—rll} )
K Ech

3

IN

and the asserted estimate then follows from standard estimates. m

Let us now prove the error estimate for our numerical scheme. In the proof we

will repeatedly need the estimate

1/2 . 5
(3 rklsnlle) " < Clonlhg ¥(@n) €U, (4.68)

K Ech

which is a direct consequence of standard inverse inequalities.

Theorem 4.1 Assume that conditions (S1)—(S4) of Lemma 4.2 hold and that the
solution of M, is such that @ € [HFY(Q)?, 0 € [HY(Q))?, n € [H¥Q)]**?
and q € [H*(Q)]*. Then the finite element formulation S} has a unique solution
satisfying

i =", 0 = 0"l + ln— 2", g = ¢"lles < ORI, Oliir + Nl glls). — (4.69)

Proof: Let (I"@, "0, I"n, I"q) € U" x Q" be the interpolant to (i, §,n, q) satisfying
the estimates of Lemmas 4.5 and 4.6. By the stability result of Lemma 4.2 there
exists (0,n,p,r) € U" x Q" such that

10,1, p, e < 1 (4.70)
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and

Cla" — 1"a, 0" — 1"0,n" — I"n,¢" — I"q||in (4.71)
§B(u —I'a Gh—[hQn [hg,gh—]hg;ﬁ,ﬂ,}:),ﬁ).

Next, the consistency of Lemma 4.1 gives
By(i" — 1", 0" — 1"0,n" — I"n,
= By(d — 1" H—IQQ 1*

p,r) (4.72)

»\.
hQ
|d
e IS

IS

|
~
o~

o)
<L

=

RS

|~
N—

To proceed, we write out the expression for the bilinear form
Bh(lj_ [hﬁ7Q_ [hgag_ [hgvg_ [hga ‘87Q7£7£)
= A(i—I"3,0— 1"0;3,n) + M(d@ — ["@,0 — 1"0,;p,r) (4.73)
+M(F, 0 —1"n,q = I"q) = N(n = I"n,q = I"g; p,7)
—I_SZ(J_ [hﬁag_ [hﬁyg— [hgag_ [hga ﬁaﬁv}_%ﬂ)
+Si(@ = 1"0,0 = 1"0,n — I"n,q — I"¢; 5,7, p, 7).
For the first term above the Schwarz inequality, Lemma 4.5 and (4.70) give
|A(d = 1"3,0 — 1"0; 0, )| < Clld — 1,0 — I"0]L [|T, nlly < ORI, 0. (4.74)
By using the integration by parts formulas (3.13), (3.14) and Lemma 4.5 we get
|M(J_ [h‘J7Q_ [hQ7 7£7£)|
> hpHE - Ml + Y Al - 1t - 1)

Eelp\Io KECy
||p, rllen
< ChH||a, 0)|pss- (4.75)
Next, we directly get
[M(#,min = I"n, g = I"q)| < Clln=I"n, g = I"glloll nlls < Ch*|ln, gllx  (4.76)
and
IN(z—I"n,q = I"¢;p,r)] < Ctlle— I"'n.g — I"gllollp: llen < CRF||m, glle. (4.77)
The first stabilizing term is estimated using Lemmas 4.5 and 4.6 as follows
S (@ — 1"0,0 — I"0,n — I"n,q — I"q; T, n, p,1)]
< (O Wil = 1a,0 = 10113 )" + o= I"n, g = T"qllos)

K Ech
< (03wl nl3 0 + iz le)
K Ech
< CRM, 0l ks + 1 glle), (4.78)
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where we used the inverse inequality (4.68). For the second stabilizing term we

obtain
|Si(@ = 1"7,0 — 1"0,n — I"n,q — I"q; ¥, 1, p,1)]
< C(IM(i = 1",0 — 1"0,5p,1)| + |M (5,3 — ", g — I"q)|
+N(n = I"n,q — "g;p,r)]) + Clli — 17,0 — 1"0]11 |5, n]lx
< CRA(1E Ok + Nz, glle). (4.79)

by virtue of the previous estimates (4.75)—(4.77), the Schwarz inequality and Lemma
4.5. Finally, we note that Lemmas 4.5 and 4.6 also give

@ —1"@,0 = 1"0,n — 1", g — I"qllep < CRA(|@ Qlnsr + [z glle).  (4.80)

Hence, collecting (4.71) to (4.80) and using the triangle inequality we get the as-

serted estimate. m

We will close this section by giving some remarks on the analysis of the method.
In [2] the analysis is performed using an abstract semi-norm for the stresses, instead
of the discrete norm we have used. This abstract semi-norm is defined as follows
def M(v,n; p, 1)

llp,zll| = sup —=
= @peu 17l

(4.81)

For our finite element method it is possible to prove the stability using the same

global norm as in [2], i.e.

18,3 p. e llle 2 (1,2 + 2l 1l + 1, el12) (4.82)
This is achieved using the “Pitkaranta-Verfurth trick” introduced by Pitkaranta in
connection with Babuska’s method for approximating Dirichlet boundary conditions
[38] and Verfiirth for mixed methods for the Stokes equation [51]. The idea has later
been extensively used for both classical and stabilized formulations of the Stokes
problem, cf. [46, 21].
We are, however, not able to carry through the whole error analysis with this
norm. The reason is that the stabilizing term (4.78) which we are not able to bound.
One possibility for an analysis would be to use the combined norm |||« |||+ || ||.x
for the stresses. This is possible since the same stability construction can be shown
to yield the stability with respect to both norms for the stresses. We choose a
different approach and show that the estimate for the stresses in the norm (4.81)

can be proven “a posteriori”.
Theorem 4.2 Under the assumptions of Theorem 4.1 it also holds

llz—n" q— "l < CR*(I1@, llwsr + [z, all)- (4.83)
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Proof: From the definition of the semi-norm (4.81) there is (v,n) € U x Q such
that

lln—n" g ¢"lll = M@ n;n - 2" g - ¢") (4.84)
and
10, nl[y = 1. (4.85)
Now we let (¢",n") € U" be the Clément interpolant to (¢, n). From [17] we have

> RNT = =" lok+ D hE T -k (4.86)

KECh EEFh\FO
HI7 = 7", 0 = n"llF < ClI7,nll3.

Next, we write

+M(5" "0 - ' g - g"). (4.87)
For the first term above an integration by part using (3.13) and (3.14) gives

n—n"in ")
< O RRIE - -0 Pk + X hET— )RR

Kecy, EcT'p\Ig
x|ln—n" q— ¢"len

M5 —3"n—n"n—

|>~Q

Q
—h
—v

IN

Clenllln - " g — "l

< Cle-1"q—¢"n (4.88)

From the consistency we have

Hence, it holds

M@ 00 —n' g - ¢") (4.90)
= —A(@—a",0-0"d" ") - Si(@—d" 00" n—n"q— ¢ " 0", 0,0)
—Si(d@—a",0—0"n—n" q—¢"5"1",0,0)
For the first term above we get
A — 8 — 0 %, )| < Clld— @0 — L3 . (4.91)

The second term is estimated as follows
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< O(( Y hilla—ito—o"

Kee,

2 )P+ =1t g — ")

. 1/2
X ( E h?( "Uhaﬂhl‘g,l{)

Kee,

< o(( X mli-ito -0

Keey,

2+ -1t g — ")

1

x ||&", 7"

1 (4.92)
where we used the inverse inequality (4.68). For the third term we directly get

—n"q—¢"7",1",0,0)| (4.93)
i@ — ", 0 — 0"l + lln — 0", g — ¢"[l)1F", 1" 1,

Combining the above estimates gives

o —n" g — "Il < C(|li — @0 — 0", n— 0", g — ¢" [l (4.94)
(Y Rkl — i 0 — 0" 20"
Kecy,

From Lemma 4.5, the inverse estimate (4.68) and Theorem 4.1 it follows that

(0 hilla — "0 — 6"13 )" < ORI, Ollksr + Il gll0)- (4.95)

Keey,

Hence, the assertion follows from Theorem 4.1. m

5 A second stabilized method

In this section, we propose an alternative stabilized scheme, obtained from the
previous formulation by changing the weights in front of the stabilizing terms that
originate from the constitutive equations, in the spirit of what is considered for

plates in [39, 27, 47, 34, 33, 32]. This second stabilized method reads:

St Find (ﬁh,Qh,gh,gh) e U" x Q" such that

Bh(ﬁh,Qh,Qh,gh;ﬁ,ﬂ,B,g) = Fu(0,n,p,r) Y(U,n,p,r) € U x Q" (5.1)
where
Biu(@,1,k, 5,5, p,p,7) ¥ B(&,1,k, 57,0, p,7) + S5 (@, 7, k, 85 8,1, p, 1)
+ S8 (W, 1, k, 57,1, p, 1), (5.2)

27



with the stabilizing term S originating from the equilibrium equations defined as
before in (4.6), and the term from the constitutive equations redefined by

Sh(d, 1, k, 5;

|CIJ

Tk 5%, 5.1) (5.3)
def 1 1 S 25 ] . [ Ly ]
2 Z; 2+ adh% Jx [5(w) PL:k| :E: |e(6) —*L:p| dS
1 1 B 5 . .
+51§m/1 (1) = G- 8] - G- [1(Fm) = G - 1] dS

The right hand side F} remains unchanged as defined by (4.8)

For the displacement variables we will use the following norm

09, n0en < (117,003 + 2

1/2
U@l x + le@E k)
Kecy, 2+ h2 a )

which is obviously stronger than the H'-norm used for our first method. The norm
for the stresses we now have to weaken by first redefining the “jump” term

def
p.rls =

(X 0 [l o+ ) a5)"”
EeTp\Io

and then defining

Ip,rlen =

1/2
(Pllp. )l + lp. o+ o)

by keeping the interior part as defined in (4.11)
notation

We will also use the combined

o def
|:|U7ﬁ7]_)7£ t,h —

. 1/2
(09,202, + Dpo2))
The analysis of this new scheme will now essentially follow the same lines as in
Section 4, so there is no need to give the full proofs for all results. We will instead

g
. We
highlight the differences between the two formulations, whenever these differences
are significant.

First, we again note that the formulation is consistent

Lemma 5.1 Suppose that fE [L*(Q)]?. Then the solution (i,0,n,q) € U x Q of
M satisfies

n (5.4)
The finite element subspace U" x Q" we keep as defined by (4.16) and (4.17)
Section 4. With this choice we can state the new stability result

Lemma 5.2 Assume that:
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(Sl) 0 < a; < CL, fori=1,2, where the positive constants C! are fived, derived
from inverse inequalities.

(S2) a; >0, fori=3,4,5.
(S3) h is sufficiently small.

Then the stabilized formulation Sf is stable, i.e. there is a positive constant C such

that, for all (G, 7,k,s) € U" x Q", there exist (Z,n,p,r) € U" x Q" with

By(wW,1,k, 8,2, n,p,r) > Clw, 1, k, s[lsn (5.5)

and

I:I_;Qv]:)aﬂl:lt,h S 1. (56)

Proof: We again go through 3 steps.
Step 1. First, a direct substitution yields

Bh('LB, T, i? S5 ’LB, T, _k7 _§)

= A, + 3 t2+a4h /g(w):

Ix eCp

re(w)dS

[l

—I_ Z t2—|—a5h / V(Wal)gl(w,z)dS

IxeC
Oé4hK / [v]
+ _ kE:E:kdS
Ly (1+57h%)/ s (-sdS
2 Kec, t2—|—015h%{ K- =
tar Y ki (I1sl 5 — lldiv m(, 7)IF )
Kecy,
tay 3 bk (Idivk —b- |2 — [ldiv [b-m(F, )] |12 )
Kec,
tas 3 bk (Idivs +bikl2 x — lle:m(d, 0)]12 ) -
Kecy,
Note that, for any K,
1 1 1 1 1

< < 1 =4,5. 5.7
max{l,a;} 2+ k3 ~ 2+ ohd — min{l, o;} 2 + AL e (5:7)

Using as before estimates (4.21), (4.22) and (4.25), we thus obtain

> (1= a1Cy — axCy — ChQ)A(u_f T;W,T) — C’hQHw THO (5.8)
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1 —
FO{ P sl + 3 i U Dl + @) )}

Kecy,

+or D hicllsllox +az Do hilldivk —b-sllo
Kecy, Kecy,
+as Z h?&"‘divﬁ—l'é:é”g,l{-
Kecy
We again set
Cl = (20)™, i=1,2

Then, proceeding like in the proof of Lemma 4.2, we can conclude that

k,—s) > Cy ([, 73, + 2|k sl + &, sF) . (5.9)

Bh(’u_j, T,

80,1, =
Step 2. By changing the weights from hg to h3, in (4.60), Lemma 4.4 changes as

=

follows: there exists (¢,0) € U" such that
> [ (k] vt [s- v es)ds 2 Colk,of}

Eel'n\TI'o

(5.10)

and
> (RIS + PPN &) < |&, 8157 (5.11)
Kec,,

We first note that
(5.12)

5 _ 5 1/2
05,00en < Co( D2 hi2l5l3 k) < Colk, sl

Keey,

By substituting this ¥ we get
(5.13)

B(%,1,k,57,0,0,0) = [+ [T+ 111

with
I ¥ A0 / w): Ee(v)d
(Er00)+ 5 Y e 2 Ere() s

= , T
IxeC

+5 ¥ ae Jalin) -G0S

IxeC
—ay (div m(i, 7) — 5, div m
b

(5.14)
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and

def — 1 t2 g
HJ___E:ﬁ+am Jyg@kds—3 & e [ AE0)-5d5. (515

Kecy Kecy

Using the Schwarz inequality and estimates (4.40)-(4.41), then (5.12), we obtain
- - 1/2 - 1/2
1] < Co05,000n (05, 03, + |, sf}) < Colk, sy (05, 203, + |, sF) . (5.16)

Further, recalling (5.7), we have

12 . .
1] < cs(}:%;;zgyég@wgﬂsw—Ejt2+h%y[, 7,0) - sds|)

Kely, Kely
12
< G X [ 2@ kas|+ ¥ [ 2(5.0)-sas
(Ix cCh ?+ h2 o KeCy 2+ h2 )
< Coll5, 0t x t|E, sllo < Crolk, sly x t|, s]lo, (5.17)

using the Schwarz inequality and (5.12). In the second term we again integrate by
parts using (3.13) and (3.14) , which gives

=1V +V, (5.18)

with

Ve > / ([k-v]-v+[s-v]vs)ds (5.19)

EeTp\Io

and

Ve S [ (divk-b-s)-vdS— Y (divg—l—g:i) vadS.  (5.20)

Kec, 'K Kec,,

Equation (5.11) implies

oy 1/2 _
V< ksl (X pRIONSK) T < Ik shilk sl (5.21)

Keey,

Hence, recalling (5.10), the arithmetic-geometric mean inequality gives
Cs 1 ¢

As in the proof of Lemma 4.2, we now combine (5.13)—(5.22) and use the arithmetic-

geometric mean inequality to obtain
By(i8, 7, k, 5,7,0,0,0) > Cuille, sl — Cra ([0, 202, + ||k, sl + |k, s3).  (5.23)
Z,

Step 3. The assertion again follows from (5.9) and (5.23) by choosing (Z,7,p,r) =
(W + 60,7, —k, —s) with 6 > 0 small enough. m

We now examine the modifications in the interpolation estimates. In view of the
stronger norm used for the displacements, a stronger assumption on the regularity

of 4 is required.

31



Lemma 5.3 For (if,0) € U N ([H**(Q)]® x [H*(Q)]?) it holds

inf {Ji 5.0 —nlint 3 T~ ol (5.24)
(et E€ly\I'o
21> = 2 1/2
+ 3 (N = 5,0 =l + bl = 5.0 = nl ) §

Keey,

< C* (|2 + 1001541 -

Proof: Using the definition of the norm [ - [J+,», we have

Ji— 5,0 —nl7, < C(lE—80—nli+ 3 re(llid =l + 12— nll3))-

Kee,

Therefore, recalling that the interpolation space is one degree higher for @ than for

0, scaling arguments imply
0 — 7,0 = nllen < CR* (|2 + 18]lk41)-

The next term in (5.24) is also treated by standard scaling arguments, and the

remaining terms are unchanged from Lemma 4.5. m

By contrast, the new norm for the stresses is weaker than the previous one, so

the interpolation estimates remain valid.
Lemma 5.4 For (n,q) € QN ([[‘I’“(Q)PX2 X [Hk(ﬂ)]Q) it holds

inf {ln—p,g—rlor+ln—pag—rlo} < Ch¥n gl . m (5.25)

(prjeQ”
We can now state and prove our final approximation result.

Theorem 5.1 Assume that conditions (Sl)f(g3) of Lemma 5.2 hold and that the
solution of My is such that @ € [HF(Q)?, 0 € [HFY(Q))?, n € [HFQ)]**?
and q € [H*(Q)]*. Then the finite element formulation St has a unique solution
satisfying

- @0~ 0,0~ n" g~ o < CH¥(lallss + 10lless + lglle). (5.26)
Proof: Let (I"@, "0, I"n, I"q) € U" x Q" be the interpolant of (&, §,n, q) satisfying

the estimates of Lemmas 5.3 and 5.4. By the stability result of Lemma 5.2 there
exists (7,n,p,r) € U" x Q" such that

8.0, p,20n < 1 (5.27)

IIE
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and

Cla" — 1"a, 0" — 1"8, nh — [hn qh — [hqﬂth (5.28)
< By(i" — 1", 0" — 1", n" [hg,gh—]hg;ﬁ,ﬂ,}l,z).
Next, the consistency of Lemma 5.1 gives
Bh(ﬁh — I"a, 0" — 10, n — [h qh — ]hg; v,1,p,1) (5.29)

= By(ii — I"@,0 — 1"0,n — I"n, g — I"g; ¥, n, p,1).

For the first term above, the Schwarz inequality, Lemma 5.3 and (5.27) give
|A(d = 1"0,0 — 1"0:0, )] < Cllid — 1"a,0 — 1"0][,]|3, ]l (5.31)
< Ch*(|[allks2 + 1€l]k+1).

By using the integration by parts formulas (3.13), (3.14) and Lemma 5.3 we get

|M(@— 1"3,0—1"0,;p,r)|
1/2
9 ‘(ZJ,K) Hg’ Eﬂt,h

(X wgla—raly+ 3 bl - 10— 1"
EEFh\FO I{ECh

IN

< CR([[dllkrz + 11€)]k+1)- (5.32)
Next, we directly get
(M3, — I"n,q — 1"q)| < Clln— I"n,q — I"q|lo]|%,nlls < Ch*|n.glle  (5.33)

and

IN(n —I"n,q = I"¢;p,r)| < Ctlln—I"n,g — I"gllolip rllen < CR¥||n, glle. (5.34)

The first stabilizing term is estimated using Lemmas 5.3 and 5.4 as follows

|Se(u—]h 0 — 1", n—[hn q—]}q, ﬂ,£,£)|
< (OX il = 1"a,0 — 1013, + [n— "n,q — 1"qln)

K Ech

X (( 3 Wil nl3e) " + 0. 20on)

K Ech

< CR*([[allkra + 1001541 + Iz, glli), (5.35)
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where we used the inverse inequality (4.68). For the second stabilizing term we

obtain

|Si(@ = 13,0 = 1"0,n — I"n,q — ["g; 7,1, p, 1)

I
< C(IM(@—1"3,0—1"0,;p,r)| + [M(T,p;n — "1, g — I"q)]

+IN(n — I'n,q — I'g;p.v))
—I_CI:IJ - [h'a))Q - [hQI:It,hI:I‘l77 ﬁﬂt,h
< Ch*([l@llksz + 100k + Nz gllx), (5.36)

by virtue of the previous estimates (5.32)—(5.34), the Schwarz inequality and

Lemma 5.3. Finally, we note that Lemmas 5.3 and 5.4 also give
1@ - 1,0 — 1", — I'n,q — gl < CH(llere + 18less + gl (537

Hence, collecting (5.28) to (5.37) and using the triangle inequality we get the as-

serted estimate. m

6 Numerical results

6.1 Numerical procedure

We have implemented the two stabilized methods analysed in Sections 4 and 5, for
the lowest-order finite element spaces, i.e. letting k = 1 in (4.16) and (4.17), in the
simplified case of circular cylinders, using the MODULEF library. In addition to
the obvious implementational simplification, circular cylinders indeed feature two

major advantages:

e They provide one of the very few instances of shell geometries for which some
reference solutions can be derived, either in closed form or with arbitrary

numerical precision, so that reliable benchmarks are available.

o This geometry allows a wide variety of possible limit behaviours when the
thickness is very small, according to how boundary conditions are imposed. In
particular, if essential boundary conditions are not imposed outside of rulings
(straight lines parallel to the axis), it is easily seen that the limit problem is

bending-dominated.

We considered two different benchmarks. In the sequel, we refer to the natural
coordinate system, shown in Figure 1, in which @; and @, are unit vectors, respec-

tively tangent and normal to generators. The benchmarks are defined as follows:
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Figure 1: The natural coordinate system

a) The boundary conditions and the loading are defined in such a way that the
shell behaves like an arch. Considering a cylindrical “slice” at the ends of
which one imposes u; = #; = 0, and assuming that the loading fis a function
of & such that f; = 0, it is indeed easily seen that the resulting behaviour is

that of an arch, i.e.:

{ i = (&), 0=0(6) (6.1)

We used an example, borrowed from [12], for which a closed-form arch solution
can be derived. This example, described in Figure 2, corresponds to a semi-
circular arch clamped at both ends and loaded by a uniformly-distributed
constant force. We considered a slice of length equal to 1.5 times the radius
R and, for symmetry reasons, one half of this slice was computed, so that the

actual computational domain was a 1.5 x 7 rectangle.

b) A fully-circular cylinder is loaded by a periodic pressure, so that the shell
reduces to a one-dimensional model along the axis. This problem is analysed
in detail in [41], and we applied the procedure described therein to obtain
numerical solutions with arbitrary precision, using symbolic calculus software.
The specific example considered is a cylinder with free ends and of length 2R,
loaded by a pressure p = pgcos(2£;2/R), see Figure 3. Due to symmetry,

ks

only one sixteenth of the structure was effectively computed, using a 1 x %

rectangle.

In each case, numerical solutions were computed using triangular meshes auto-
matically generated by a Voronoi method available in MODULEF [23], for gradually
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Figure 2: Semi-circular arch

computational
omain

Figure 3: Cylinder loaded by periodic pressure
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Figure 4: Mesh generated for the 1 x 7 domain (N=20)

refined discretizations of the rectangular boundary, dividing each side into N equal
parts, with NV =10, 20,40. One of these meshes is shown in Figure 4. We delibera-
tely avoided using meshes aligned with the sides of the domain, or with the axis of
the cylinder, that seem to alleviate locking phenomena in some instances [40].

The Poisson ratio v was set to 0.3. The stabilization constants were determined
by performing some preliminary calculations on the first benchmark. For the first
stabilized method, we then used oy = 0.3 107?/E, ay = 0, az = 0.1R*/E, ay =
as = 50/R*. For the second method we chose a; = 0.3 107?/F, ay = 0, a3 =
0.1R*/E, ay = a5 = 0.01. In both cases the choice ay = 0 is allowed because, with
div n = 0 inside each element for any discrete membrane stress field n (since all nops
are constant), the corresponding least-square term provides no further stabilization
than the first one.

In order to compute the stabilized numerical solutions, we used standard solvers
for symmetric positive matrices. To that purpose we eliminated the stress degrees
of freedom element by element, as indicated in Remark 4.1 above. Denoting by
U the column vector relative to the displacements and rotations, and by P that
relative to the stresses, the stabilized mixed methods indeed lead to the following

typical matrix equation:

MUU MII;U U _ FU (6 2)

Mpy —Mpp P Fp |- '
From the proof of the stability results, it is clear that both My and Mpp are
symmetric positive definite matrices so that we can eliminate P from this equation.

Note that, since the stress finite element functions are discontinuous, this elimina-

tion can be carried out at the element level as the assembling is performed. Thus,
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instead of (6.2), the problem solved in practice is
(Mus + My M Mp)U = Fy — My Myb P, (63)

where the matrix to be inverted, (M + M2, Mpp Mpyr), is now symmetric positive
definite. Hence we solve a matrix equation similar to what would be obtained from

a standard displacement-based finite element method.

6.2 Analysis of the results

Figures 5 and 7 show relative errors in the H'-semi-norm for the displacements, i.e.

|l_j — ’Jh 1

?

h _

s
computed from solutions obtained by the first stabilized method, and also by a
purely displacement-based scheme corresponding to the standard Galerkin approxi-
mation of problem P; using #". Thickness values of 0.1, 0.01, 0.001 (scaled by R)
were considered. Figures 6 and 8 compare similar errors for the rotations with inter-
polation errors, since optimal convergence is expected from the theoretical analysis.
These interpolation errors turned out to vary very little with the thickness (typi-
cally within 10% ranges), so for the sake of legibility only their values for t = 0.1 are
displayed. Note that, from the theory, optimal error estimates are not expected for
the displacements since convergence is governed by the approximability properties
of the lowest degree finite element space, i.e. that of the linear rotations. This is
confirmed by the numerical results, as can be seen in Figures 5 and 7 where the
slope of the best convergence curves barely exceeds unity. This explains why we do
not plot interpolation estimates for the displacements.

In Figures 5 and 6, i.e. for the arch benchmark, we see no significant influence
of the thickness on approximation errors of the stabilized method. Moreover, the
errors for the rotations are very close to interpolation errors. By contrast the
displacement-based method exhibits strong locking, with completely erroneous (in
fact vanishing) solutions for ¢ = 0.001 for all meshes except the finest one.

In the second example, a marked deterioration of convergence appears in Figures
7 and 8 for the first stabilized method when the thickness decreases. Approximation
errors are visibly affected in absolute value for each mesh, as well as in rates of
convergence. However, even errors for t = 0.001 remain acceptable, especially when
compared with the displacement-based method which dramatically fails here again.

We next compare the two stabilized methods. Figures 9 and 11 display the

relative errors for the displacements approximated by both methods for thickness
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0.01 |

0.001

Tl t=0.1 - Displacement —<—
el t=0.1 - Stabilized -+-
Al t=0.01 - Displacement -&--
S t=0.01 - Stabilized -x
S t=0.001 - Displacement —2---
Tl t=0.001 - Stabilized -

0.0001
10

Figure 5: Benchmark a - Relative errors for @

100

t=0.1 - Displacement —<—
N t=0.1 - Stabilized -+--
N t=0.1 - Interpolation -5--

N t=0.01 - Displacement -x
N t=0.01 - Stabilized -4~
t=0.001 - Displacement -~
t=0.001 - Stabilized -<---

10

Figure 6: Benchmark a - Relative errors for ¢
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Figure 7: Benchmark b - Relative errors for @
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t=0.1 - Displacement <—

t=0.1 - Stabilized -+-

t=0.1 - Interpolation -5--
t=0.01 - Displacement -

t=0.01 - Stabilized -2~

t=0.001 - Displacement -~

t=0.001 - Stabilized -<--

Figure 8: Benchmark b - Relative errors for 8
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0.1

Stabilized 1 <—
Stabilized 2 —+-
Reference t=0.1 -&--

Error

0.001 | 1 g i

0.0001
10 100

Figure 9: Benchmark a - Compared relative errors for @

1

Stabilized 1 <—
Stabilized 2 -+--
Interpolation -8--

Error

10 100

Figure 10: Benchmark a - Compared relative errors for ¢

0.001, compared with the best numerical solutions obtained for thickness 0.1. Simi-
lar errors for the rotations are plotted in Figures 10 and 12, with the corresponding
interpolation errors.

In the case of the arch benchmark, rotation errors remain essentially unchanged

in Figure 10, but displacement errors now feature a more sensitive behaviour with
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respect to the thickness parameter (Figure 9). However, this phenomenon is much
more limited than the deterioration observed with the first stabilized method in the
second benchmark. Furthermore, the numerical results obtained with this second
stabilized method here still strikingly differ from the locking behaviour exhibited
by the displacement-based method.

Regarding the results obtained for the second example and displayed in Figures
11 and 12, we see that the second stabilized method provides significantly improved
approximations for displacements as well as rotations.

In partial conclusion to our numerical tests, it appears that, even though both
stabilized methods give reasonably good results, the second one seems more promi-
sing in that it limits the sensitivity of convergence behaviours with respect to the
thickness parameter in the two examples that we considered. This sensitivity is not
completely ruled out, but it does not compare with a real locking behaviour such

as the one displayed by the displacement-based method.

A Appendix

This section contains results of essentially geometric character that are used in the
numerical analysis of the shell formulation. We start with a classical property of the

first fundamental form (see e.g. [43]), the proof of which we give for completeness.

Lemma A.1 There exist two strictly positive constants ¢ and C such that, at any

point of QO and for any surface tensor n:

()’ + ()] < aon™n” < Cln")* + (7)), (A1)
0+ (1)) < @y < l(m)? + ()] (A2)

Proof: Consider the following function defined on R? x Q:

(" 0*), M) > aas(M)y*n”.

Since a is the metric tensor of the surface, this function is strictly positive everyw-
here except when (n*,n?) = (0,0). Moreover it is continuous since 7 is smooth. De-
fine ¢ and ' as its minimum and maximum values on the compact set
{517, (nH2 + (n*)? = 1} x Q. Hence ¢ > 0 and (A.1) holds. Then (A.2) imme-
diately follows from the fact that the matrix (a®”) is the inverse of (a.g), so that

they have inverse eigenvalues. m

We next establish a property regarding vectors orthogonal to curves which are
images in S of straight lines in . This result enters as a crucial element in the

stability of the proposed approximation schemes.
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Lemma A.2 Let C be an oriented straight segment in ), T the unit tangent vector
of F(C) in' S, v the unit normal vector (v, = e,57", see [24]). Then, for any two
points My, My on C, there exists a positive number ¢ such that:

vi(My) = (i (M, |
{ V?EM2; = é-VQEMl; (A.3)

Moreover, ( lies in an interval [(1,(s]|, with (; > 0, the bounds of which are inde-

pendent of the specific segment considered.

Proof: Let (&1(x) = Ma+p1, &a(x) = Az + p2) be a parametrization of C'. Define:

7 def d

t= &), ()]

By the chain rule:
£= M1 + Nada,

and of course T equals £ up to a normalizing factor. Now let:
7 \at 4+ N3,

so that ¢ -7 = 0 and (t_: 1, ds) is positively oriented. Therefore v equals 7 up to a

normalizing factor also, i.e.:

v = =Xof(A2)%a!t + (A1)%a?? — 2)\ A a2
vy = )\1[()\2)2 1 ( ) 22—2)\1)\2a12]_%

Let now M; and M, be any two points on C'. We infer:

n(Ms) (M) \l(Az)Qall(Ml)+(/\1)2a22(M1)—2/\1/\2“12(%) (A4)

(A2)2a (M) 4+ (M1)2a??(My) — 2X Apa'?(My)’

so that (A.3) holds. Moreover, from Lemma A.l we have for any point M in Q:

g (A2 + (02)*] < (0)2a (M) +(M)?a® (M) —2X 1 haa* (M) <

Therefore:

1
c

() + (7]

?

T _ | Ou)rat(My) + (0 )2a2(My) — 20 Mpal2(My) _ [C
C =\ ()2l (My) + (\)2a22(My) — 2\ hat2(My) = | ¢

and setting (5 = \/g and (s = \/g, this completes the proof. m

We now establish an ellipticity property for tensor

(llisst
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Lemma A.3 For any symmetric tensor X at any point M in ), we have:

y 1
X:E:X>—=X:X A5
=== 2FE= = (A:5)
Proof: From the definition of E in section 4, we have:
o 1+v \ v 1) 2
X:B: X = XV X - (x?) ] (A.6)

We can always construct, at least in a neighbourhood of M, a new coordinate
system such that, at M, the covariant base vectors are orthogonal and of unit-
length. We denote by (XM) the components of X in this new coordinate system
where no difference subsists between covariant and contravariant forms. Since tensor

invariants are independent of the coordinate system considered, we have:
2 < \2 N
(X2)" = (X)) < 2X,, X, = 2XMX,,.

Thus, from (A.6):
1—v 1

X > X:
_— — E —

>
e
||><
\
<
=

N
e

since v < %
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